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AVO modelling of linearized Zoeppritz approximations 

Ali Fathalian and Kris Innanen  

ABSTRACT 
The reflection coefficients are investigated for the various approximation on Zoeppritz     

equation and the results compared with the exact solution. There some deviations near critical 
angles that for larger layer contrasts and larger angle of incidence these deviation are significant.  
Also, the effect of 𝛾𝛾  parameter on forward modelling is investigated.  When the contrasts 
between the layers of model is larger, the γ parameter has more influence on forward modelling. 

 INTRODUCTION 
The Aki and Richards (Aki and Richards, 1980) investigated the structure and property of the 

Earth's interior by analyzing the propagation of elastic waves. From a given source, parts of the 
generated waves travel through the earth's interior and part of the wave travels under the surface. 
The body waves (P-waves and S-waves) (Stein and Wysession, 2002) are the elastic waves 
which propagate in the interior of the Earth and the surface waves travel close to the surface. 
Seismic exploration mainly focus on body waves which contain much information about deeper 
structure of the earth. The transformation of the seismic waves upon incident on two 
homogeneous isotropic elastic half spaces in welded contact at a plane interface is given by 
Zoeppritz equation (Aki and Richards, 1980). This equation is the base for AVO inversion as 
forward model. 

ZOEPPRITZ EQUATION 
   Zoeppritz equation describe the amplitudes of the reflected and transmitted P-wave and S-

waves which are incident at boundary between the two media. It is derived under the assumption 
that incident angle at the boundary is below a critical angle. The critical angle of incidence is 
determined by the velocity of the upper and lower layers.When we apply the elastic boundary 
conditions continuity of displacement through the interface, the the Zoeppritz equations are 
obtained (Innanen, 2015). We have 
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⎢
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We let  𝑋𝑋 = 𝑌𝑌 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 

 Λ𝑗𝑗(𝑍𝑍) ≡ �1 − 𝑗𝑗2𝑍𝑍2 ,         Λ𝑗𝑗(𝑍𝑍) ≡ 1 − 2𝑗𝑗2𝑍𝑍2 (5) 

 

By solving these equations for a down-going incident the reflected P-wave, reflected S-wave, 
transmitted P-wave and transmitted S-wave are obtained. For AVO analysis, the   𝑅𝑅𝑃𝑃𝑃𝑃 and 𝑅𝑅𝑃𝑃𝑃𝑃   
are the most exploited reflection coefficients i.e in typical seismic experiment using 
compressional wave sources, P-waves, and receiving the P-wave component and/ or S-wave 
component by receivers.           

APPROXIMATION OF THE ZOEPPRITZ EQUATIONS 
Zoeppritz’s equations completely determine amplitudes of reflected and transmitted plane 

waves for all incidence angles. In order to gain more insight into the factors that control 
amplitude changes with angle/offset, and simplify computations, linearized approximations to 
the Zoeppritz equations have been developed. There are several approximation that we want to 
consider them and compare their results. 

 Exact solution 
 The exact PP wave reflection coefficients (Aki and Richards, 1980) can be written as 

 𝑅𝑅𝑃𝑃𝑃𝑃 = ��𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑉𝑉𝑃𝑃0

− 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡
𝑉𝑉𝑃𝑃1

� 𝐹𝐹 − �𝑎𝑎 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖
𝑉𝑉𝑃𝑃0

 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡
𝑉𝑉𝑃𝑃1

�𝐻𝐻𝑃𝑃2� ⁄ 𝐷𝐷 (6) 

Where 

 𝑎𝑎 = 𝜌𝜌1(1 − 2𝑉𝑉𝑆𝑆1𝑃𝑃2) − 𝜌𝜌0�(1 − 2𝑉𝑉𝑆𝑆0𝑃𝑃2)� (7) 

  
                                   𝑏𝑏 = 𝜌𝜌1(1 − 2𝑉𝑉𝑆𝑆1𝑃𝑃2) + 2𝜌𝜌0𝑉𝑉𝑆𝑆0𝑃𝑃2  

                                   𝑐𝑐 = 𝜌𝜌1(1 − 2𝑉𝑉𝑆𝑆0𝑃𝑃2) + 2𝜌𝜌1𝑉𝑉𝑆𝑆1𝑃𝑃2 

                                   𝑑𝑑 = 2(𝜌𝜌1𝑉𝑉𝑆𝑆1 − 𝜌𝜌0𝑉𝑉𝑆𝑆02 ) 
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                                   𝐹𝐹 =  𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑟𝑟
𝑉𝑉𝑆𝑆0

+ 𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑡𝑡
𝑉𝑉𝑆𝑆1

 

                                   𝐻𝐻 = 𝑎𝑎 − 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡
𝑉𝑉𝑃𝑃1

 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑟𝑟
𝑉𝑉𝑆𝑆0

  

                                   𝐷𝐷 = det𝑃𝑃
𝑉𝑉𝑃𝑃0𝑉𝑉𝑃𝑃1𝑉𝑉𝑆𝑆0𝑉𝑉𝑆𝑆1

 

This equation shows the exact transformation of the reflection coefficient is a non-linear. For 
this reason, linearized approximations to the Zoeppritz equations have been developed. 

Bortfeld's approximation 
The Bortfield's approximation was revisited by Aki and Richards (Aki and Richards, 1980). 

The Aki and Richards and Frasier approximation is appealing because it is written as three 
terms,the first involving P-wave velocity, the second involving density, and the third involving 
S-wave velocity. Their formula can be written: 

 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) ≈
1
2

(1 + 𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃) ∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

− 4 �𝑉𝑉𝑆𝑆0
𝑉𝑉𝑃𝑃0

�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ∆𝑉𝑉𝑆𝑆

𝑉𝑉𝑆𝑆
+ 1

2
[1 − 4 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃] ∆𝜌𝜌

𝜌𝜌
 (8) 

where  

                                                         ∆𝑉𝑉𝑃𝑃 = 𝑉𝑉𝑃𝑃1 − 𝑉𝑉𝑃𝑃0                                       (9) 

                                                         ∆𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑆𝑆1 − 𝑉𝑉𝑆𝑆0 

                                                         ∆𝜌𝜌 = 𝜌𝜌1 − 𝜌𝜌0 

                                                         𝜃𝜃𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠−1(𝑉𝑉𝑃𝑃1
𝑉𝑉𝑃𝑃0

sin (𝜃𝜃𝑖𝑖)) 

                                                         𝜃𝜃 = 1
2

(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑡𝑡) 

This approximation is linear in three model parameters, the P-wave reflectivity, S-wave 
reflectivity, and density reflectivity, and it is even the starting equation for other approximations. 

Shuey's approximation 
The Shuey (Shuey, 1985) introduce the Poisson's ratio as parameter instead of the S-wave 

velocity and recalculated the Aki and Richards's approximation. Whereas the approximation in 
equation (Fatti et al., 1994) involved 𝑉𝑉𝑃𝑃, 𝑉𝑉𝑆𝑆 and 𝜌𝜌, Shuey is obtained the new approximation of 
the Zoeppritz equations which involved 𝑉𝑉𝑃𝑃, 𝜌𝜌 and  𝜎𝜎,  or Poisson’s ratio. This approximation is 
obtained as 
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 𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑃𝑃 + 𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 + 1
2
∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

(𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃) (10) 

Where  
                                                  𝑅𝑅𝑃𝑃 = 1

2
�∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

+ ∆𝜌𝜌
𝜌𝜌
� (11) 

                                             𝑅𝑅ℎ = �𝑅𝑅𝑃𝑃𝐴𝐴0 + ∆𝜎𝜎
(1−𝜎𝜎)2

� 

                                                  𝐴𝐴0 = 𝐵𝐵 − 2(1 + 𝐵𝐵) 1−2𝜎𝜎
1−𝜎𝜎

 

                                                   𝜎𝜎 =
1
𝛾𝛾2
−2

2( 1
𝛾𝛾2
−1)

  ,                 𝛾𝛾 = 𝑉𝑉𝑆𝑆0
𝑉𝑉𝑃𝑃0

 

                                                   𝐵𝐵 =
2∆𝑉𝑉𝑃𝑃𝑉𝑉𝑃𝑃
𝑅𝑅𝑃𝑃

 

                                                   ∆𝜎𝜎 = 𝜎𝜎1 − 𝜎𝜎0 

In this approximation the first term gives the amplitude at normal incidence, the second term 
characterizes 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃) at intermediate angles, and the third term describes the approach to the 
critical angle. They noticed that when the ratio of  𝛽𝛽/𝛼𝛼   is 0.5 and the terms below  30° are 
dropped, then the Shuey’s approximation can be reduced to two terms, a normal incidence 
reflectivity term, and a far-offset reflectivity term. This approximation is very useful if the 
analysis is in terms of the Poisson's ratios. It is an interesting property of rocks which is directly 
related to their elasticity. 

Fatti's approximation 
In 1994, Fatti et al. (Fatti et al., 1994) improved the Geo-stack method by incorporating the 

density changes instead of using the empirical relationship between 𝑉𝑉𝑃𝑃 and 𝜌𝜌.  By expressing the 
Aki and Richards`s approximation in terms of P-wave impedance, S-wave impedance, and 
density reflectivity the Fatti approximation is obtained as 

𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) = 1
2

(1 + 𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃) ∆𝐼𝐼𝑃𝑃
𝐼𝐼𝑃𝑃
− 4 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ∆𝐼𝐼𝑆𝑆

𝐼𝐼𝑆𝑆
− 1

2
(𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃 − 4 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃) ∆𝜌𝜌

𝜌𝜌
 (12) 

Where ∆𝐼𝐼𝑃𝑃
𝐼𝐼𝑃𝑃

 and ∆𝐼𝐼𝑆𝑆
𝐼𝐼𝑆𝑆

 are 

                             ∆𝐼𝐼𝑃𝑃
𝐼𝐼𝑃𝑃

= 𝑉𝑉𝑃𝑃1𝜌𝜌1−𝑉𝑉𝑃𝑃0𝜌𝜌0
𝑉𝑉𝑃𝑃1𝜌𝜌1+𝑉𝑉𝑃𝑃0𝜌𝜌0 

   (13) 

And 

                              ∆𝐼𝐼𝑆𝑆
𝐼𝐼𝑆𝑆

= 𝑉𝑉𝑆𝑆1𝜌𝜌1−𝑉𝑉𝑆𝑆0𝜌𝜌0
𝑉𝑉𝑆𝑆1𝜌𝜌1+𝑉𝑉𝑆𝑆0𝜌𝜌0

   (14) 

For angle of incidence less than 35 degrees and 𝛼𝛼/𝛽𝛽  ratio between 1.5 and 2.0, the above 
equation simplifies to 
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 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) = 1
2

(1 + 𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃) ∆𝐼𝐼𝑃𝑃
𝐼𝐼𝑃𝑃
− 4 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ∆𝐼𝐼𝑆𝑆

𝐼𝐼𝑆𝑆
 (15) 

 

Verm and Hilterman's approximation 
It is essentially the same as the Shuey’s equation, with the simplification that the third term is 

ignored, since it is vanishingly small for small offsets (being the difference between the squared 
sine and squared tangent of small angles). Therefor Hilterman (Verm and Hilterman, 1995) 
simplified Shuey’s equation even further by making the following assumptions: (a) Use only the 
first two terms of Shuey’s equatin , and (b) Set 𝐴𝐴0 = −1. Then, equation (Shuey, 1985) 
simplifies to: 

 𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑃𝑃 + 𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 (16) 

Where 

 𝑅𝑅ℎ = �𝑅𝑅𝑃𝑃𝐴𝐴0 + ∆𝜎𝜎
(1−𝜎𝜎)2

� = (−𝑅𝑅𝑃𝑃 + ∆𝜎𝜎
(1−𝜎𝜎)2

) (17) 

Substitute Eq. 13 into Eq. 12. We have 

  
𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑃𝑃 + 𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 = 𝑅𝑅𝑅𝑅 + �−𝑅𝑅𝑃𝑃 + ∆𝜎𝜎

(1−𝜎𝜎)2
� 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 (18) 

 = 𝑅𝑅𝑅𝑅(1 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃) + ∆𝜎𝜎
(1−𝜎𝜎)2

𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 

This equation also can be written as   

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅 + [ 9
4∆𝜎𝜎

− 𝑅𝑅𝑃𝑃]𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 (19) 

Where 

 𝐺𝐺 = 9
4
∆𝜎𝜎 − 𝑅𝑅𝑃𝑃 (20) 

Therefore, the 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃)  has the form 

 𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑃𝑃 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 (21) 

Where 𝑅𝑅𝑃𝑃  gives the intercept and G is the AVO gradient (slope) obtained by performing a 
linear regression analysis on the seismic amplitudes. This equation is linear if we plot 𝑅𝑅 as a 
function of  𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃. We could then perform a linear regression analysis on the seismic amplitudes 
to come up with estimates of both intercept  𝑅𝑅𝑃𝑃, and gradient G. 

Smith and Gidlow's approximation 
The new approximation based on the Aki and Richards’s equation was given by Smith and 

Gidlow (Smith and Gidlow, 2003). They used this approximation to perform a weighted stack on 
the corrected seismic gathers to produce information about the rock properties of reservoirs. 
Smith and Gidlow rearranged the Aki and Richards's approximation as 
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 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) = 1
2
�∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

+ ∆𝜌𝜌
𝜌𝜌
� − 2 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 �2 ∆𝑉𝑉𝑆𝑆

𝑉𝑉𝑆𝑆
+ ∆𝜌𝜌

𝜌𝜌
� + 1

2
𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃 ∆𝑉𝑉𝑃𝑃

𝑉𝑉𝑃𝑃
 (22) 

When eliminating density by applying Gardner’s relation 

 𝜌𝜌 = 𝑎𝑎𝑉𝑉𝑃𝑃𝑏𝑏 = 𝑎𝑎(𝑉𝑉𝑃𝑃)1/4 (23) 

And 

 ∆𝜌𝜌
𝜌𝜌

= 𝑏𝑏 ∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

= 1
4
∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

 (24) 

Where 𝑎𝑎 and 𝑏𝑏 are empirical constants which are directly related to the type of rock.                    

Substituting Eq.20 into Eq.18 gives: 

 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) = 1
2
�∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

+ 1
4
∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

  � − 2 �𝑉𝑉𝑆𝑆0
𝑉𝑉𝑃𝑃0

�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 �2 ∆𝑉𝑉𝑆𝑆

𝑉𝑉𝑆𝑆
+ 1

4
∆𝑉𝑉𝑃𝑃
𝑉𝑉𝑃𝑃

  � + 1
2
𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃 ∆𝑉𝑉𝑃𝑃

𝑉𝑉𝑃𝑃
 (25) 

This equation also can be written as 

 𝑅𝑅𝑃𝑃𝑃𝑃(𝜃𝜃𝑖𝑖) = 1
2

(1 + 𝑎𝑎 + 𝑡𝑡𝑡𝑡𝑡𝑡2𝜃𝜃 − 4𝑎𝑎 �𝑉𝑉𝑆𝑆0
𝑉𝑉𝑃𝑃0

�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃) ∆𝑉𝑉𝑃𝑃

𝑉𝑉𝑃𝑃
− 4 �𝑉𝑉𝑆𝑆0

𝑉𝑉𝑃𝑃0
�
2
𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ∆𝑉𝑉𝑆𝑆

𝑉𝑉𝑆𝑆
 (26) 

Where 𝑎𝑎=0.25 is constant in Gardner`s equation. This simplification allowed them to obtain 
estimates of rock properties by using a weighted stacking method. 

 RESULTS AND DISCUSSIONS 
     The results of different approximation are compared to the exact equation. The geologic 

parameters are given in Table 1. The reflection coefficients are calculated and plotted against the 
angle of incidence up to the critical angle. The various approximations are compared to the exact 
Zoeppritz equation for small layer contrast (model 1 and 2) and large layer contrast (model 3 and 
4).  Figure 1 shows the comparison of the various approximation for small layer contrast (model 
1). We can see that all the approximations are in a good agreement with the exact equation up to 
angle range from 50°.  After this angle, there are some deviations near the critical angle 
particularly for Verm and Hilterman's equation. Our results show that the Shuy’s, Aki and 
Richards's and Smith and Gidlow's approximations are in a goog agreement with the exact 
equation up to the critical angle.  Figure 2 shows the comparison of the various approximation 
for small layer contrast (model 2). The results show that all the approximations are in a good 
agreement with the exact solution up to angle from 30° to 40°. In the large angles some 
deviations are seen near the critical angle. The Shuey’s and Verm and Hilterman approximations 
have some deviations near critical angle, while the Fatti’s approximation is in a good agreement 
with exact solution up to 50°. The other approximations (Aki and Richards's and Smith and 
Gidlow's) have same results with the exact equation up to the critical angle. Similarly, the 
reflection coefficients for large layer contrast are investigated. The results show that there are 
some significant deviation. Figure 3 the comparison of the various approximation for large layer 
contrast (model 3).  Aki and Richards's and Smith and Gidlow's approximation are a good 
agreement with each other but show some deviations from the exact solution. The Shuey's 
approximation and the Fatti's approximation are in a good agreement up to only  25° to 35° 
respectively.  Figure 4 shows comparison of the various approximations for model 4. The 
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deviations become larger as compared to other models. We can see that the reflection coefficient 
for different model has different behaviour for each approximation. For large layer contrast 
(large angle of incidence) the deviation from exact is increased.  

Table 1. The geologic parameters for four models.  

Model 𝑉𝑉𝑃𝑃0(𝑚𝑚/𝑠𝑠) 𝑉𝑉𝑆𝑆0(𝑚𝑚/𝑠𝑠) 𝜌𝜌0(𝑘𝑘𝑘𝑘/𝑚𝑚3) 𝑉𝑉𝑃𝑃1(𝑚𝑚/𝑠𝑠) 𝑉𝑉𝑆𝑆1(𝑚𝑚/𝑠𝑠) 𝜌𝜌1(𝑘𝑘𝑘𝑘

/𝑚𝑚3) 

1 3000 1800 2200 3100 1900 2250 

2 3000 1800 2200 3200 2000 2250 

3 3000 1800 2200 4000 2500 2400 

3 3000 1800 2200 4500 3000 2600 

 

 

FIG.1. Illustrate the reflection coefficients (𝑅𝑅𝑅𝑅𝑅𝑅) for different approximations using model 1 in Table 1. 
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FIG. 2.  Illustrate the reflection coefficients (𝑅𝑅𝑅𝑅𝑅𝑅) for different approximations using model 2 in Table 1. 

 

FIG. 3. Illustrate the reflection coefficients (𝑅𝑅𝑅𝑅𝑅𝑅) for different approximations using model 3 in Table 1. 
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FIG. 4. Illustrate the reflection coefficients (𝑅𝑅𝑅𝑅𝑅𝑅) for different approximations using model 3 in Table 1.  
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The γ parameter (the S-wave velocity to P-wave velocity ratio) is a part of all approximation. 
So, we consider the effect of this parameter in forward modeling. To see this effect the reflection 
coefficient are calculated for different value of γ. Figure 5 show the reflection coefficient using 
Zoeppritz equation and Aki and Richards’s approximation for actual value of γ and four different 
values of γ which are difference from the actual value (model 1). The results show that for the 
actual value of γ the Aki and Richards’s approximation is a good agreement with the exact 
solution, while the wrong values of γ lead to small deviation from the exact solution. Similarly, 
the effect of γ on the forward modeling for other models (model 2, 3, and 4) are investigated. 
The results show that the deviations become larger as compared to model 1 (figures 6 7, and 8). 
We can see that when the contrast between the layer model parameter is increased, the parameter 
γ has more influence on forward modeling.  

 

Fig. 5. Illustrate the effect of 𝛾𝛾 on forward model using model 1 for 𝛾𝛾 = 0.6 , 𝛾𝛾 = 033, 𝛾𝛾 = 0.4, 𝛾𝛾 = 0.5,  and 
𝛾𝛾 = 07. 
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FIG. 6. The effect of 𝛾𝛾 on forward model using model 2 for 𝛾𝛾 = 0.6 , 𝛾𝛾 = 033, 𝛾𝛾 = 0.4, 𝛾𝛾 = 0.5,  and 𝛾𝛾 = 07. 

 

FIG. 7.  Illustrate the effect of 𝛾𝛾 on forward model using model 3 for 𝛾𝛾 = 0.6 , 𝛾𝛾 = 033, 𝛾𝛾 = 0.4, 𝛾𝛾 = 0.5,  and 
𝛾𝛾 = 07. 
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FIG. 8.  Illustrate the effect of 𝛾𝛾 on forward model using model 4 for 𝛾𝛾 = 0.6 , 𝛾𝛾 = 033, 𝛾𝛾 = 0.4, 𝛾𝛾 = 0.5,  
and 𝛾𝛾 = 07. 

CONCLUSIONS 
The exact solution of the Zoeppritz equations and the linear approximations are investigated. 

The reflection coefficient for the various approximations are calculated using four models which 
have small and larger layer contrasts. There are the larger the deviation is from the exact solution 
for the larger the angle of incidence (or the larger the layer contrasts). These deviation can be 
reasons to wrong results for inversion. In addition in this work the effect of  𝛾𝛾  on the forward 
modeling are investigated. When the contrast between the layer model parameter is increased, 
the parameter 𝛾𝛾 has more influence on forward modeling. Therefore, the act of actual value of 
velocities can reduce the effects of 𝛾𝛾 on forward modeling. 
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