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ABSTRACT

Earlier treatment of zero-offset VSP data arrival times in terms of perfectly inelastic
particle interactions is extended to include walkaway modes. The space-time tracks of par-
ticles moving under the influence of a uniform force field accelerate in such a way that un-
der a particular coordinate transformation they reproduce the moveout in the VSP gather. In
zero offset data and walkaway modes NMO correction is realized through transformations
from the laboratory reference frame of the notional collisions to rest frames of individual
particles before and after colliding. Galilean transformations alter the linear NMO patterns
of zero-offset data, whereas transformations to noninertial reference frames are needed for
walkaway modes.

INTRODUCTION

A seismic event in a data set traces out a remarkably coherent curve in the geophone
location/time plane. The curves bear a strong resemblance to the tracks formed by particles
as they drift in space, in a classical kinematical view. In fact we may find it tempting to
try to impose on a seismic event (and its coherence in space and time) the interpretation
of a track or path being followed by a particle in space as time elapses. In this paper we
find that the predictive capability of such a picture is far from negligible, and it provides us
with the ability to see certain seismic data processing tasks (e.g. NMO correction) in a new
light.

This paper extends previous analysis from zero-offset VSP environments (Innanen,
2010) to walkaway environments. The presence of lateral source offset obviously changes
the character of VSP events significantly, requiring a switch from linear to curved trajec-
tories. However, the basic idea of inelastic collisions occurring (say) between two carts on
a frictionless air-track still holds, with a slight modification, as we shall see. Beyond that,
we apply the particle model to practical aspects of VSP data handling: in particular, NMO
corrections (e.g., Zhang et al., 1994) are here seen to correspond to coordinate transforma-
tions between the laboratory frame and the rest frames of the various particles. For the zero
offset case, Galilean transformations “flatten” VSP events; when the source is laterally off-
set, non-Galilean transformations which retain classical interpretations are possible, with
ultimately transformations with some relativistic properties necessary.

VSP experimental configuration

The configuration we consider in this paper is the walkaway VSP (WVSP) experiment
(Figure 1). The variable xs will be used to represent the lateral distance of the source to the
well, and zg will represent the depth of the geophone down the well. Ray paths lengthen
as the hypotenuses of right triangles as we move down the well, and bend conserving
horizontal slowness as they pass through interfaces and/or regions of smooth change in
velocity. Our interest in the current paper is primarily in the travel time curvature caused
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by the offset xs, which leads to more pronounced hyperbolic character in the measured
events (Figures 1a-c).
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FIG. 1. Walkaway VSP configuration. (a-c) Increasing offset leads to a more pronounced hyperbolic
character in all measured events, including the direct arrival.

ZERO OFFSET VSP DATA

Previous discussions on this subject have focused mostly on zero offset VSP data, a
special case of WVSP with xs = 0, wherein measured events exhibit a linear moveout. In
Figure 2a is an example zero offset shot record∗, with depth increasing from left to right.
The direct and reflected events, which are distinct at zg > z1, meet at the depth z1 of the
reflecting interface. The transmitted event is measured at depths below z1. In Figure 2b the
travel times of the three events, t1 for the direct arrival, tR for the reflected arrival, and tT
for the transmitted arrival, are labelled.

Particle/collision picture of zero offset VSP data

The particle model of zero offset datasets—such as that illustrated in Figure 2—grows
out of the observation we made in the introduction, namely that an event is a curve in the
time and in space plane of the data record, and that several of these curves generally co-
exist and intersect in regions of the volume of time and space of the data. It turns out that
we can treat these curves as if they were the time histories of particles drifting around in
space, accelerating or drifting with uniform velocity, and sometimes colliding and sticking
together.

To do so we have to first reverse the roles played by time and space. Consider a single
trace in the VSP experiment in Figure 2a. For the sake of definiteness, take the trace
at 1500m depth. In that trace there are two events, the direct arrival and the reflected
arrival. Consider only the direct arrival, found at roughly 0.5s. We define the “position” of
a particle in our model to be the value of the time coordinate at which the seismic event is
found. Thus, in this trace we would say there is a particle at “position” t = 0.5s. And, we

∗All synthetic data in this paper were calculated with the fourth-order finite difference acoustic solver
afd_shotrec.m in the CREWES matlab toolbox.
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define the value zg along depth axis of the well to be the current “time”. So, the particle
passed “position” t =0.5s at “time” zg =1500m.
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FIG. 2. Synthetic zero offset VSP experiment for a single interface model with velocity c0 above z1
and velocity c1 below. (a) Synthetic shot record; (b) arrival times of three events interpreted in zg
and t.

Tracking a particle in kinematics we determine the position as a function of time x(t) in
one dimension, or [x(t), y(t), z(t)] in three dimensions. Hence in our model to track each
“particle” we will need to determine their respective functions t(zg). These are simply the
travel time curves of the events. In a zero-offset case, for a reflector at depth z1, the particle
associated with the direct arrival has a trajectory given by

t1(zg) =
1

c0
zg + t01, zg < z1,

t01 = 0,
(1)

whereas the reflected arrival has

tR(zg) = −
1

c0
zg + t0R, zg < z1,

t0R =
2z1
c0
,

(2)

and the transmitted arrival has

tT (zg) =
1

c1
zg + t0T , zg > z1,

t0T = z1

(
1

c0
− 1

c1

)
.

(3)

These are all linear travel time curves, reflecting the fact that the source-geophone separa-
tion and the ray paths grow in proportion as we move down the well.
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Wave boundary conditions as momentum conserving inelastic collisions

Consider a trace in the VSP experiment illustrated in Figure 2a, or better yet, its rep-
resentation in Figure 2b, in which a trace is obtained by drawing a vertical line anywhere
through the box-shaped domain of zg and t. The events occur at points where this line
intersects the red, blue or green travel time curve.

The process we would like to examine is the evolution in time (whose coordinate we
have defined to be zg) generated by the uniform motion of this vertical line and its intersec-
tions with t1, tR and tT from left to right. It is what we would see if we made a movie out
of the seismic traces in Figure 2a, with each trace being a frame of the film, and the frames
were played sequentially starting from low values of zg and going to high.

Consider what the direct, reflected and transmitted events would look like in such a
movie. As the vertical line sweeps from zg = 0 to z1, the “particles” represented by the
reflected and direct arrivals drift towards each other. At “time” zg = z1 the two collide.
Beyond that a single particle continues, drifting at a slightly altered rate. The impression is
of a perfectly inelastic collision.

Let these particles be assigned masses proportional to the amplitudes of their respective
arrivals. That is, the three tracks in Figure 2b are assumed to represent particles with masses
m1, mR and mT where

m1 = 1, mR = R, mT = T. (4)

The rates at which they drift towards each other, which we will call the velocities v, are
determined by the slopes of the travel time curves in Figure 2b. Since we have defined zg
as a time coordinate and t as a space coordinate, the velocities are in fact the slownesses of
the wave fronts. The three particles therefore have drift velocities

v1 = (1/c0), vR = −(1/c0), vT = (1/c1). (5)

These velocities are a consequence of the decision to treat zg as a time coordinate and t as
a space coordinate, but the masses were arbitrarily chosen. The motivation for this choice
lies in the observation that at z1 a perfectly inelastic collision appears to take place. The
masses and velocities in equations (4)–(5) make it possible to write down expressions for
the total mass and total momenta of the system before and after the collision. Conservation
of these quantities implies

m1 +mR = mT → 1 +R = T

m1v1 +mRvR = mTvT → (1/c0)− (R/c0) = (T/c1).
(6)

Thus, in our scheme the scalar boundary conditions by which R and T are normally deter-
mined for plane waves are replaced by mass and momentum conservation rules before and
after the collision.

Moveout corrections as Galilean transformations

Continuing in the zero-offset VSP experiment format, we can pursue the idea of collid-
ing particles by considering coordinate transformations. The particle motions examined so
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far have been in the equivalent of a laboratory frame, but to the extent these VSP events
mimic particle experiments, other frames may be suitable also. Since we have set zg as a
time coordinate and t as a space coordinate, a Galilean transform between, for instance, the
laboratory frame and the rest frame of the particle of mass m1 is

t′ = t− 1

c0
zg,

z′g = zg.
(7)

Applying this transform to the kinematic expressions for the three VSP particles, we have
for the particle of mass m1

t′1 = t1 −
1

c0
zg

=
1

c0
zg + t01 −

1

c0
zg

= t01,

(8)

which sits still in this frame at location t01, and for the other two particles

t′R = − 2

c0
zg + t0R

t′T =

(
1

c0
− 1

c1

)
zg + t0T .

(9)

The VSP data and particle tracks in the original laboratory frame of reference are illustrated
in Figures 3a and c, and are illustrated transformed to the m1 rest frame in Figures 3b and
d. Riding along on the particle m1, the particle mR appears to approach at twice the lab
frame rate, and the post collision particle can be seen to now drift backwards (since in this
example c1 < c0).

Note then that the mathematics and processing associated with VSP data moveout cor-
rection for a particular event, appears in the particle view as a classical or Galilean trans-
formation to an inertial reference frame in which the associated particle is at rest.

Invariance of collision rules under general linear moveout corrections

We might think to ask if the VSP moveout corrections we make alter the viability of
the interpretation in terms of particle collisions. The answer is no. To see this, consider a
general laboratory frame triplet of incident-reflected-transmitted events:

t1(zg) = p0zg

tR(zg) = −p0zg + t0R

tT (zg) = p1zg + t0T ,

(10)

subject to a general Galilean transformation (i.e., any linear moveout correction):

t′ = t− p′zg, z′g = zg

t = t′ + p′zg, zg = z′g.
(11)

CREWES Research Report — Volume 26 (2014) 5



Innanen

0 1000 2000 3000 4000

0

0.5

1

1.5

2

(a)

Depth

Ti
m

e 
(s

ec
)

0 1000 2000 3000 4000

0

0.5

1

1.5

2

(b)

Depth

Ti
m

e 
(s

ec
)

(c)

Depth

Ti
m

e 
(s

ec
)

0 1000 2000 3000 4000

0

0.5

1

1.5

2

(d)

Depth

Ti
m

e 
(s

ec
)

0 1000 2000 3000 4000

0

0.5

1

1.5

2

FIG. 3. Galilean transform example. (a)-(c) Original zero offset VSP data set, in the equivalent of
the laboratory frame; (b)-(d) after a Galilean transformation into the rest frame of the particle m1

associated with the direct arrival.
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The mass and momentum rules for the laboratory frame are

m1v1 +mRvR = mTvT → 1× p0 −Rp0 = Tp1

m1 +mR = mT → 1 +R = T.
(12)

Applying the transformation we find the new relations between the time zg and space t
coordinates of the three particles:

t′1(zg) + p′zg = p0zg

t′R(zg) + p′zg = −p0zg + t0R

t′T (zg) + p′zg = p1zg + t0T ,

(13)

or, re-arranging,

t′1(zg) = (p0 − p′)zg
t′R(zg) = −(p0 + p′)zg + t0R

t′T (zg) = (p1 − p′)zg + t0T .

(14)

Reading the drift velocities from these equations, we have then for the momenta before and
after the z1 collision in the new coordinates

m1v
′
1 +mRv

′
R = 1× (p0 − p′) +R× (−p0 − p′) = −p′(1 +R) + p0 − p0R

mTv
′
T = T × (p0 − p′) = −p′T + p1T,

(15)

which proves that if equation (12) holds, i.e., if mass and momentum are conserved in one
frame m1v

′
1 +mRv

′
R must be equal to mTv

′
T in all frames attainable through the Galilean

transform. Thus, any linear moveout correction conserves the basic collision rules.

PARTICLES COLLIDING CLASSICALLY IN A UNIFORM FORCE FIELD

Our main purpose in this report is to extend these zero-offset rules, discussed in previ-
ous reports, to walkaway VSP data. Before we treat VSP data with the source offset from
the well, we review the new aspects of classical particle kinematics we will make use of.
In particular, kinematics in the presence of simple external force fields.

Suppose an object or particle of unit mass m1 = 1 is moving along a coordinate axis x,
and is at all times subject to a uniform force field such that it experiences an acceleration
a < 0 in the direction of positive x. This might correspond, for instance, to a cart on an air
track which has been tilted slightly upward in the positive x direction (see Figures 4a–c).
Just to be definite, suppose that the particle is sent upward from near the bottom of the
track, such that it passes a point x = L1 with velocity v1 at time t = 0. Its position at
subsequent times is from Newtonian kinematics

x(t) = L1 + v1t+
1

2
at2 = x1(t). (16)

We label this x1(t). Meantime, suppose a second object of mass mR is sent upwards from
near the bottom of the track a moment later, chasing, as it were, the first object. Again for
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FIG. 4. (a) A cart on an air track is a useful physical model with which to illustrate classically col-
liding particles (photo credit B. Chauhan http://en.wikipedia.org/wiki/File:Airtrack.JPG). (b) Schematic
diagram of (a). (c) To allow the particles/carts to experience a uniform acceleration, we imagine
tilting the track slightly upward in the positive x direction.

definiteness, let us suppose it is so configured that it passes the point LR with velocity vR
at time t = 0. Its position then is given by

xR(t) = LR + vRt+
1

2
at2. (17)

If L1, v1, LR and vR are chosen correctly, the two-particle history illustrated in Figures 5a-c
can be arranged. That is, as mR moves upward, m1 reaches a turning point and begins to
accelerate back down the track (Figure 5a), and after an interval the two objects collide.
We shall prescribe this collision to be perfectly inelastic, meaning the carts have velcro on
them (or something) and stick together after colliding (Figure 5b). The upward movingmR

slows the downward moving m1 down briefly, but the two now proceed downhill together
as a single object with mass mT = m1 +mR (Figure 5c).

m1!
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mR!

xT!
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mR + m1!

xR! xT!
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FIG. 5. Time history of a collision with all particles accelerating uniformly. (a) m1 slides up the track
first, followed by mR; m1 slows, stops and reverses course, accelerating downward as mR comes
up to meet it. (b) The two particles collide and stick together in a perfectly inelastic collision. (c)
The two proceed downward as one mass mT , having been delayed slightly by the upward hit from
mR.

The kinematic formulas in equations (16) and (17), along with the conservation of
mass and momentum, can be used to determine an expression for the trajectory of the new
particle mass mT . First, the time of the collision tc is the time at which xR = x1, which is

tc =
LR − L1

v1 − vR
. (18)

8 CREWES Research Report — Volume 26 (2014)



Particle model of walkaway VSP data

The location along the track where the collision occurs is found by substituting the time of
the collision into either equation (16) or (17):

xc = L1 + v1tc +
1

2
at2c . (19)

At the moment of the collision, mass m1 and mass mR are traveling with velocities

dx1
dt

∣∣∣∣
tc

= v1 + atc,
dxR
dt

∣∣∣∣
tc

= vR + atc (20)

respectively, which means the total momentum of the two particles the instant before the
collision was

pbefore = m1 (v1 + atc) +mR (vR + atc) . (21)

This being equal to the post-collision momentum, pbefore = pafter, we may now determine
the velocity of the composite object immediately after the collision:

vc
T =

pafter

mT

. (22)

The particle trajectory xT (t) will be of the form

xT (t) = LT + vT t+
1

2
at2. (23)

The velocity vc
T can be extrapolated back to t = 0:

vT = vc
T − atc, (24)

and, after this, one point on the curve in equation (23), namely (xc, tc), can be used to
determine LT :

LT = xc − vT tc −
1

2
at2c . (25)

The entire trajectory of the two colliding objects is now determined from the initial condi-
tions L1, LR, v1 and vR:

x1(t) = L1 + v1t+
1

2
at2, xR(t) = LR + vRt+

1

2
at2, t < tc

xT (t) = LT + vT t+
1

2
at2, t > tc.

(26)

An example set of trajectories is plotted in Figure 6, with the position of the two particles
on the vertical axis and the time on the horizontal axis. A “movie” of the interaction can be
produced by sweeping a vertical line from left to right and observing the evolution of the
intersections of the vertical line with each particle’s path.

CREWES Research Report — Volume 26 (2014) 9



Innanen

0 1 2 3 4 5

0

2

4

6

8

10

D
is

ta
nc

e 
al

on
g 

tra
ck

 x
 (m

)

Time t (s)

FIG. 6. Classical space-time diagram of the three particles colliding while all experiencing a uni-
form acceleration. Any particular “now” is focused on by drawing a vertical line somewhere in the
distance/time domain; the positions of the particles are given by points of intersection of the tracks
in the diagram with this vertical line. The physical process is visualized by having the vertical line
sweep from left to right. The collision occurs just before 2.5s.

Change of variables (x, t)→ (t, zg)

Finally, anticipating our use of this model to discuss a walkaway VSP data set, let us
make a change of variables, the position variable x going to a time variable t, and the time
variable t going to a depth variable zg. The velocities v will be replaced with the symbols
p for later convenience. We thus have the trajectories of the three particles in the form

t1(zg) = L1 + p1zg +
1

2
az2g , tR(zg) = LR + pRzg +

1

2
az2g , zg < z1

tT (zg) = LT + pT zg +
1

2
az2g , zg > z1.

(27)

Another example of the trajectories of particles before and after a perfectly inelastic colli-
sion is illustrated in Figure 7, this time with our pathological variables zg for time and t for
position. In this example (not in the expressions above) we have added a slight wrinkle,
which is to change the acceleration after the collision to a different value. As if we had
tilted the air track up by putting it onto some blocks, and the force of the collision knocked
out one of the blocks, changing the amount of gravity felt.

Transformation to the m1 rest frame

We can also arrange for a transformation to the rest frame of an accelerating particle.
For instance, the transformation

t′ = t− 1

2
az2g ,

z′g = zg,
(28)

since p1 = 0, generates for the example in Figure 7,

t′1(zg) = L1, t′R(zg) = LR + pRz
′
g, z′g < z1

t′T (zg) = LT + pT z
′
g +

1

2
(a− a1)z2g , z′g > z1,

(29)
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FIG. 7. Particle collision tracks in the new variables, with zg being the new time coordinate, and
travel time being the position coordinate.

where we have correctly included the change in the acceleration after the collision in that
example. Now, evidently, m1 is motionless, and mR moves with a uniform velocity. mT ,
because it experiences a different acceleration, does not transform to a state of uniform
velocity in the accelerating reference frame. The particle tracks in the laboratory frame and
the m1 rest frame are illustrated in Figures 8a and b.
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FIG. 8. Carts undergoing uniform acceleration. (a) Laboratory frame. (b) m1 rest frame.

WALKAWAY VSP DATA

The travel time curves characteristic of a single interface in a WVSP experiment are
sketched in Figure 9a-c. Two we may write down exact expressions for t1 and tR, and the
third must be determined with additional calculations. We have

t1(zg) =
1

c0

(
z2g + x2s

)1/2
, tR(zg) =

1

c0

[
(2z1 − zg)2 + x2s

]1/2
, zg < z1

tT (zg) =
1

c0

( z1
cos θ

)
+

1

c1

(
zg − z1
cos θ1

)
, zg > z1,

(30)
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where θ1 = sin−1[(c0/c1) sin θ], and where θ can be found for a given output zg value with
a simple shooting method.
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FIG. 9. Raypaths for the interaction of waves in a WVSP experiment with one interface and the
well. (a) Direct arrival; (b) reflected arrival; (c) transmitted arrival. Traveltimes along these rays are
given in equations (30).

We can likewise easily generate a WVSP shot record making use of finite difference
acoustic modelling. By varying the lateral offset of the source (compare Figures 10–11) we
can gain a qualitative sense of the effect of lateral offset – the hyperbolic character of the
arrivals becomes more pronounced.
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FIG. 10. Walkaway VSP data set with xs at 1/5 the maximum depth of the well.

Qualitative relationship between lateral offset and acceleration in a uniform field

We began the analysis of zero-offset VSP data in particle terms by noticing the similar-
ities between the shot record and an accounting of the space and time history of particles
drifting with uniform velocity (e.g., Figure 2a-b). Let us now do something similar for
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FIG. 11. Walkaway VSP data set with xs at 2/5 the maximum depth of the well.

walkaway VSP data by comparing a shot record (and particle tracks for the particles col-
liding under uniform acceleration. We do this in Figure 12a (data) and Figure 12b (particle
tracks). The WVSP particle model leverages this similarity.
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FIG. 12. Comparison of (a) a WVSP shot record and (b) particle tracks associated with a perfectly
inelastic collision, in the coordinate system t, zg. The similarity is leveraged to extend the zero-offset
particle model.

Discrepancy far from the source

The qualitative relationship illustrated in Figures 12a-b is compelling, and for near off-
sets we can make this relationship predictive in the same way we have done for the zero
offset case. However, a problem as offsets grow is evident: particles which experience
uniform accelerations have, in classical kinematics, parabolic trajectories, that is they (in
principle) can accelerate to arbitrarily high velocities. Whereas, event moveout is hyper-
bolic; a matching particle trajectory must have a speed limit, one which coincides with the
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asymptotic behaviour of the hyperbolic event.

CONCLUSIONS

Fortunately, in relativistic kinematics we have ready access to a theory for particle mo-
tion which comes equipped with a speed limit. Of course, in relativity c is a true speed limit,
whereas we may need many, one to associate with each layer or homogeneous volume we
consider. To concluded and summarize, the space-time tracks of particles moving under the
influence of a uniform force field accelerate in such a way that under a particular coordi-
nate transformation they reproduce the moveout in the VSP gather. In zero offset data and
walkaway modes NMO correction is realized through transformations from the laboratory
reference frame of the notional collisions to rest frames of individual particles before and
after colliding. Galilean transformations alter the linear NMO patterns of zero-offset data,
whereas transformations to noninertial reference frames are needed for walkaway modes.
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