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ABSTRACT 
A method for calculation of internal boundary conditions, as opposed to edge 

boundary conditions, is explained. The method of minimizing energy within the rigid 
zone below a water bottom is developed, and the sequence of matrix equations required is 
presented in some detail. 

INTRODUCTION 
This paper developed from a CREWES report of last year (Manning and Wong, 2013). 

In that paper seismic traces were generated from a numerical model featuring water 
overlying an elastic medium, then compared to simulated seismic traces from a 
corresponding physical model. The models were quite consistent except that the physical 
model generated considerable energy propagating along the water bottom, which was not 
seen in the numerical model. 

This mismatch prompted further study, which revealed that the physics of the water 
bottom is more complex than the numerical model could account for at the time. This 
paper is an attempt to quantify the physics in a way that is practical for model purposes. 

THEORY 
The model configuration used for the water bottom and its adjacent displacements is 

shown in Figure 1. The unique part of this depiction is the almost duplicate Ux 
displacements directly above and below the water bottom. With numerical models 
previously run by the author, calculations provided for only one set of displacements at 
this position. The upper set of displacements is assumed to be adequately calculated from 
pressure theory, as pressures must be continuous across the boundary. The lower set of 
displacements must be accounted for by the unique physics of the water bottom. 

The indices which apply to the Ux and Uz displacements are shown at the top and left 
of the figure, and are centered on ix and iz. The index ix is a relative (arbitrary) index, but 
iz indicates the topmost grid-point where µ is greater than zero, and therefore within the 
solid water bottom. 

A reduced size stress/strain matrix used to describe the displacements along the water 
bottom of Figure 1 is shown in Figure 2. Normally, a matrix used within a real model 
requires a vector of displacements equal to the width of the model (hundreds of points), 
but the 5 displacement miniature model here demonstrates the principles. 

The upper half of the matrix is a pure diagonal matrix with a column of constants 
which defines the zero shear stress displacements. The lower half is a similar near-
diagonal matrix where the column defines the zero compressional stress displacement 
differences. 
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Figure 1: The displacements in the vicinity of the green line depicting the water bottom. It is 
assumed that at this point within a time step, all the Z-displacements have been calculated, and 
also all the X-displacements above and for one sample below the water bottom and lower. The X-
displacements just below the water bottom must then be made consistent with the appropriate 
boundary conditions. 

 

Figure 2: An abbreviated version of a matrix equation which shows how the Ux displacements 
immediately below the water bottom contribute to the shear and compressional stresses within 
the water bottom. The x vector specifies input displacement strains. Outputs f1 through f5 
represent shear stresses, and f6 through f11 represent compressional stresses. 

The shear stresses across the water bottom are directly dependent on the displacements 
compared to the net shearing imposed from just below the water bottom (given by the 
Xsi’s). These stresses are dependent on the shear moduli (µ’s) in the top half of the 
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matrix. Each Xsi is the zero shear-stress displacement determined by the box of 
displacements shown in Figure 1, where 

 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 = Ux(ix,iz+1) + Uz(iz+1,ix+1) - Uz(ix,iz+1), 1 
and these displacements appear in part of the right column within the matrix. 

The horizontal compressional stresses are dependent on the differences of the vertical 
displacements across the water bottom. The zero stress compressional displacement is 
then given by 

 Zcix = (Uz(ix,iz) – Uz(ix,iz-1))*λ/(λ+2μ), 2 

and these appear in the same right column, but in the lower positions. 

The water bottom shear stress is directly dependent on the horizontal displacement 
from neutral, and therefore each has only one entry in the matrix. The water bottom 
compressional stress (in excess of the pure pressure wave stresses) depends on the 
difference of the horizontal displacements from neutral, and therefore has two adjacent 
entries in the matrix, with opposite polarities of equal amplitude. 

 

Figure 3: The components of the Toeplitz energy matrix. The matrix from Figure 2 is transposed 
and appears on the left of this Figure. The matrix on the right has the same form as the one in 
Figure 2, but the elastic constants are replaced by a +1 or -1, so that it may calculate 
displacements instead of stresses. 

The energy content of a material depends on the stresses calculated in Figure 2 but 
must be multiplied by their corresponding relative displacements to obtain a measure of 
the energy stored. If the elastic constants in Figure 2 are replaced by 1’s of the same 

 CREWES Research Report — Volume 26 (2014) 3 



Manning 

polarity, the outputs are the relative displacements, and this is the matrix on the right in 
Figure 3. 

The matrix on the left in Figure 3 shows the transpose of the matrix in Figure 2, and so 
the two matrices are in position to multiply together and produce the stress times distance 
measure of energy. The multiplication gives the matrix in Figure 4, and the displacement 
vectors are also included to give the total energy stored as a function of displacements. 

 

Figure 4: The matrix equation which sums the total elastic energy (E) in the water bottom. The 
square Toeplitz matrix here in the center results from multiplying the two matrices of Figure 3, 
and there is now room to display the two displacement vectors to complete the equation. 

ZERO DERIVATIVES FROM A GENERAL SUM 
The principle of finding maxima from the zeros of derivatives is well known, but it is 

difficult to do this for a sum laid out as in Figure 4. Consideration of a more general sum 
is easier to follow, and Figure 5 is a generalized version of Figure 4 after the 
multiplication with the vectors is carried out. For example a21 = -L2. 

 

Figure 5: A general sum of energy terms consisting of 5 variables and one constant. Note that the 
terms here do not make up a matrix, but are laid out in this form to show the pattern. 

Extreme values are found from this sum by differentiating with respect to each 
variable and setting the resulting equation equal to zero. The principle is that a 
continuous function must be zero at a maximum or minimum. Figure 6 shows this as an 
equation for the extreme position along the Xi co-ordinate. 
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Figure 6: The equation which gives the position of the extreme value for variable Xi. 

As an example, Figure 7 shows the derivative with respect to X4, and highlights the 
terms which contain this variable. All other terms may be treated as constant with respect 
to X4, and so do not contribute to the result. Of course the power of X4 is reduced by one, 
etc. 

 

Figure 7: Only the highlighted terms contribute to the particular derivative equation in X4. 

 

 

Figure 8: The five equations which define the maxima for each variable. 

TRANSLATION TO REAL VALUES 
The equations in Figure 8 may have the indexed constants replaced by the particular 

constants of Figure 4, and translated into matrix form in Figure 9. The basic matrices of 
the two figures are essentially identical because of the symmetry of the off diagonal 
terms. 
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Figure 9: The equation which results by substitution of the particular terms into the general terms 
of Figure 8 and by translation back into matrix format. The matrix is essentially identical to the 
original core matrix in Figure 4 because of the symmetry of the off diagonal terms. 

The matrix equation of Figure 9 is an abbreviated version of the equation which 
applies to a real model, often with hundreds of terms. The X’s, or the Ux’s in the model 
are the unknowns, and so the equation must be inverted to find their values. 

RESULTS 
Use of the principles shown here requires a significant recoding of the finite-

difference algorithms, and this has been only partially completed to date. Preliminary 
results on the tank model (Manning and Wong, 2013) have been similar to the results of 
the simple algorithm used there. 

CONCLUSIONS 
Internal boundary conditions are more complex than they at first appear. A better 

understanding should lead to better water bottom models, and the principles may help 
with other boundary condition problems. 
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