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ABSTRACT

Full waveform inversion (FWI) is very powerful in estimating the subsurface proper-
ties by minimizing the difference between the modelled data and observed data iteratively.
Multi-parameter FWI can also be employed to inverse the properties of the naturally frac-
tured reservoirs, when assuming that the wavelength is much larger than the fracture size.
Estimating the fracture properties using multi-parameter FWI will be challenging for sev-
eral difficulties, one of which is the cross-talk problem in multi-parameter FWI. And it
refers to that the seismic wavefields responses by different parameters’ perturbations are
coupled together. This difficulty also gives rise to the parameterization issue for multi-
parameter FWI. The Fréchet derivative serves as the inversion sensitivity for the least-
squares inverse problem and it is interpreted as the seismic wavefields response correspond-
ing to the model parameter’s perturbation. Furthermore, the Fréchet derivative control the
trade-off among different parameters and the amplitude variations with varying the scatter-
ing angle and azimuthal angle (in 3D) (radiation pattern) can help identify the efficiency
of the parameterization and design optimal acquisition geometry. In this research, we fo-
cus on studying the inversion sensitivities of elastic constants in fractured media (parallel
vertical fractures and orthorhombic fractures). The inversion sensitivity can be described
using scattering patterns with varying the scattering angle and azimuth angle. We, first,
review the general principle of FWI and explain the angle dependence nature of the inver-
sion sensitivity. Then, we give the explicit Fréchet derivative for the general anisotropic
media with Born approximation and reproduce the scattering patterns by a local isotropic
inclusion. The 3D Fréchet derivative with respect to different elastic constants for parallel
vertical fractured media (described as HTI model) are provided. And then, we analyze the
scattering characteristics due to the fractured inclusion and discuss the inversion sensitivi-
ties with varying the scattering angle and azimuthal angle. Finally, we give the scattering
patterns with respect to the elastic constants in orthorhombic fractured media and analyze
the FWI inversion sensitivities for these elastic stiffness coefficients.

INTRODUCTION

Naturally fractured reservoirs are commonly existed in subsurface and they play impor-
tant role in present hydrocarbon production (Nelson, 1985). The properties of the fractures
(e.g., fracture orientation and intensity) are extremely valuable for reservoir characteriza-
tion. To obtain effective parameters of the cracked media, the finite fracture spacings and
their detailed spatial distributions can be neglected and the fractured rock can be considered
as equivalent anisotropic solids with long wavelength approximation.

The reflection seismic signatures from anisotropic fractures can be described by stiff-
ness coefficients cij (or compliances sij) (Hudson, 1981; Schoenberg, 1983) or the Thomsen-
type parameters (ε, δ and γ) introduced by Thomsen (1986) for transverse isotropy with
vertical symmetry axis (VTI media). And for transverse isotropy with horizontal symme-
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try axis (HTI media), the simplest azimuthal anisotropic model for describing the vertical
cracks, the reflection seismic signatures can also be described by the Thomsen-type coeffi-
cients (Rüger, 1997; Tsvankin, 1997b).

While most of the present studies for fracture properties estimation from surface mea-
surements are mainly performed by Amplitude Variations versus Offset (AVO) and Az-
imuth (AVAZ) analysis (Tsvankin, 1997b; Bakulin et al., 2000; Tsvankin, 2001; Tsvankin
and Grechka, 2011; Mahmoudian, 2013). And the measured phase velocity and normal-
moveout (NMO) velocity are always used to estimate the stiffness coefficients (Vestrum,
1994) or Thomsen’s parameters (Tsvankin, 1997b). However, the AVO/AVAZ analysis is
based on the assumption that the subsurface reflector is laterally invariant. The applica-
tion of this technique for fracture properties inversion in laterally variant area renders the
accuracy of the inversion results to be questionable (Bansal and Sen, 2010).

In recent years, full waveform inversion (FWI) method becomes popular for estimating
the subsurface parameters. FWI employs full wavefields information to estimate subsurface
properties through an iterative process by minimizing the difference between the observed
data and synthetic data (Tarantola and Valette, 1982; Pratt et al., 1998; Virieux and Operto,
2009). It can provide more diagnostic information and offers far greater resolving capabil-
ity (Zhou and Greenhalgh, 2009). The gradient in FWI can be constructed by convolution
between the Fréchet derivative (or first order partial derivative wavefields) and the complex
conjugate of the data residuals. An adjoint state method based on Born approximation is
always employed to calculate the gradient for avoiding the direct computation of the partial
derivative wavefields (Liu and Tromp, 2006), which is equivalent to a reverse time migra-
tion process. Furthermore, the approximate Hessian matrix used in Gauss-Newton FWI
(Pratt et al., 1998; Pan et al., 2014) is also constructed by two partial derivative wavefields.
Hence, the Fréchet derivative can be interpreted as the wavefields changes corresponding
the perturbations of the model parameters(e.g., density, elastic constants or Thomsen’s pa-
rameters) and they serve as sensitivity kernels in least-squares inverse problem.

Estimating the seismic wavefields response corresponding to the perturbations of the
model parameters is a classical inverse problem of exploration geophysics. And many
researchers have concentrated on using these kernels for sensitivity analysis and seismic
waveform tomography in anisotropic media (Chapman and Coates, 1994; Tromp et al.,
2005; Liu and Tromp, 2006). Calvet et al. (2006) gave the 3D Fréchet derivative for P-
wave travel time in VTI medium with far-field approximation of the Green’s tensor. Zhou
and Greenhalgh (2009) formulated the explicit expressions for 3D Fréchet derivative in a
general anisotropic medium. Moreover, the Fréchet derivative with Born approximation
can be used to derive the linearized reflection coefficients for AVO/AVAZ analysis (Shaw
and K.Sen, 2004; Tsvankin, 1995).

Fracture properties estimation using multi-parameter full waveform inversion method
is challenging. This is because the wavefields responses corresponding to different param-
eters’ perturbations are coupled together, which is referred as the trade-off or cross-talk
between the parameters (Tarantola, 1986; Gholami et al., 2013b,a; Operto et al., 2013;
Oh and Min, 2014; Alkhalifah and Plessix, 2014). This difficulty raises the parameteriza-
tion issue for multi-parameter FWI and proper parameterization for multi-parameter FWI
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should be determined to avoid the over the parameterization of the optimization problem
and provide a reliable inversion process. The Fréchet derivative, namely radiation pattern
(scattering pattern), control the trade-off between the parameters. The amplitude variation
of the sensitivity kernel with the scattering angle gives insights of the wavefields response
to the parameter’s perturbation and reveals the intrinsic relationship between seismic AVO
and FWI (Stolt and Weglein, 2012; Innanen, 2014). Studying the sensitivity kernels for
different parameters can help select appropriate parameterization for multi-parameter FWI
(Eaton, 1991) and design optimal acquisition geometry(Gholami, 2012; Plessix and Cao,
2011).

Wu and Aki (1985b,a) and Sato and Fehler (1997) discussed the elastic scattering pat-
terns due to a general elastic heterogeneity in the low-frequency range (Rayleigh scatter-
ing). Tarantola (1986) originally involved the radiation patterns for sensitivity analysis of
different parameter classes and gave a strategy for nonlinear elastic inversion of seismic
reflection data. Gholami (2012) assessed the sensitivity of the seismic data to different data
parameterizations of acoustic VTI media. And they also showed that the acquisition ge-
ometry controls the resolving power of multi-parameter FWI and wide-aperture acquisition
geometry is more flexible for determining suitable parameterization.

The majority of the existing studies for fracture properties estimation mainly focus
on HTI media (Rüger, 1997; Contreras et al., 1999; Bakulin et al., 2000; Zheng et al.,
2013), the simplest effective model for describing the fractured reservoirs. The HTI model
with single fracture system is actually a degenerated case of an orthorhombic symmetry,
which is also commonly existed in naturally fractured reservoirs(Wild and Crampin, 1991;
Schoenberg and Helbig, 1997; Tsvankin, 1997a). The difficulties in dealing with the 9
independent elastic constants in orthorhombic fracture preclude this model from applica-
tion in exploration geophysics. The forward modeling problem for orthorhombic media
has been studied by many researchers (Tsvankin and Chesnokov, 1990; Brown et al., 1991;
Song and Alkhalifah, 2013), while the inverse problem for orthorhombic fractured me-
dia has rarely been investigated, especially using full waveform inversion method. In this
research, following Ben-Menahem and Singh (1981) and Ben-Menahem et al. (1991)’s
method, we provide the explicit expressions for Fréchet derivative in orthorhombic media
with respect to different elastic constants. The radiation patterns are derived within spheri-
cal coordinates and they serve as the basis and inversion engines for estimating the fracture
properties using multi-parameter FWI strategy.

FWI INVERSION SENSITIVITY

General Principle of FWI

Full waveform inversion (FWI) estimates the subsurface parameters through an iterative
process by minimizing the difference between the synthetic data Bu and observed data d
(Tarantola, 1984). The misfit function Φ is formulated in a least-squares form (Virieux and
Operto, 2009):

Φ =
1

2
‖d− Bu‖2, (1)
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where B is the forward modeling operator, u mean the wavefields and ‖ · ‖2 means the `-2
norm. The minimum value of the misfit function is sought in the vicinity of the starting
model m0(r) and the updated model can be written as the summation of the starting model
and a model perturbation δm(r).

mk+1(r) = mk(r) + µkδmk(r), (2)

where k indicates the number of iteration, µk is the step length, a scalar constant used to
scale the model perturbation δmk(r) and it can be obtained through a line search method.
The model perturbation can be expressed as:

δm = −H−1g, (3)

where g is the gradient, the first order partial derivative of the misfit function with respect
to the model parameters. And it can be constructed by a convolution between the first order
partial derivative wavefields and complex conjugate of the data residuals:

g =
∂Φ

∂m
=

∂u
∂m

∆d†, (4)

where ∂u
∂m

is known as the Fréchet derivative (or sensitive matrix), ∆d indicate the data
residuals and the symbol ′†′ means complex conjugate. And H is the Hessian matrix,
the second order partial derivative of the misfit function with respect to the model param-
eters. In Gauss-Newton method, the approximate Hessian matrix can be written as the
auto-correlation of two partial derivative wavefields:

Ha =

[
∂u
∂m

]† [
∂u
∂m

]
. (5)

FRÉCHET DERIVATIVE IN GENERAL ANISOTROPIC MEDIA WITH BORN
APPROXIMATION

The equation of motion in general anisotropic and elastic media can be written as fol-
lows (Wu and Aki, 1985b; Ben-Menahem and Jr, 1990; Gibson-Jr, 1991; Zhou and Green-
halgh, 2009; Aki and Richards, 2002):

∂σij
∂xj

+ fi = ρ
∂2ui
∂t2

, (6)

where u (r, t) indicates the displacement vector at Cartesian coordinate position r(x, y, z)
and time t. f (rs) is the force term at position rs, ρ is the density and σij denotes the stress
tensor, which can be defined using Hooke’s law:

σij = cijkl
∂uk
∂xl

, (7)

where cijkl indicates the elastic modulus tensor and the subscripts i, j, k and l take on the
values of 1, 2, 3 (or x, y, z). The solution of equation (6) can be obtained using the integral
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form of the Green’s tensor vector in frequency domain (Ben-Menahem and Singh, 1981;
Kamath and Tsvankin, 2014):

ūi (r, ω) =

∫
Ω(rs)

∫
ωs

fj(rs, ωs)Gij(r, ω; rs, ωs)dΩ(rs)dωs, (8)

where Gij(r, ω; rs, ts) indicates the i component of the Green’s tensor vector at position
r due to a point source fj(rs, ωs) in j direction at position rs. And Ω (rs) indicates the
volume including all of the sources.

Considering that a general anisotropic inclusion with density ρ and elastic constants
cijkl is embedded in an infinite isotropic elastic background with properties ρ̃ and c̃ijkl.
Here, we define the scattering potentials δρ and δcijkl as the differences between the per-
turbed and unperturbed model properties (Stolt and Weglein, 2012):

δρ = ρ− ρ̃,
δcijkl = cijkl − c̃ijkl,

(9)

where δρ and δcijkl denote the density and elastic constants perturbations. Assuming that
the size of the anisotropic obstacle is rather small compared to the wavelength of the inci-
dent wave, the perturbed wavefields corresponding these model variations can be obtained
as:

δu = u− ũ, (10)

where ũ and δu indicate the unperturbed wavefields and scattered wavefields respectively.
Plugging equations (9) and (10) into equation (6), we can ignore the high order terms based
on Born approximation and the equation of motion splits into two equations:

∂

∂xj

(
c̃ijkl

∂ũk
∂xl

)
− ρ̃∂

2ũi
∂t2

= −fi, (11)

∂

∂xj

(
c̃ijkl

∂δuk
∂xl

)
− ρ̃∂

2δui
∂t2

= δρ
∂2ũi
∂t2
− ∂δMij

∂xj
, (12)

where δM in equation (12) can be considered as the equivalent moment tensor source and
it corresponds to the perturbations of the elastic constants:

δMij = δcijkl
∂ũk
∂xl

. (13)

We notice, first, that equation (11) is equivalent to equation (6), meaning that the unper-
turbed wavefield ũ propagates in the isotropic background media. Further examination
reveals that equation (12) describes the propagation of the scattered wavefield δu in the
isotropic background media. The right hand side of the equation (12) is always referred to
as "scattered sources" or "secondary Born sources". It underlines the fact that the scattered
wavefields due to the perturbations in the model parameters such as density δρ or elastic
coefficients δcijkl, can be interpreted as the wavefields generated by a set of secondary
body forces, which propagate in the current, unperturbed medium (Dietrich and Kormendi,
1990).
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According to equation (8), the solution of equation (12) can be written as an integral
formulation in frequency domain:

δūn (r, ω) =

∫
Ω(r′)

∫
ω′
δρω2ũiG̃ni(r, ω; r′, ω′)dΩ(r′)dω′

+

∫
Ω(r′)

∫
ω′

∂δMij

∂x′j
G̃ni(r, ω; r′, ω′)dΩ(r′)dω′,

(14)

where G̃ij(r, ω; r′, ω′) indicates the Green’s tensor in the unperturbed background medium
due to the scattering source at position r′ = (x′, y′, z′). Ignoring the contribution from
density (Here, we only consider the perturbations of the elastic constants) and applying
integration by parts with far-field approximation, the scattered wavefields can be obtained
as:

δūn (r, ω) ≈ −
∫

Ω(r′)

∫
ω′
δMij

∂G̃ni(r, ω; r′, ω′)
∂x′j

dΩ(r′)dω′. (15)

or an compact form:
δūn ≈ −δMijG̃ni,j. (16)

Taking partial derivative of the scattered wavefields with respect to the variations of the
model parameters yields the Fréchet derivative for a general anisotropic media:

δūn (r, ω)

∂m
= −

∫
Ω(r′)

∫
ω′

∂δMij

∂m

∂G̃ni(r, ω; r′, ω′)
∂x′j

dΩ(r′)dω′, (17)

where m denotes elastic constants cijkl for a general anisotropic medium. Equation (17)
is known as the Fréchet derivative (or inversion sensitivity kernel) which is widely ana-
lyzed and utilized in the linearized inversion framework, such as full waveform inversion
(Tarantola and Valette, 1982; Tarantola, 1984, 1986; Pratt et al., 1998; Virieux and Operto,
2009).

MOMENT TENSOR SOURCES AND RADIATION PATTERNS

In the above section, we give the explicit expressions of the Fréchet derivative for a gen-
eral anisotropic media. In this section, firstly, we will review the Geen’s tensor in isotropic
homogeneous media with far-field approximation and the source radiation patterns with
the moment tensor source. And then we will explain how to describe the Fréchet derivative
using the scattering patterns due to the model parameters’ perturbations.

Green’s Tensor in Isotropic Elastic Media

In order to obtain the scattered wavefields in equation (14) and the Fréchet derivative
shown in equation (17), firstly, we need get the Green’s tensor in the background isotropic
medium. Applying Helmholtz decomposition to the equation of motion for isotropic elastic
media, the time domain Green’s function obtained as (Aki and Richards, 2002; Chapman,
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2004):

G (r, t; rs, ts) =
δ (t− r/α)

4πρα2r
r̂r̂† +

δ (t− r/β)

4πρβ2r

(
I− r̂r̂†

)
+

[H (t− r/α)−H (t− r/β)]

4πρr3

(
3r̂r̂† − I

)
,

(18)

where α and β indicate the P-wave velocity and S-wave velocity, H denotes the Heaviside
function and the symbol † denotes transpose operation. And I is the unit vector indicating
the direction of source term:

I = r̂r̂† + θ̂θ̂† + φ̂φ̂†, (19)

where r̂, θ̂ and φ̂ are unit vectors in spherical coordinates (r, θ, φ):

r̂† = [sin θ cosφ, sin θ sinφ, cos θ] ,

θ̂† = [cos θ cosφ, cos θ sinφ,− sin θ] ,

φ̂† = [− sinφ, cosφ, 0] .

(20)

and θ indicates the inclination angle departs from z axis and φ indicates the azimuthal
angle departs from x axis. Equation (18) is the dyadic Green’s function, obtained by Stokes
(1851) firstly. The detailed proofs can be found in Hudson (1980) and Aki and Richards
(2002). We can notice that the first two terms in equation (18) decay as r−1, expected as
spherical spreading. While the third term decays more rapidly as r−3. Hence, with far-field
approximation, the near-field terms can just be ignored and the Green’s tensor in frequency
domain can be obtained as:

Gij (r, ω; rs, ωs) ≈
exp(−ikαr)

4πρα2r
r̂ir̂j +

exp(−ikβr)
4πρβ2r

(
θ̂iθ̂j + φ̂iφ̂j

)
, (21)

where kα = ω/α and kβ = ω/β are the P-wave the S-wave wavenumber respectively.

The first term in equation (21) represents the wave motion in the direction of r, which
corresponds to the P-wave motion. And the second and third terms describe the wave
motions perpendicular to radial direction and they denote the wave motions of SV-wave
SH-wave respectively. The factors rr†, θ̂θ̂† and φ̂φ̂† describe the radiation patterns of P-
wave, SV-wave and SH-wave and the directional behaviour of the displacement magnitude.

Moment Tensor Sources and Radiation Patterns

In earthquake seismology, the moment tensors are used to describe dislocation type
sources, explosive/pressure sources and higher order type of sources such as dipoles, which
have been widely acknowledged in elasticity (Aki and Richards, 2002; Sato and Fehler,
1997; Karpfinger et al., 2009). The total displacement generated by the source is the sum-
mation of the displacements owing to the nine individual double forces. Thus the total
displacement can be constructed by scalar product of the moment tensor and the spatial
derivative of the Green’s function:

ūn = MijGni,j, (22)
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where the convention subscripts summation applies. The nine elements of Mij constitute
of the source moment tensor (Ben-Menahem and Singh, 1981) and it can be represented by
a matrix M:

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (23)

Plugging the Green’s tensor components into equation (22) yields the displacement wave-
fields solution:

ūn (r, ω) = −iωexp(−ikαr)
4πρα3r

MijRnRiRj

+
iωexp(−ikβr)

4πρβ3r
Mij (RnRi − δni)Rj,

(24)

where δni is the Kronecker delta function. The detailed instruction of derivation process can
be found in Pujol (2003) and Chapman (2004). The total wavefileds u is the summation of
P-wave, SV-wave and SH-wave wavefields and equation (24) can be written as an compact
matrix form:

ū (r, ω) = −iωexp(−ik%r)
4πρ%3r

ĝ
(

ĝ†Mr̂
)
, (25)

where % indicates α P-wave velocity or β for S-wave velocity and k% indicates P-wave or
S-wave wavenumbers. The radiation patterns R for P-wave, SV-wave and SH-wave are
determined by the term

(
ĝ†Mr̂

)
when ĝ is r̂, θ̂ or φ̂ respectively.

R (θ, φ) = ĝ†Mr̂. (26)

The explicit expressions for the radiation patterns have been given by Aki and Richards
(2002) and Chapman (2004). These equations allow us to construct the wavefields due to
various moment tensor sources such as explosive, dipole, double-couple and etc. Here, in
this section, we give two types of sources for illustration. Considering the single dipole
source due to M33 and the double couple source due to M12:

MD = 2


0 0 0

0 0 0

0 0 M33

 ,MDC =


0 M12 0

M21 0 0

0 0 0

 . (27)

Submitting them into equation (26) gives the corresponding radiation patterns:

RD
P (θ, φ) = 2 cos2 θ,RD

SV (θ, φ) = − sin 2θ,RD
SH (θ, φ) = 0. (28)

RDC
P = sin 2φ sin2 θ,RDC

SV = 1
2

sin 2φ sin 2θ,RDC
SH = cos 2φ sin 2θ. (29)
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FIG. 1. (a), (b) and (c) show the radiation patterns of P-wave, SV-wave and SH-wave by a dipole
source due to M33. (d), (e) and (f) show the radiation patterns of P-wave, SV-wave and SH-wave
due to M12. Detailed instructions about the radiation patterns can be founded in Chapter 3 in Aki
and Richards (2002) and Chapter 4 in Chapman (2004).

Figures 1a, b and c show the source radiation patterns of P-wave, SV-wave and SH-wave
by the dipole source due to M33. Figures 1d, e and f show the source radiation patterns
of P-wave, SV-wave and SH-wave by the double couple source due to M12. The detailed
instructions can be founded in Chapman (2004).

If we ignore the contribution of density, the total scattered wavefields δū is the solution
of equation (12) by the equivalent moment tensor sources due to the perturbations of the
elastic constants δcijkl. Similarly, we can obtained the scattered wavefields as:

δun (r, ω) = −δMijG̃ni,j, (30)

And the elements in the equivalent moment tensor source δM can be expressed as (Mus-
grave, 1970):

δMij = δcijklẽkl. (31)

where ẽkl = ∂ũk/∂x
′
l is the strain tensor of the incident wavefields. Applying "Voigt

recipe" to the elastic constants perturbation matrix δc, equation (31) can be written in a
matrix form:

δM11

δM22

δM33

δM23

δM13

δM12



=



δc11 δc12 δc13 δc14 δc15 δc16

δc22 δc23 δc24 δc25 δc26

δc33 δc34 δc35 δc36

δc44 δc45 δc46

δc55 δc56

δc66





ẽ11

ẽ22

ẽ33

2ẽ23

2ẽ13

2ẽ12



. (32)

We can observe that the perturbations of different elastic constants correspond to different
types of sources. For example, δc11, δc22 and δc33 serve as single dipole source and δc44,
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δc55 and δc66 serve as double couple sources. Similarly to equation (25), the scattered
wavefields can be written in a compact form:

δū (r, ω) = −iωexp(−ik%r)
4πρ%3r

ĝ
(

ĝ†δMr̂
)
, (33)

when ĝ is r̂, θ̂ or φ̂, we can obtain the scattered P-wave, SV-wave or SH-wave wavefields re-
spectively. And the information of incident wavefields is encoded in the equivalent moment
tensor source δM.

SCATTERING PATTERNS AND INVERSION SENSITIVITIES BY FRACTURED
MEDIA

In this section, firstly, we will reproduce the scattering patterns caused by the local
isotropic heterogeneity and explain Fréchet derivative and inversion sensitivities with re-
spect to Lamé constants for elastic full waveform inversion. Then, we extend the theory
to analyze the inversion sensitivities and scattering patterns for parallel vertical fractured
media (HTI model). The scattering patterns for different elastic constants with varying
scattering angle and azimuth are discussed by introducing two acquisition geometries. Fi-
nally, the inversion sensitivities for the elastic constants in orthorhombic media are derived
and analyzed.

The Isotropic Case

The scattering characteristics of elastic wave due to the local elastic inhomogeneity
have been studied by many researchers (Wu and Aki, 1985b,a; Sato and Fehler, 1997).
Tarantola (1986) discussed the influence of different parameterizations to efficiency of
elastic full waveform inversion by introducing the scattering patterns due to the parame-
ters’ perturbations. In this section, we will reproduce the 3D scattering coefficients using
equation (33) and explain the Fréchet derivative with respect to Lamé constants λ and µ.
The elastic constants perturbation matrix δc for the local elastic obstacle can be expressed
as:

δciso
ijkl = δλδijδkl + δµ (δikδjl + δjkδil) . (34)

Inserting it into equation (32) gives the isotropic moment tensor source:

δM iso
ij = δλδij (∇ · ù) + 2δµẽij, (35)

where ù denotes the incident wavefields and ∇ · ù = ẽ11 + ẽ22 + ẽ33 is the dilatation.
Taking partial derivative of moment tensor source gives an explosive-type source due to
perturbation of λ;

∂M iso
ij

∂λ
= (∇ · ù) δij. (36)

To obtain the strain components of the incident wavefields, we can consider the incident
plane P-wave:

ù(r, t) = Uexp [i(ωt− kα · n)] d, (37)

where U is the amplitude of the incident P-wave and n = x + y + z indicates the unit vector
in Cartesian coordinates. And kα is the wavenumber vector in Spherical coordinates and d
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is the polarization vector indicating the positive direction of the particle motion:

kα = kαp
= kα (sinϑ cosϕx + sinϑ sinϕy + cosϑz) ,

(38)

d = sinϑ cosϕx + sinϑ sinϕy + cosϑz, (39)

where ϑ is the inclination angle of incident wave, which departs from z axis and ϕ departing
from x axis indicates the azimuth angle of the incident wave. And p is the unit vector in
Spherical coordinates. Thus, the strain components can be obtained as:

ẽij = −ikαUdipjexp [i(ωt− kα · n)] . (40)

Plugging equation (40) into equation (33) gives the equivalent moment tensor source δM iso
ij

for an elastic inclusion:

δM iso
ij = [δλdipiδij + 2δµdipj] F, (41)

where the summation applies to the subscripts of the term dipi and

F = −ikαUexp [i(ωt− kα · n)] .

Inserting equation (41) into equation (30), the total scattered wavefields due to perturbation
δλ can be written as the summation of P-P, P-SV and P-SH scattered wavefields:

δū (r, ω) = Aδλ+ 0 + 0. (42)

where A indicates the amplitude:

A = −U ω
2exp (−ikαr)

4πρ̃α̃4r
. (43)

Because the moment tensor source due to perturbation δλ is proportional to the divergence
of the incident wavefields ∇ · ù, it only radiates compressional wavefileds and never pro-
duce scattered shear wavefields. So, the scattered SV and SH wavefields are all zeros.
Furthermore, we can notice that the Fréchet derivative with respect to λ is independent of
inclination angle and azimuthal angle:

∂ū (r, ω)

∂λ
= A. (44)

While the perturbation δµ causes a much more complex moment tensor source:

∂M iso
ij

∂µ
= 2ẽij. (45)

The total scattered wavefields caused by perturbation δµ can be derived following the steps
from equation (36) to equation (44). When considering incident plane P wave propagates
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FIG. 2. Scattering patterns by the isotropic and elastic heterogeneity. (a) shows the P-P scattering
pattern due to the perturbation δλ. (b) and (c) show the P-P and P-SV scattering patterns due to
the perturbation of the shear modulus δµ.

along the positive direction of z axis (ϑ=0o and ϕ=90o), the total scattered wavefields can
be obtained as:

δū (r, ω) = 2A cos2 θδµ−B sin 2θδµ+ 0. (46)

where θ indicates the angle between the scattered wavefields and z axis and B is the am-
plitude of the P-SV scattered wavefields:

B = −U ω
2exp (−ikβr)
4πρ̃α̃β̃3r

. (47)

The P-SH scattered wavefields is 0. Taking partial derivative with respect to µ gives the
Fréchet derivative:

∂u (r, ω)

∂µ
= 2A cos2 θ −B sin 2θ. (48)

So, the P-P scattering coefficient (or radiation pattern) due to δλ, the P-P and P-SV scatter-
ing coefficients due to δµ can be obtained as:

Rλ
PP (θ, φ) = 1,Rµ

PP (θ, φ) = 2 cos2 θ,Rµ
PSV (θ, φ) = − sin 2θ. (49)

We can notice that they are independent of azimuthal angle φ, which is the opening angle
between scattered wavefields and x axis. Figure 2a shows the P-P scattering pattern due
to the perturbation δλ and Figures 2b and c show the P-SV and P-SH scattering patterns
due to perturbation δµ. The arrows indicate the incident direction of the plane P wave. The
detailed analysis for incident SV wave and SH wave can be found in Wu and Aki (1985b,a).

While when parameterizing the isotropic inclusion using elastic constants (c11 = λ+2µ,
c44 = µ and (c11 − 2c44) = λ), the moment tensor source is expressed as:

δM iso
ij = [δc11 (∇ · ù)− 2δc44 (∇ · ù− eii)] δij + 2δc44eij. (50)

The perturbation δc11 causes a explosive-type source, which is consistent with δλ. How-
ever, the perturbation δc44 causes a double couple source and the scattering coefficients
become (ϑ=0o and ϕ=90o):

RPP = −2 sin2 θ,RPSV = − sin 2θ,RPSH = − sin 2φ (sin θ + sinφ) . (51)
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FIG. 3. Scattering patterns when parameterizing isotropic inclusion using elastic constants. (a), (b)
and (c) show the P-P, P-SV and P-SH scattering patterns due to the perturbation δc44.
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FIG. 4. Scattering patterns in x-z plane for different parameterizations. (a) show the P-P scattering
patterns by perturbations δλ (black-solid line) and δµ (black-dash line). (b) show the P-P scattering
patterns by perturbations δc11 (blue-solid line) and δc44 (blue-dash line).

The P-P, P-SV and P-SH scattering patterns due to δc44 are plotted in Figures 3a, b and
c respectively. We can notice that the P-SH scattering is associated with azimuth angle φ
when ϑ=0o and ϕ=0o.

Here, we can compare the inversion sensitivities when parameterizing the isotropic
elastic media using Lamé constants (λ and µ) and elastic stiffness coefficients (c11 and c44).
The black-solid line and black-dash line in Figure 4a denote the scattering patterns due to
δλ and δµ. We can observe that the scattered energy by the perturbations δλ and δµ are
coupled together for precritical reflection survey (0o-30o). In this condition, it will be more
chanllenging for us the estimate the properties with reflection FWI. The blue-solid line and
blue-dash line in Figure 4b denote the scattering patterns due to δc11 and δc44. It can be
seen that most of the scattered energy is contributed by δc44 for precritical reflection survey.
Hence, it will be easier for us to estimate the elastic coefficients directly for the isotropic
model.

Inversion Sensitivity of Parallel Vertical Fractures

The FWI sensitivities for anisotropic media has been studied by the many researchers
in recent years (Gholami, 2012; Operto et al., 2013; Alkhalifah and Plessix, 2014), for
tackling the trade-off or crosstalk issue in multi-parameter FWI. Most of the current stud-
ies focus on the 2D VTI media. To estimate the fracture properties using FWI method, the
inversion sensitivity analysis is essential to determine the parameters classes and design the
acquisition geometry. In this section, we discussed the inversion sensitivities for the sim-
plest parallel vertical fracture model, which is known as transverse isotropy with horizontal
symmetry axis (HTI media). The analysis is carried out in 3D with spherical coordinates.
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This is because the fracture orientation, indicated by the azimuthal angle φ, is extremely
important for fractured reservoir characterization.

Generally, the HTI model is caused by a system of parallel vertical circular ("penny-
shaped") cracks embedded in an isotropic background (Bakulin et al., 2000; Tsvankin,
2001). And it has two mutually orthogonal vertical planes of symmetry, the symmetry axis
plane and the isotropy plane, as shown in Figure 1.6 of (Tsvankin, 2001). The HTI model is
a degenerated case of an orthorhombic symmetry with only 5 independent elastic stiffness
coefficients, which are c11, c33, c44, c55 and c13. We can follow the steps in the above section
to calculate the scattering patterns and Fréchet derivative for the vertically fractured media.
According to equation (33), the scattered wavefields with plane P-wave incidence can be
reformulated as:

δuP (r, ω) = −ω
2exp(−ikξr)
4πραξ3r

[
D†δM̄HTIR

]
, (52)

where ξ indicates P-wave velocity α or S-wave velocity β and kξ denotes the corresponding
wavenumber. The matrix D can be R, Θ and Φ for P-P, P-SV and P-SH scattered wavefields
respectively. δM̄ is the reduced moment tensor source. And we define D†δM̄HTIR as the
scattering coefficients.

According to the stiffness coefficients matrix for HTI media, the corresponding pertur-
bation matrix δcHTI can be expressed as:

δcHTI =



δc11 δc13 δc13 0 0 0

δc13 δc33 δν 0 0 0

δc13 δν δc33 0 0 0

0 0 0 δc44 0 0

0 0 0 0 δc55 0

0 0 0 0 0 δc55



. (53)

where δν = δc33 − 2δc44. Similarly, the moment tensor source caused by the perturbations
of the elastic constants can be obtained as:

δMHTI =


δc11e11 + δc13e22 + δc13e33 2δc55e12 2δc55e13

2δc55e12 δc13e11 + δc33e22 + δνe33 2δc44e23

2δc55e13 2δc44e23 δc13e11 + δνe22 + δc33e33

 .

Considering the incident plane P-wave ù(r) with incident angle ϑ and azimuthal angle ϕ
(as shown in equation (37)), the explicit expressions of the strain components are listed
in Appendix A. If the symmetry axis plane of HTI obstacle is parallel to the x-z plane,
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azimuthal angle φ of the scattered wavefields can be used to indicate the source-receiver
azimuth. Firstly, we can examine the scattered wavefields caused by the elastic constant
perturbation δc33 for HTI model. When keeping the perturbations δc11, δc13, δc55, and δc44

as zero, the perturbation δc33 contributes to the equivalent moment source:

δMHTI = δc33


0 0 0

0 e22 + e33 0

0 0 e22 + e33

 , (54)

Taking out the wavenumber and exp (iψ) parts and normalizing the perturbation δc33 = 1,
the reduced moment tensor source δM̄ can be defined as:

δM̄ =


0 0 0

0 (sinϑ2 sinϕ2 + cosϑ2) 0

0 0 (sinϑ2 sinϕ2 + cosϑ2)

 . (55)

Substituting the reduced moment tensor source into equation (33) yields the P-P, P-SV and
P-SH scattered wavefields and Fréchet derivative. The P-P, P-SV and P-SH scattering co-
efficients (or radiation patterns) describe the amplitude variations of the Fréchet derivative
with respect to elastic constant c33. They can be used to analyze the wavefields responses
with varying scattering angle θ and azimuthal angle φ, as shown in the following.

RPP = R†δM̄HTIR
=
(
sin2 θ sin2 φ+ cos2 θ

) (
sinϑ2 sinϕ2 + cosϑ2

)
,

RPSV = Θ†δM̄HTIR

= −1

2
sin 2θ cos2 φ

(
sinϑ2 sinϕ2 + cosϑ2

)
,

RPSH = Φ†δM̄HTIR

=
1

2
sin θ sin 2φ

(
sinϑ2 sinϕ2 + cosϑ2

)
.

(56)

To examine the amplitude variations of the wavefields responses with varying the scat-
tering angle and azimuthal angle, we design two acquisition geometries as shown in Figure
8. We assume that the symmetry axis of the HTI obstacle is consistent with the x axis and
thus its isotropic plane lies in the y-z plane. And the azimuthal angle of the scattered wave-
fields can be used to indicate the source-receiver azimuth. In the first acquisition geometry,
as shown in Figure 8a, we defines 4 source-receiver lines with azimuthal angle φ=0o,30o,60o

and 90o. And then we vary the opening angle between the incident wavefields and scattered
wavefields from 0o to 360o. In this condition, we can examine the wavefields responses due
to the parameter perturbation δc33 with varying the scattering angle at different azimuthal
angles.
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FIG. 5. Scattering patterns due to the perturbation of δc33 when ϑ = 30o and ϕ = 0o. (a), (b) and
(c) show the P-P, P-SV and P-SH scattering patterns respectively.

The scattering patterns due to δc33 with varying scattering angle at fixed azimuthal
angles 0o, 30o, 60o and 90o are illustrated in Figures 9a, b, c and d respectively.

The second acquisition geometry is presented in Figure 8. We vary the source-receiver
azimuth from 0o to 360o and fix the opening angle at 0o, 60o, 120o and 180o respectively.
The corresponding incident angle and scattering angle pair (ϑ, θ) are (180o, 0o), (150o, 30o),
(120o, 60o) and (90o, 90o).

The scattering patterns due to other elastic constants perturbations can also be calcu-
lated following the above steps. And the total scattered wavefields by the HTI obstacle are
the superpositions of the scattered wavefields due to all of the parameters’ perturbations.
The Fréchet derivative and scattering patterns for incident SV-wave and SH-wave are illus-
trated in Appendix A. Figure 11 shows the scattering patterns by the perturbations of the
elastic constants δc11, δc33, δc13 and δc55 for HTI model with incident P-wave(ϑ=30o and
ϕ=0o). The scattering coefficients by δc44 are all zeros. We can observe that in y-z plane,
the isotropic plane of the HTI obstacle, the scattered energy mainly comes from P-P and
P-SH scattering. In x-z plane, the symmetry axis plane of the HTI obstacle, the scattered
energy mainly comes from P-P and P-SV scattering. While in x-y plane, the azimuth plane,
the scattered energy mainly comes from P-P and P-SH scattering.

INVERSION SENSITIVITY OF ORTHORHOMBIC FRACTURES

The majority of the existing studies for fracture properties estimation mainly focus on
VTI and HTI anisotropy, the simplest effective models for describing the fractured reser-
voirs. While both HTI and VTI media with single fracture system are actually special
cases of an orthorhombic symmetry, which is also commonly existed in naturally fractured
reservoirs(Wild and Crampin, 1991; Schoenberg and Helbig, 1997; Tsvankin, 1997a). The
difficulties in dealing with the 9 independent elastic constants in orthorhombic fracture pre-
clude this model from application in exploration geophysics. In this section, the seismic
scattering due to a local orthorhombic fracture obstacle is discussed and we provide the
explicit expressions of the 3D Fréchet derivative with respect to the 9 elastic stiffness coef-
ficients in orthorhombic media. Furthermore, the sensitivity kernels and scattering patterns
for these elastic constants are analyzed.
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FIG. 6. Scattering patterns due to the perturbation of δc11, δc33, δc13 and δc55 when ϑ = 30o and
ϕ = 0o. The first, second and third column show the P-P, P-SV and P-SH scattering patterns
respectively.
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FIG. 7. The scattering configuration. The symmetry axis of the HTI obstacle is consistent with axis
x and the isotropic plane lies in y-z plane. ù and δu in (a) are the incident wave and scattered
wave in y-z plane. ϑ and ϕ are the incident angle and azimuth angle of the incident wave. θ and φ
are scattering angle and azimuth angle of the scattered wave. γ is the opening angle between the
incident wave and scattered wave.
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FIG. 8. The acquisition geometries. In (a), the sources and receivers are distributed along 4
azimuth lines (0o, 30o, 60o and 90o) when the opening angle γ ranges from 0o to 360o. In (b), the
single source-receiver pairs are located at 4 opening angle circles (0o, 60o, 120o and 180o) with
varying the azimuth angle from from 0o to 360o. The red and blues points indicate the sources and
receivers.
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FIG. 9. Scattering patterns due to the perturbation of δc33. (a), (b), (c) and (d) show the scattering
patterns when the opening angle between the incident wavefields and scattered wavefields is fixed
at 0o, 60o, 120o and 180o with varying the azimuthal angle φ from 0o to 360o. The corresponding
angle pair (ϑ, θ) is ((0o, 0o)), (150o, 30o), (120o, 60o) and (90o, 90o). The black-dash curves, black-
sold curves and grey-solid curves indicate the P-P, P-SV and P-SH scattering respectively. Note:
The P-SV scattering coefficients in (d) are enlarged by 20 times to be observed.
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FIG. 10. Scattering patterns due to the perturbation of δc33. (a), (b), (c) and (d) show the scattering
patterns when the opening angle between the incident wavefields and scattered wavefields is fixed
at 0o, 60o, 120o and 180o with varying the azimuthal angle φ from 0o to 360o. The corresponding
angle pair (ϑ, θ) is (0o, 0o), (150o, 30o), (120o, 60o) and (90o, 90o). The black-dash curves, black-sold
curves and grey-solid curves indicate the P-P, P-SV and P-SH scattering respectively. Note: The
P-SV scattering coefficients in (d) are enlarged by 20 times to be observed.
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FIG. 11. Scattering patterns due to the perturbations of δc11, δc33, δc13 and δc55. The first row,
second row and third row show the scattering patterns in y-z plane, x-z plane and x-y plane re-
spectively. The red, blue and green lines indicate the P-P, P-SV and P-SH scattering patterns
respectively.

CREWES Research Report — Volume 26 (2014) 19



Pan et. al

δcort =



δc11 δc12 δc13 0 0 0

δc12 δc22 δc23 0 0 0

δc13 δc23 δc33 0 0 0

0 0 0 δc44 0 0

0 0 0 0 δc55 0

0 0 0 0 0 δc66



. (57)

δMOrt =


δc11e11 + δc12e22 + δc13e33 2δc66e12 2δc55e13

2δc66e12 δc12e11 + δc22e22 + δc23e33 2δc44e13

2δc55e13 2δc44e13 δc13e11 + δc23e22 + δc33e33

 .
(58)

An example of perturbation leading to two dipoles source radiation pattern is δc13. In
this case, the moment tensor is:

δM =


δc13e

0
33 0 0

0 0 0

0 0 δc13e
0
11

 . (59)

Figures 12 and 13 show the 3D scattering patterns due to the perturbations of δc11, δc22,
δc33, δc44, δc55, δc66, δc23, δc13 and δc12 in orthorhombic media. Figures 14 and 15 show
the scattering patterns of the these elastic constants in x-z, y-z and x-y plane respectively.

APPENDIX A: 3D FRÉCHET DERIVATIVE AND SCATTERING PATTERNS
FOR PLANE SV-WAVE AND SH-WAVE INCIDENCE

Consider the incident plane SV-wave with incident angle ϑ and azimuth angle ϕ:

ùSV(r) = USVexp [i(ωt− kβU · n)] , (60)

where USV = (cosϑ cosϕx + cosϑ sinϕy− sinϑz). And the strain components of the
incident SV-wave are:

eij = −1
2
ikβ
(
USV
i Uj + USV

j Ui
)

exp [i(ωt− kβU · n)] . (61)
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FIG. 12. P-P, P-SV and P-SH scattering patterns due to the perturbation of δc11, δc22, δc33 and δc44
in orthorhombic media.
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FIG. 13. P-P, P-SV and P-SH Scattering patterns due to the perturbation of δc55, δc66, δc23, δc13
and δc12 in orthorhombic media.
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FIG. 14. P-P, P-SV and P-SH Scattering patterns due to the perturbation of δc11, δc22, δc33 and δc44
in y-z, x-z and x-y planes respectively.
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FIG. 15. P-P, P-SV and P-SH Scattering patterns due to the perturbation of δc55, δc66, δc23, δc13
and δc12 in y-z, x-z and x-y planes respectively.
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Thus, we can construct the moment tensor source δM caused by the elastic constants per-
turbations. The scattered wavefields with plane SV-wave incidence can be reformulated
as:

δuSV (r, ω) = −ω
2exp(−ikξr)
4πρβξ3r

(
D†δM̄R

)
, (62)

where ξ indicates P-wave velocity α or S-wave velocity β and kξ denotes the correspond-
ing wavenumber. δM̄ is the reduced moment tensor source when removing −ikβ and
exp [i (ωt− kβU · n)]. Taking partial derivative with respect to model parameter m, where
m ∈ (c11, c33, c44, c55, c13) for HTI model and m ∈ (c11, c22, c33, c44, c55, c66, c23, c13, c12)
for orthorhombic model (the perturbation of density is ignored), yields the 3D Fréchet
derivative for SV-wave incidence:

∂uSV (r, ω)

∂m
= −ω

2exp(−ikξr)
4πρβξ3r

(
D†
∂M̄
∂m

R
)
, (63)

D†δM̄R is defined as the scattering coefficient (or scattering pattern). The vector D can be
R, Θ and Φ for SV-P, SV-SV and SV-SH scattered wavefields and they can be written in
matrix form:

R =


sin θ cosφ

sin θ sinφ

cos θ

 ,Θ =


cos θ cosφ

cos θ sinφ

− sin θ

 ,Φ =


− sinφ

cosφ

0

 . (64)

Here, we take the scattered SV-P, SV-SV and SV-SH wavefields for the HTI model for
illustration. The elements of reduced meoment tensor source δM̄HTI can be written as:

δM̄HTI
11

δM̄HTI
22

δM̄HTI
33

δM̄HTI
23

δM̄HTI
13

δM̄HTI
12



=



δc11U
SV
1 U1 + δc13U

SV
2 U2 + δc13U

SV
3 U3

δc13U
SV
1 U1 + δc33U

SV
2 U2 + δνUSV

3 U3

δc13U
SV
1 U1 + δνUSV

2 U2 + δc33U
SV
3 U3

δc44

(
USV

2 U3 + USV
3 U2

)
δc55

(
USV

1 U3 + USV
3 U1

)
δc55

(
USV

1 U2 + USV
2 U1

)



. (65)

The scattered SV-P, SV-SV and SV-SH wavefields can be obtained as:

δu (r, ω)SVP = A′R†δM̄R, (66)

δu (r, ω)SVSV = B′Θ†δM̄R, (67)

δu (r, ω)SVSH = B′Φ†δM̄R, (68)

CREWES Research Report — Volume 26 (2014) 25



Pan et. al

where A′ and B′ are:

A′ = −ω
2exp(−ikαr)
4πρβα3r

, B′ = −ω
2exp(−ikβr)

4πρβ4r
.

For illustration, considering when ϑ=ϕ=0o, USV and U becomes:

USV =


1

0

0

 ,U =


0

0

1

 (69)

And the reduced moment tensor source becomes:

δM̄HTI
=


0 0 δc55

(
USV

1 U3 + USV
3 U1

)
0 0 0

δc55

(
USV

1 U3 + USV
3 U1

)
0 0

 . (70)

Substituting it into the equations (66), (67) and (68) yields the scatered SV-P, SV-SV and
SV-SH wavefields:

δu (r, ω)SVP = δc55A
′ (2R3R1)

= δc55A
′ sin 2θ cosφ,

δu (r, ω)SVP = δc55B
′ (Θ3R1 + Θ1R3)

= δc55B
′ (cos θ2 cosφ− cosφ sin θ2

)
,

δu (r, ω)SVSH = δc55B
′ (Φ3R1 + Φ1R3)

= −δc55B
′ sinφ cos θ.

(71)

The scattering patterns with SV incidence are shown in Figure 16.

Similarly, if we consider the incident plane SH-wave:

ùSH(r) = USHexp [i(ωt− kβU · n)] , (72)

where USH = (− sinϕx + cosϕy). Its strain components can be writtern as:

eij = −1
2
ikβ
(
USH
i Uj + USH

j Ui
)

exp [i(ωt− kβU · n)] . (73)

And the the 3D Fréchet derivative can be obtained as:

∂uSH (r, ω)

∂m
= −ω

2exp(−ikξr)
4πρβξ3r

(
D†
∂M̄
∂m

R
)
. (74)

And when D is R, Θ and Φ, equation (74) denotes the Fréchet derivative with respect to m
for SH-P, SH-SV and SH-SH scattered wavefields, as shown in Figure 17.
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FIG. 16. Scattering patterns with incident SV-wave due to the perturbation of δc11, δc33, δc13, and
δc55 when ϑ = 30o and ϕ = 30o. (a), (b) and (c) show the SV-P, SV-SV and SV-SH scattering
patterns respectively.
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FIG. 17. Scattering patterns with incident SH-wave due to the perturbation of δc11, δc33, δc13andδc55
when ϑ = 30o and ϕ = 30o. (a), (b) and (c) show the SH-P, SH-SV and SH-SH scattering patterns
respectively.
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