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ABSTRACT 

Linear AVO inversion technique has been used widely in industry to invert elastic 
parameter. In this paper, I put forward a new inversion through iteration of direct 
nonlinear inverse formulas. Following the workflow presented by Innanen (Innanen 
2011),I expand the reflection coefficient of PP wave and PS wave as function of 
elastic parameters contrast at third order. Those formulae can be used to invert elastic 
parameter by use of AVO series reversion method or Gauss-Newton iteration method. 
To solve the local convergence problem of Gauss-Newton iteration method, we 
introduce the first or second AVO series reversion result as the initial value. All of the 
experiments illustrate that reconstruction of contrasts from Gauss-Newton iteration of 
direct nonlinear inverse formulas is more accuracy and faster. 

INTRODUCTION 

AVO (Amplitude vary with offfset ) analysis and inversion have been used widely 
to characterize the elastic parameters and rock and fluid properties subsurface. The 
Zoeppritz equation (Zoeppritz 1919) is the fundamental mathematical formula for the 
amplitudes of reflected and transmitted plane waves when an incident P-wave strikes 
an welded elastic boundary. Although it gives precise values of the amplitudes of the 
reflected and transmitted plane waves, the difficulty in understanding the effects of 
parameter changes on the seismic amplitudes and the unstable solution resulting from 
its intrinsic nonlinearity prevent it from application. In contrast, The linearized 
approximation to the Zoeppritz equations is the basis of AVO analysis and prestack 
inversion (Ikelle, 1995; Buland and Omre, 2003; Yin et al., 2008). Smith and Gidlow 
(Smith and Gidlow 1987) are the first to develop a P- and S-wave velocity reflectivity 
inversion method based on P-wave AVO variation. Goodway et al. (Goodway 1999) 
propose lambda-mu-rho (LMR) technology for fluid discrimination, but it has some 
limits for practical reservoirs in porous media. Stewart (1996) described a similar 
method to derive estimates of shear velocity and density directly from PS wave. 
Stewart (1990) outlined a procedure that incorporates both P-P and P-S seismic 
gathers in a joint P-P and P-S inversion. Smith (Smith,1996) extended the 
weighted-stacking method to the case of three-parameter inversion. The three elastic 
parameters would be either P-wave velocity contrast, S-wave velocity contrast and 
density contrast or P-wave impedance contrast, S-wave impedance contrast. Lines 
(Lines 1998) further showed that density determination is difficult for limited 
apertures (limited incidence angles) and typical seismic velocities. Downton 
(Downton 2005) constrain three-parameter AVO inversion with probabilistic 
constraints on local geology, and he also estimates reliable density reflectivity. Jin et 
al. (Jin, Cambois, and Vuillermoz 2000) use singular value decomposition to stabilize 
the linearized P-SV reflection equations and to obtain reasonable results for synthetic 
and field data. Russell et al. (Russell et al. 2003) derive the fluid component which is 
the real factor that reflects the influence of fluid in porous rock. EI inversion 
(Connolly 1999) provided a consistent framework to calibrate and invert  
nonzero-offset seismic data just as the acoustic impedance inversion. However, 
according to Snell's law, the incident and transmitted angle at each side of interface 
are different. The ray impedance concept (Wang 2003) remained constant at both 
sides of interface. Zhang (Zhang and Wang 2010) applied ray impedance inversion to 
tight-sand gas reservoir prediction and showed that ray impedance was superior than 
acoustic impedance, elastic impedance and shear impedance in identifying fracture 
zone and the characterization of reservoir distribution. Larsen (Larsen 1999) 
introduced global searching using the iterative nonlinear algorithm to invert the exact 
Zoeppritz equations solution for PP and PS reflectivity and improved the accuracy for 
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elastic parameter estimates. Chen and Wei (Chen and Wei, 2012) produced 
Zeoppritz-based joint AVO inversion of PP and PS waves in Ray parameter domain. 

All the linear method is based on the first linear approximation to exact Zoeppritz 
equation under the condition that the incident is small and the contrasts in elastic 
parameters is much less than unity. Iterative nonlinear inversion based on exact 
Zoeppritz equation is model matching problem in sense which update the properties 
model to minimize the difference between forward synthetic data and measured data. 
Based on inverse scattering theory, Zhang and Weglein (Zhang and Weglein 2009) 
proposed direct nonlinear inversion. The equation for the linear estimate is the exact 
equation for the linear estimate. The equation for the quadratic estimate is the exact 
equation for the quadratic estimate, and so on for each higher term. There is no 
iteration, no cost function, no model matching, but an order by order in the data direct 
solution, where each step is exact for its indicated order of approximation. Innanen 
(Innanen 2011) extend the inverse scattering series work to frequency dependent 
prestack AVO inversion holding for both two parameter anacoustic problems and five 
parameter anelastic problems. 

In this paper, following the workflow presented by Innanen (Innanen 2011), I 
develop a new method of direct nonlinear inversion of contrasts in elastic parameter 
rather than parameter perturbations and compare the direct nonlinear inversion (i.e. 
series reversion) and iterative nonlinear inversion. 

BASIC THEORY AND FORMULAS 

For an isotropic elastic medium, when we consider a plane P wave obliquely 
incident upon a welded interface boundary, the Zoeppritz equation describes the 
amplitude relation between incident wave and scatter wave under the condition of 
continuous stress and displacement. For convenient, following the theory of 
Knott-Zoeppritz equations, we have 
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and where sinX θ=  is sinusoidal function of incident angle θ and constant 
parameters A  through D  denote the elastic parameters ratios 

 2 1 2 2 2

1 1 1 1 1

, , ,A B C D Bρ β α β β
ρ α α α β
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Any one of the four displacement reflection coefficients can be solved from the 
equations using Cramer’s rule. Forming two auxiliary matrixes Mp  and Ms  by 
replacing the first and second columns of M with N , the solutions are obtained 

 det( ) det( ),
det( ) det( )pp ps

Mp MsR R
M M

= =   (5) 

In order to understand the response of the reflection coefficient ppR   and psR   to 
contrasts in elastic parameters across the interface, we rewrite elastic parameter ratios 
in terms of elastic parameter contrasts. 

 2 32

1

1 11
2 4

A r r rρ ρ ρ
ρ
ρ

= = + + + +   (6) 

 2 32

1

1 11
2 4

C r r rα α α
α
α

= = + + + +   (7) 

 2 32 2

1 1

1 11
2 4

D B B r r rβ β β
β β
α β

 = = = + + + +  
   (8) 

where rα α α= ∆  is the ratio of difference of P wave velocity to average of P wave 
velocity , rβ β β= ∆  is the ratio of difference of S wave velocity to average of S wave 
velocity and rρ ρ ρ= ∆  is the ratio of difference of density to average of density. 

Because the parameter B  is only the ratio of the incident medium parameter, we 
do not expand it. The square root terms involving parameter ratio A  through D  is 
also expanded by making use of the expression 

 ( )
1
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When the All of the expand series are further substituted into the coefficient matrix 
M  and auxiliary matrixes Mp   and Ms  , all the elements are directly expressed as 
series in powers of the elastic contrasts. The determinate of the matrix is a linear 
combination of the elements of the matrix. Therefore, if the elements of the matrix are 
series in orders of the elastic contrasts, so determinants can be recast in terms of 
elastic contrast as following 
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Where the subscript refers to order in combination of the elastic contrasts. In 
carrying out the expansion, one notices that the zero order of auxiliary matrix 
( )0
det Mp   and ( )0

det Ms  disappear. Dividing the numerator and denominator by the 
zero order term in det M , the reflection coefficient are rewritten as 
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By inspection of equation (13) and (14) it is clear that the denominator somewhat 
looks like 1 x+ , where every term in x is at least first order in terms of elastic 
contrasts. For small contrasts and small angle, we my reasonably assumed them to be 
less than unity and expand the reflection coefficient as  

 1 2 3pp pp pp ppR R R R= + + +   (15) 

 1 2 3ps ps ps psR R R R= + + +   (16) 

Where the first order contribution to ppR  is 
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the second order contribution to ppR  is 
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the third order contribution to ppR  is 
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the first order contribution to psR  is 
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the second order contribution to psR  is 
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the third order contribution to psR  is 
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Substituting the equations from (6) to (9) into the equations from (15) to (21), we 
derive an approximation for ppR  and psR  which is expressed in order of elastic 
contrasts rα  , rβ  and rρ  (the details of coefficient refer to Appendix A). 

For PP wave 

 1 1 1 1
p p p

pp aR r r rα β β ρ ρ= Γ + Γ + Γ   (23) 
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For PS wave 
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 For first order of elastic contrasts, those approximation of Rpp and Rps is similar 
to Aki and Richard approximations, although it is different in its detail replacing the 
average incident/transmission angles with only incident angle. 

 To take a glance at the influence of high order term of ppR  and psR  and the 
accuracy of the series AVO approximation, the comparison of each truncated term 
with the exact solution obtained from Zoeppritz equation is demonstrated. The model 
with parameters P wave velocity, S wave velocity and density[ , , ]α β ρ are [2700m/s, 
1300m/s,2.1g/cm3] for upper media and [3000m/s,1900m/s, 2.4g/cm3] for lower 
media respectively. Figure 1 shows the comparison of exact ppR  curve (black solid 
line) with the different approximation equations. The green solid line is the linear 
Aki&Richard approximation equation. The three red line are the series order 
equations derived in this paper ( first order: red solid line, second order: red dot dash 
line, third order: red dash line). The incident angle for Aki&Richard linear equation is 
the average of incident and transmission, otherwise, the one for series order equations 
is the real incident angle. It is clear that the series order equations are more accurate 
than the Aki&Richard linear equation. For this model the velocity contrast is much 
larger ( 0.2581α α∆ = ) leads to great difference between exact ppR  curve and 
Aki&Richard linear equation which is only more accurate under assumption that 
small velocity contrast. Besides the replacement of average incident with incident 
angle is another reason. The reflection coefficient computed from Aki&Richard is 
consistent with that computed from first and second order truncation at normal 
incident angle which still deviates from the exact value. For series order equation, the 
second order truncation is almost same as first order truncation at small incident angle, 
but moves toward exact reflection coefficient. The third order truncation appears to 
capture the exact ppR  curve. The comparison of exact psR  curve with the different 
approximation equations in figure 2 shows the same features as ppR  in figure 1. 

Evidently, it is well known that psR  is unaffected by variations in P wave velocity 
in first order because that the coefficient 1αΓ  is zero. But to high order, only the 
coefficients 2αΓ , 3αΓ  and 2 1ρ αΓ  equal zero by inspection of equation 26, 27 and 
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Appendix A. Consequently, the second and third order of psR  are affected by 
variations in P wave velocity across interface. We establish a set of the three elastic 
models with varying P wave velocity 2α =3000m/s, 3500m/s and 3800m/s at lower 
media, but with all the other unchanged properties as model in figure 1 including 
velocity S wave velocity and density in upper and lower media. It’s clear that changes 
in the P wave velocity contrast certainly affect the reflection coefficient of PS wave. 

 

Figure 1. Comparison of approximation of Rpp with 1st,2nd and 3rd order in elastic parameters 
with elastic parameters .The exact solution for Rpp is calculated from Zoeppritz equation in 
black line. Aki&Richard approximation is indicated in green line. Approximation in series of 
contrast form is indicated in red line. The solid line, point dash line and point line denote the 
1st ,2nd and 3rd order truncation respectively. 

 

Figure 2. Comparison of approximation of Rps with 1st,2nd and 3rd order in elastic parameters 
with elastic parameters .The exact solution for Rpp is calculated from Zoeppritz equation in 
black line. Aki&Richard approximation is indicated in green line. Approximation in series of 
contrast form is indicated in red line. The solid line, point dash line and point line denote the 
1st ,2nd and 3rd order truncation respectively. 
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Figure 3. Effect of P wave velocity contrast on reflection coefficient of PS wave with the elastic 
parameters 1 2700 /m sα = , 1 1300 /m sβ = , 3

1 2.1 /g cmρ =  for upper layer and 2 1900 /m sβ = ,
3

2 2.4 /g cmρ = for lower layer. The P wave velocity for lower layer are 3000m/s, 3500m/s and 
3800m/s respectively. 

AVO SERIES REVERSION 

Series reversion is a way of inverting nonlinear relationships. For any function we 
can expand it in series, for example 
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The trick in solving for x  with series form is to then expand each instance of x  
in a new series: 

 1 2 3x x x x= + + +   (31) 
Where nx  is defined to be that part of x  which is nth  order in y . Put this 

expansion into equation 29 and then equate like orders, consequently solve for each 
nx   making use of all the results for ix ( i n<  ) 
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as desired analytic solution equation 30. 

 By inspection of equation 15 and 16 combining equation 23 through 28, the 
expression of reflection coefficient of PP ( ppR  ) and PS ( psR  ) is function of power 
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series of elastic parameter contrasts rα , rβ and rρ . According to series reversion theory, 
we expand each instance of rα , rβ  and rρ in a new series: 

 1 2 3r r r rα α α α= + + +   (33) 

 1 2 3r r r rβ β β β= + + +   (34) 

 1 2 3r r r rρ ρ ρ ρ= + + +    (35) 

Put those expansions into equation 23 through 28 and further into equation 15 and 
16. Consequently equating like orders, we solve for each nrα , nrβ , nrρ , making use of all 
the results for irα , irβ , irρ ( i n<  ). 

for first order: 

 1 1 1 1 1 1 1
W W W
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for second order 
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for third order 
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  (40) 

Where superscript W is p  for PP wave and s  for PS wave respectively. In 
general, for multi-angle prestack seismic data, the AVO series reversion is carried out 
with four steps: 

 Step 1: putting multi-angle real seismic data ( )pp iR θ  or ( )ps iR θ ( )1, 2,i N=   into 
the left hand of equation 36 , i.e. 1W ppR R=  or psR  and solving the solution of 1rα , 1rβ  
and 1rρ . 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1
W W W

WR r r rα α β β ρ ρθ θ θ θ= Γ + Γ + Γ  

( ) ( ) ( ) ( )1 2 1 2 1 1 2 1 1 2 1
W W W

WR r r rα α β β ρ ρθ θ θ θ= Γ + Γ + Γ         (41) 

   
( ) ( ) ( ) ( )1 1 1 1 1 1 1

W W W
W N N N NR r r rα α β β ρ ρθ θ θ θ= Γ + Γ + Γ  

Under condition of least square theory, the solution of 1rα , 1rβ  and 1rρ , are expressed 
as 
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Step 2: substituting solutions of 1rα , 1rβ  and 1rρ  into nonlinear corrections in 
equation 38 to compute 2R∆  and then putting it into the left hand of equation 37, 
solving the solution of 2rα , . 2rβ . and 2rρ . 

 ( ) ( )
1

2 1 1 1 2

T TW W Wr R
−

 = Γ Γ Γ ∆  
  (43) 

where T

2 2 2 2, ,r r r rα β ρ =     , [ ]T2 2 1 2 2 2( ), ( ), , ( )NR R R Rθ θ θ∆ = −∆ −∆ −∆  . 

Step 3: substituting all the results for irα , irβ , irρ ( 3i < ) into nonlinear corrections in 
equation 40 to compute 3R∆  and then putting it into the left hand of equation 39, 
solving the solution of 3rα , 3rβ  and 3rρ . 

 ( ) ( )
1

3 1 1 1 3

T TW W Wr R
−

 = Γ Γ Γ ∆  
  (44) 

where T

3 3 3 3, ,r r r rα β ρ =     , [ ]T3 3 1 3 2 3( ), ( ), , ( )NR R R Rθ θ θ∆ = −∆ −∆ −∆  . 

Step 4: resembling all the results for irα , irβ , irρ ( 4i < ) into equation 33 through 35 
and obtaining the solutions of rα , rβ , rρ . 

Nonlinear AVO inversion 

Obviously, the AVO series reversion involves high order terms of reflection 
coefficient of ppR  and psR , but during the process of substituting equation 33 
through 35 into equation 23 through 28 and equating like order, we also omit some 
combination of irα , irβ , irρ ( 1,2,3i < ), with total order greater than 2 for second order and 
3 for third order. In essential, the reflection coefficient of ppR   and psR   is 
expressed as the nonlinear function of elastic contrasts rα , rβ , rρ . According to least 
square nonlinear inversion theory, the objective function F  is sum of residuals 
between synthetic data MR  and real seismic data SR  for all incident angle. 

 
2

1

N
M S
i i

i
F R R

=

 = − ∑   (45) 

where MR  is either second or third order truncated approximation for equation 15 
for PP wave and equation 16 for PS wave. 

The Gauss-Newton algorithm is a classic way to solve non-linear least square 
problem. The kth iterative step can be expressed mathematically as 

 1
1k k k kx x H G−
+ = −   (46) 

where the kx  is the result of k-th iterative step, kH  is the Hessian matrix of the 
objective function F  in k-th iterative step, kG  is the gradient of the objective 
function F  in k-th iterative step, 1kx +  is the new update parameter for k+1 iterative 
step. 
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 T[ , , ]k kx r r rα β ρ=   (47) 

 
T

, ,k

k

F F FG
r r rα β ρ

 ∂ ∂ ∂
=  

∂ ∂ ∂  
  (48) 

 

2 2 2

2

2 2 2

2

2 2 2

2

k

F F F
r r r rr

F F FH
r r r rr

F F F
r r r r r

α β α ρα

β α β ρβ

ρ α ρ β ρ

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ ∂∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ 

  (49) 

It is well known that the initial model is very important for Gauss-Newton iteration 
algorithm. Better initial model closed to the true value converge true value rapidly, 
otherwise, worse initial model may be not converge or converge to local optimization 
solution. How to choose to the optimized initial model is key issue. To solve this 
problem, we chose the solution of first or second order AVO series reversion as the 
initial model which helpful to converge global solution rapidly. 

Experiment analysis 

In this section, I illustrate the result of AVO series reversion and Gauss-Newton 
iterative nonlinear AVO inversion. The test model consists of five isotropic layers 
which parameters listed in table 1. Figure 5 shows that second layer is a lower 
velocity layer and fourth layer is a high velocity layer. Figure 6 illustrates synthetic of 
elastic contrasts rα , rβ  and rρ  convolved wavelet with domain frequency 30Hz. The 
input data used to evaluate the method of AVO series reversion and nonlinear iterative 
inversion is angle gather for 0 to 30 at interval 5 degree computed from Zoeppritz 
equation convolved wavelet with domain frequency 30Hz. For convenient, here we 
only show the result of interface1 between layer 1 and layer 2, interface 3 between 
layer 3 and layer 4. For interface 1, result of rα  and rβ  are smaller, otherwise, result 
of rρ  is larger, than true value at first order approximation (Figure 7). In figure 8 and 
9, the inversion result and relative error analysis for interface 1 are plotted versus 
different method. x  axis denotes the first, second and third order nonlinear 
correction result of AVO series reversion, nonlinear iterative inversion result for third 
order approximation and the model value. It is clear that the accuracy of inversion 
result at high order approximation grows. The relative error is larger than 20% for 
first order approximation series reversion, otherwise near 2% for third order 
approximation series reversion. The nonlinear inversion using third order 
approximation further reduces relative error. All of the value list in table 2. 

Figure 10 illustrates comparison of AVO series reversion and nonlinear iterative 
inversion for interface 3 between layer 3 and layer 4. It obviously agrees that the 
accuracy of inversion result at high order approximation grows, but different from 
inversion result for interface 1 which moves to model value gradually, inversion result 
for interface 3 moves to model value in fluctuation (figure 10 and 11). For rα and rβ , 
the inversion result of first order approximation is larger than model value, but the one 
of second order approximation is smaller (figure 10 and 11) with decreased absolute 
relative error (figure 12). It is extremely attractive that for rρ  the inversion result of 
first order approximation is negative which is opposite to model value and leads that 
relative error reaches -175.34%. But the accuracy increases at high order 
approximation. Similar to conclusion for interface 1, the nonlinear iterative inversion 
method further improve accuracy and reduce relative error. All of the value list in 
table 3. 
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Table 1 Model parameters 
Layer P wave(m/s)  S wave(m/s) Density(kg/m3) Bottom depth(ms) 

1 3000 1500 2300 400 
2 2700 1400 2100 600 
3 3000 1500 2300 800 
4 3500 1700 2400 1000 
5 3000 1500 2300 1200 

 

 

Figure 5. Logging of the test model. Second layer is a lower velocity layer and fourth layer is a 

high velocity layer. 

 
Figure 6. Synthetic of elastic contrasts rα , rβ  and rρ  convolved  wavelet with 30Hz domain 

frequency. 
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Figure 7. Comparison of AVO series reversion and nonlinear iterative inversion for interface 1 

between layer 1 and layer 2. 

 
Figure 8. Display the inversion result of AVO series reversion and nonlinear iterative inversion 

for interface 1 between layer 1 and layer 2. 

 
Figure 9. Display the relative error of AVO series reversion and nonlinear iterative inversion for 

interface 1 between layer 1 and layer 2 
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Figure 10. Comparison of AVO series reversion and nonlinear iterative inversion for interface 3 

between layer 3 and layer 4. 

 
Figure 11. Display the inversion result of AVO series reversion and nonlinear iterative inversion 

for interface 3 between layer 3 and layer 4. 

 
Figure 12. Display the relative error of AVO series reversion and nonlinear iterative inversion 

for interface 3 between layer 3 and layer 4 
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Table 2 Inversion result of interface 1 

 Model Inversion result Relative error (%) 

First Second Third Nonlinear First Second Third Nonlinear 

rα  -0.1052 -0.0848 -0.0992 -0.1026 -0.1031 -19.35 -5.74 -2.44 -2.03 

rβ  -0.0689 -0.0515 -0.0637 -0.0664 -0.0667 -25.31 -7.63 -3.58 -3.16 

rρ   -0.0909 -0.1108 -0.0964 -0.0934 -0.0931 21.88 6.13 2.81 2.35 

 
Table 3 Inversion result of interface 3 

 Model Inversion result Relative error (%) 

First Second Third Nonlinear First Second Third Nonlinear 

rα  0.1538 0.2281 0.1150 0.1814 0.1584 48.31 -25.22 17.92 2.96 

rβ  0.0645 0.1294 0.0330 0.0892 0.0699 100.64 -48.71 38.39 8.41 

rρ   0.0425 -0.0320 0.0810 0.0143 0.0379 -175.34 90.47 -66.35 -10.72 

 

CONCLUSION 

In this paper, we have carried out a high accuracy AVO inversion using high order 
series expansion and approximation formulas. A new AVO series expansions derived 
from Zoeppritz equation describe the reflection coefficient of PP ( ppR ) and PS wave 
( psR ) as function of elastic parameter contrasts rα , rβ , rρ  and incident angle θ . The 
coefficient of rα , rβ  and rρ  derived in this paper is same as the one in Aki&Richard 
approximation or other derived approximation except that the average angle of 
incident and transmission angle is replaced by incident angle. The replacement is 
more directly help us to map offset to angle in AVO inversion process workflow. In 
other hand, deviation of average angle from incident angle increases with contrasts in 
elastic parameter across interface. So the new series expansions formulas have more 
high accuracy than Aki&Richard approximation or other derived approximation at 
small range of incident angle, especially for strong contrasts in elastic parameters. 

For converted wave (PS), contrast in P wave velocity plays a small but 
nonnegligible role in determining the reflection coefficient psR at small and moderate 
angle in second and third order terms. It’s influence is enacted through coupling with 
the density and S wave velocity. 

 The series expansion allows us to add terms to generate numerically more 
accurate approximations of seismic amplitude. This feature in turn allows us to 
reconstruct contrasts in elastic parameters from seismic amplitude at range of incident 
angle. The first order truncated approximation is a linear equation similar to 
traditional linear AVO equations except to replace average angle between incident and 
transmission angle with incident angle. AVO series reversion method is to expand the 
contrasts rα , rβ , rρ  themselves in series. These series are substituted into series 
expansion of reflection coefficient and like orders are equated following the 
argumentation applied in inverse scatter theory. The experiments indicate that 
recovery of first order 1rα , 1rβ , 1rρ  from linear approximation may be larger or smaller 
than the model value. Those first order 1rα , 1rβ , 1rρ  are substituted into equation 38 to 
generate nonlinear correction term 2R∆ , and then reconstructions of second order 2rα ,

2rβ , 2rρ  are carried out using equation 37. It is evident that the accuracy of inversion 
result at second order approximation grows. Consequently, the first and second order 
of contrasts are substituted into equation 40 to generate nonlinear correction term 3R∆  , 
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and then reconstructions of second order 3rα , 3rβ , 3rρ  are performed using equation 39. 
The nonlinear inversion using third order approximation further increase accuracy. 
Theoretically, this series reversion procedure may continue to any desired order. But 
nonlinear correction for high order is more complex and difficult to give analytic 
expression. Alternatively, high order series expansion of reflection coefficient are also 
nonlinear function of contrasts in elastic parameters, Gauss-Newton iteration method 
are well known effective approach to resolve the nonlinear problem. To solve for the 
local convergence problem of Gauss-Newton iteration method, we introduce the first 
or second AVO series reversion result as the initial value. All of the experiments 
illustrate that reconstruction of contrasts from Gauss-Newton iteration nonlinear AVO 
inversion is more accuracy then series reversion. But we must keep in mind that third 
order series reversion also gives a more satisfied result and series reversion is linear 
algorithm which run faster than Gauss-Newton iteration method. 

ACKNOWLEGEMENTS 

This work was funded by CREWES and SINOPEC. CREWES sponsors and all 
research personnel are gratefully acknowledged.  

REFERENCE 

Chen, Tiansheng, Xiucheng Wei, and others. 2012. “Zeoppritz-Based Joint AVO Inversion of PP and 
PS Waves in Ray Parameter Domain.” SEG Annual Meeting. Society of Exploration 
Geophysicists. 

Connolly, Patrick. 1999. “Elastic Impedance.” The Leading Edge 18 (4): 438–52. 
Downton, Jonathan E. 2005. Seismic Parameter Estimation from AVO Inversion ,PHD,University of 

Calgary. 
Goodway, Bill. 1999. “Improved AVO Fluid Detection and Lithology Discrimination Using Lamé 

Petrophysical Parameters;‘λρ’,‘μρ’, & ‘λ/μ Fluid Stack’, from P and S Inversions.” In SEG 
Technical Program Expanded Abstracts. 

Innanen, Kristopher A. 2011. “Inversion of the Seismic AVF/AVA Signatures of Highly Attenuative 
Targets.” Geophysics 76 (1): R1–14. 

Jin, Side, G Cambois, and C Vuillermoz. 2000. “Shear-Wave Velocity and Density Estimation from 
PS-Wave AVO Analysis: Application to an OBS Dataset from the North Sea.” Geophysics 65 
(5): 1446–54. 

Larsen, Jeffrey A. 1999. “AVO Inversion by Simultaneous PP and PS Inversion.” M. Sc. Thesis, 
University of Calgary. 

Lines, Laurence R. 1998. “Density Contrast Is Difficult to Determine from AVO.” Canadian Journal of 
Exploration Geophysics. 

Russell, Brian H, Ken Hedlin, Fred J Hilterman, and Lawrence R Lines. 2003. “Fluid-Property 
Discrimination with AVO: A Biot-Gassmann Perspective.” Geophysics 68 (1): 29–39. 

Smith, GC, and PM Gidlow. 1987. “Weighted Stacking for Rock Property Estimation and Detection of 
Gas.” Geophysical Prospecting 35 (9): 993–1014. 

Smith, George C, and others. 1996. “3-Parameter Geostack.” SEG Annual Meeting. Society of 
Exploration Geophysicists. 

Wang, Youjiang. 2003. Seismic Amplitude Inversion in Reflection Tomography. Elsevier. 
Zhang, F, and Y Wang. 2010. “Ray Impedance Inversion on the Tight-Sand Gas Reservoir.” In 72nd 

EAGE Conference and Exhibition Incorporating SPE EUROPEC 2010. 
Zhang, Haiyan, and Arthur B. Weglein. 2009. “Direct Nonlinear Inversion of Multiparameter 1D 

Elastic Media Using the Inverse Scattering Series.” Geophysics 74 (6): WCD15–27. 
Zoeppritz, K. 1919. “Erdbebenwellen VIII B. Uber Reflection and Durchgang Seismischer Wellen 

Durch Unstetigkeitsflachen.” Gottinger Nachrichten, 66–84. 

APPENDIX A 
The coefficients in the expansion for PP wave in equation 33 through 35 are: 

2
1

1 sec
2α θΓ =   2

1 4 sinBβ θΓ = −  2 2
1

1 2 sin
2

Bρ θΓ = −  
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2
2

1 sin
2α θΓ =   ( )2 2

2 4 1 sinB Bβ θΓ = −  ( )2 2
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1 4 1 sin
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1 1 0α βΓ =       1 1 0α ρΓ =              ( )2 2
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( )2 2
2 1

1 4 12 1 sin
8

B B Bρ β θΓ = − − +  

( )2 2
1 1 1 2 2 1 sinB Bα β ρ θΓ = − −  

The coefficients in the expansion for PS wave in equation 36 through 38 are: 
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