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ABSTRACT

In this short note we cover two questions concerning the inclusion in seismic FWI of an
attempt to solve simultaneously for elastic and anelastic geological properties, i.e., QP and
QS as well as (say) VP , VS and ρ. The first question is whether or not to do so: anecdotally
(and incorrectly), attenuation parameters have been suggested to be unimportant to FWI,
since they dominate at high frequencies and FWI is primarily concerned with low. The
second is really several questions: where in the mechanisms of FWI (e.g., within the ma-
chinery of the gradient and the various approximate Hessians), are the tasks we normally
associate with Q contained? Is there a component of the Hessian operator tasked with Q
compensation, for instance.

INTRODUCTION

In this note we formulate an an-acoustic FWI framework and use it to answer two ques-
tions about how such a procedure would work, and whether and when we should consider
using it. The paper is meant to act as a companion to Innanen (2015), and has the same
motivations and references as those in the introduction to that paper. Here, the question
of whether or not Q is important to FWI is considered, which is also a key theme in the
companion work.

The work is broken up into three parts. First, we frame FWI with an an-acoustic model,
in which three parameters, P-wave velocity, quality factor Q, and dispersive reference fre-
quency ωr are treated as unknowns. Cases involving only attenuation, only dispersion, and
a reduced two parameter (velocity and Q) problem, are also set up. The second component
uses sensitivity forms to comment on the possibility that Q is unimportant to FWI provided
FWI minds low frequencies. The third component uses the gradient and Hessian forms
to comment on the mechanisms in a Gauss-Newton update by which something akin to Q
compensation occurs.

FRAMING AN-ACOUSTIC FULL WAVEFORM INVERSION

We will define anacoustic wave propagation as that described by the equation

L G(r, rs) =
[
∇2 + ω2s(r)

]
G(r, rs) = δ(r− rs), (1)

where ω dependence of G is assumed, and the general model parameter s is

s(r) =
1

c2(r)

{
1 +

1

Q(r)

[
i− 2

π
log

(
ω

ωr(r)

)]}
, (2)

that is, three basic anacoustic parameters c, Q and ωr, corresponding to the parameters of
a common nearly constant Q model (Aki and Richards, 2002). These parameters appear in
the propagation constant in a curious hierarchy, which is more easily seen by writing s as

s(r) = sc(r) + γ sc(r)sq(r) + λ sc(r)sq(r)sω(r), (3)
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where

sc(r) =
1

c2(r)
, sq(r) =

1

Q(r)
, sω(r) = logωr(r), (4)

and

γ = i− 2

π
logω, λ =

2

π
. (5)

The separability in particular of the reference frequency parameter from the Q parameter
is far from certain at the outset, so we will also include a case where ωr is a fixed quantity
whose value is assumed or known a priori. Then, s breaks up as

s(r) = sc(r) + β sc(r)sq(r), (6)

where

β = i− 2

π
log

(
ω

ωr

)
. (7)

Finally, to support a later examination of attenuation vs. dispersion in the sensitivities, we
introduce two convenient model parameters:

sa(r) =
1

c2(r)

[
1 +

i

Q(r)

]
= sc(r) + µsc(r)sq(r)

sd(r) =
1

c2(r)

[
1− 2

πQ(r)
log

(
ω

ωr

)]
= sc(r) + νsc(r)sq(r),

(8)

where

µ = i

ν = − 2

π
log

(
ω

ωr

)
.

(9)

The first of these includes attenuation in the wave while neglecting dispersion, and the
second includes dispersion while neglecting attenuation. Neither are causal; they are used
as tools to examine the internal workings of FWI only, and are not recommended for use
to form proper inverse procedures. Because we will use them later, let us also write down
explicitly the equations and Green’s functions we associate with these models:[

∇2 + ω2sa(r)
]
Ga(r, rs) = δ(r− rs), (10)

and [
∇2 + ω2sd(r)

]
Gd(r, rs) = δ(r− rs), (11)

respectively.
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Anacoustic sensitivities

Multiparameter anacoustic sensitivities can be calculated based on any one of the four
anacoustic scenarios described above, meaning equation (1) with s defined as in one of
equations (3), (6), (10), or (11). As a note of caution, to keep the nomenclature under
control we will re-use the same terms in each case below. When the results are used later
the particular case being discussed will be explicitly clarified.

Case 1: Three parameter anacoustic media.

Beginning with the first of these four cases, we define background medium s0:

s0(r) = sc0(r) + γ sc0(r)sq0(r) + λ sc0(r)sq0(r)sω0(r), (12)

consider the wave G0 to propagate within it, and then, one at a time, perturb the three
model parameters to create slighty different waves. A small perturbation δsc in the P-wave
velocity c gives rise to the wave Gc satisfying

L0Gc(r, rs) = δ(r− rs)− ω2 [1 + sq0(r) (γ + λsω0(r))]Gc(r, rs)δsc(r); (13)

a similar perturbation in Q gives rise to Gq satisfying

L0Gq(r, rs) = δ(r− rs)− ω2 [(γ + λsω0(r)) sc0(r)]Gq(r, rs)δsq(r); (14)

and likewise a perturbation in the reference frequency gives rise to Gω satisfying

L0Gω(r, rs) = δ(r− rs)− ω2 [λsc0(r)sq0(r)]Gω(r, rs)δsω(r). (15)

In all cases the operator L0 is the same one used in equation (1) but with s set to s0. A
linearized scattering equation can be derived for each of δGc = Gc −G0, δGq = Gq −G0

and δGω = Gω − G0. Using these, and by specifying each perturbation to be a delta
function, the sensitivities for three parameters are found to be:

∂G(rg, rs)

∂sc(r)
= −ω2 [1 + sq0(r) (γ + λsω0(r))]G0(rg, r)G0(r, rs), (16)

∂G(rg, rs)

∂sq(r)
= −ω2 [(γ + λsω0(r)) sc0(r)]G0(rg, r)G0(r, rs), (17)

and

∂G(rg, rs)

∂sω(r)
= −ω2 [λsc0(r)sq0(r)]G0(rg, r)G0(r, rs), (18)

respectively.
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Case 2: Two parameter anacoustic media.

Using equation (1) and the background medium definition

s0(r) = sc0(r) + β sc0(r)sq0(r), (19)

the two parameter sensitivities for c and Q are similarly found to be

∂G(rg, rs)

∂sc(r)
= −ω2 [1 + βsq0(r)]G0(rg, r)G0(r, rs, ), (20)

and

∂G(rg, rs)

∂sq(r)
= −ω2 [βsq0(r)]G0(rg, r)G0(r, rs), (21)

respectively.

Case 3: Two parameter attenuation-only media.

The attenuation-only case has the same form as case 2, but with µ substituted for β.
Thus, we have

∂G(rg, rs)

∂sc(r)
= −ω2 [1 + µsq0(r)]G0(rg, r)G0(r, rs), (22)

and

∂G(rg, rs)

∂sq(r)
= −ω2 [µsq0(r)]G0(rg, r)G0(r, rs). (23)

Case 4: Two parameter dispersion-only media.

Similarly, the dispersion-only case is the same as Cases 2 and 3, with ν used rather than
β or µ:

∂G(rg, rs)

∂sc(r)
= −ω2 [1 + νsq0(r)]G0(rg, r)G0(r, rs), (24)

and

∂G(rg, rs)

∂sq(r)
= −ω2 [νsq0(r)]G0(rg, r)G0(r, rs). (25)

Two parameter an-acoustic gradients

Gradients of objective functions which are based on the sum of the squares of the resid-
uals δP (rg, rs), i.e., the difference between the observed and modelled data at a particular
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iteration, have a common form. If the sensitivities for parameter X are known, the gradient
is simply

gX(r) = −
∑
rg ,rs

∫
dω
∂G(rg, rs)

∂sX(r)
δP ∗(rg, rs), (26)

where ∗ indicates the complex conjugate. Thus, for the two parameter an-acoustic case
(Case 2 above), the two gradients are

gc(r) =
∑
rg ,rs

∫
dωω2 [1 + βsq0(r)]G0(rg, r)G0(r, rs)δP

∗(rg, rs), (27)

and

gq(r) =
∑
rg ,rs

∫
dωω2 [βsq0(r)]G0(rg, r)G0(r, rs)δP

∗(rg, rs). (28)

From other multiparameter FWI analyses we expect that such gradients will be strongly
affected by parameter cross-talk, however, and indeed on first analysis this seems likely.
The residuals in both gradients are weighted to accentuate the influence of the two param-
eters, through the β terms, the squared frequency, and the Green’s functions, however no
accommodation is made for the fact that δP ∗ is co-determined by two parameters.

An-acoustic Gauss-Newton Hessian operators

The Hessian operator, as approximated in a Gauss-Newton approach, in the two param-
eter an-acoustic approximation will involve four elements and a 2×2 system. Defining for
convenience

G(rg, r, r′, rs) = G∗0(rg, r
′)G∗0(r

′, rs)G0(rg, r)G0(r, rs), (29)

the quantity

Hcc(r, r
′) =

∑
rg ,rs

∫
dω
∂G∗(rg, rs)

∂sc(r′)

∂G(rg, rs)

∂sc(r)

=
∑
rg ,rs

∫
dωω4 [1 + βsq0(r)]

2 G(rg, r, r′, rs),
(30)

coupling P-wave velocity variations with themselves, and

Hcq(r, r
′) =

∑
rg ,rs

∫
dω
∂G∗(rg, rs)

∂sc(r′)

∂G(rg, rs)

∂sq(r)

=
∑
rg ,rs

∫
dωω4 [1 + βsq0(r)] [βsq0(r)]G(rg, r, r′, rs)

(31)
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and

Hqc(r, r
′) =

∑
rg ,rs

∫
dω
∂G∗(rg, rs)

∂sq(r′)

∂G(rg, rs)

∂sc(r)

=
∑
rg ,rs

∫
dωω4 [βsq0(r)] [1 + βsq0(r)]G(rg, r, r′, rs),

(32)

which couple P-wave velocity with Q, and finally

Hqq(r, r
′) =

∑
rg ,rs

∫
dω
∂G∗(rg, rs)

∂sq(r′)

∂G(rg, rs)

∂sq(r)

==
∑
rg ,rs

∫
dωω4 [βsq0(r)]

2 G(rg, r, r′, rs),
(33)

which couples Q with itself, are all incorporated as follows. A Gauss-Newton update in the
P-wave velocity and Q model parameters [sc, sq]T is computed by[

δsc(r)
δsq(r)

]
=

∫
dr′H−1(r, r′)

∫
dr′′
[
−Hqq(r

′, r′′) Hcq(r
′, r′′)

Hqc(r
′, r′′) Hcc(r

′, r′′)

] [
gc(r)
gq(r)

]
, (34)

where the four H functions are given in equations (29)-(33) above, and the gradients are
those given in equations (27)-(28). The generalized determinant is

H(r, r′) =
∫
dr′′ [Hcc(r, r

′′)Hqq(r
′′, r′)−Hcq(r, r

′′)Hqc(r
′′, r′)] , (35)

and its reciprocal function is defined such that∫
dr′′H−1(r, r′′)H(r′′, r) = δ(r− r′). (36)

QUESTION 1: SHOULD Q BE INCLUDED IN FWI?

With the mathematical framework for absorptive FWI in place, we can ask our ques-
tions. The first question is a little broad – a better way to put it is as follows: “Is it worth-
while incorporating Q in FWI when attenuation predominates at high frequencies and FWI
focuses on low frequencies?” One answer to this is “Yes, because we would like to have
FWI move into the higher frequencies too.” But there is a more basic answer, which we are
now in a position to give.

The answer lies in the an-acoustic sensitivities, i.e., equations (16)–(18), and (20)–(25).
It turns out to hinge on attenuation and dispersion and their varied effect, so we will analyze
the attenuation-only and dispersion-only cases. In fact, since the question has to do with
whether or not we take the trouble to include Q, let us furthermore focus on the P-wave
velocity sensitivities. We have

∂G(rg, rs)

∂sc(r)
∝ ω2Ga

0(rg, r)G
a
0(r, rs), (37)
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∂G(rg, rs)

∂sc(r)
∝ ω2Gd

0(rg, r)G
d
0(r, rs), (38)

for the attenuation-only and dispersion-only cases respectively, and for reference we will
also consider

∂G(rg, rs)

∂sc(r)
∝ ω2G0(rg, r)G0(r, rs), (39)

a completely acoustic sensitivity expression, achievable by taking the limit Q→∞ in any
of the other examples. The proportionality constants are not as important in answering this
question as the Green’s functions are. Recalling that for every sensitivity we calculate a
background model s0 was introduced. It is in this medium that the Green’s functions apply.
The Green’s functions satisfy equations (10–(11).

Let us plot the sensitivities in equations (37)–(39) for a few representative frequencies,
assuming a homogeneous medium. In Figure 1 we focus on the damage attenuation can
inflict on us if we wrongly assume the Earth is perfectly elastic. The left column are
plots of the real parts of purely acoustic sensitivities, calculated as per equation (39), with
c0 =1500m/s, ranging from a low frequency value of 15Hz at the top, to a mid-range
frequency value of 50Hz in the middle, and finally to a higher frequency value of 120Hz at
the bottom. The middle column is equivalent in every way, except that the sensitivities are
calculated using equation (37) with a finite Q = 20, and no dispersion. Here the expected
trend is visible: at the low end (top row), the sensitivities are very similar to those of the
purely acoustic case. As we move to higher frequencies, greater differences are visible.
Thus, a preliminary conclusion: if a FWI inversion scheme is going to incorporate only
low frequencies, it is not important to include Q.

However, the effect of dispersion has not been considered. A similar set of plots for the
dispersion-only case is included in Figure 2. The left column is the same as in the previous
case; the middle column now illustrates the sensitivities forQ =20, but using equation (38),
i.e., including the dispersion component of wave propagation only. This time, the opposite
trend is noticed, with the low and mid-range frequencies showing the largest discrepancies.

So, the answer to the question, when both attenuation and dispersion are properly ac-
counted for, is a clear yes. Of course, we have not answered the question “how” in this
paper, but a foray into that is made by Innanen (2015).

QUESTION 2: HOW DOES FWI ACCOMPLISH Q COMPENSATION?

The second question we can shed light on concerns the combined roles of the gradi-
ent and the inverse Hessian. The latter of the two has been discussed in many CREWES
reports in recent years, and elsewhere, in terms of its mitigation of parameter cross-talk,
suppression of artifacts caused by second order scattering processes, and its replication of
the positive effects of using deconvolution rather than cross-correlation based imaging con-
ditions in forming the gradient. This latter point is a useful clue for the problem of Q. The
question is: how, in detail, does Q compensation happen in FWI?

First, we have to agree that Q compensation does happen in FWI if it is based on
anelastic or an-acoustic wave physics. If we take an inclusive view of what Q compensa-
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FIG. 1. Sensitivities for frequencies 15Hz (top row), 50Hz (middle row), and 120Hz (bottom row).
The comparison is between purely acoustic sensitivities (left column), attenuation-only an-acoustic
sensitivities (middle column), and their difference (right column).
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FIG. 2. Sensitivities for frequencies 15Hz (top row), 50Hz (middle row), and 120Hz (bottom row).
The comparison is between purely acoustic sensitivities (left column), dispersion-only an-acoustic
sensitivities (middle column), and their difference (right column).
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tion means, then it certainly does. An inclusive viewpoint would hold that, since anelastic
parameter profiles with sharp boundaries give rise to data with non-sharp (i.e., attenuated)
events, the reconstruction of the former from the latter must involve some process of “boost-
ing” high frequencies. To the extent we are willing to refer to this process as a flavour of Q
compensation, Q compensation happens in any complete inversion scheme.

The core stage of FWI is the construction of the gradient; in gradient-based methods,
the only additional step is to calculate a single scalar multiplier to complete an update.
Let us first see that the an-acoustic gradient does not have the wherewithal to boost high
frequencies attenuated during wave propagation. Consider the gradient gq for a 1D, single
parameter inversion scheme, with source and receiver coincident at zg = zs = 0. Equation
(21) reduces to

∂G(0, 0)

∂sq(z)
= −ω2 [βsq0(z)]G0(0, z)G0(z, 0)

= −iω2sq0

[
eiKz

i2K

] [
eiKz

i2K

]
.

(40)

If the background medium is attenuative, the propagation constant K has both real and
imaginary components:

K = Kr + iKi. (41)

So, the sensitivity becomes

∂G(0, 0)

∂sq(z)
= A(ω)ei2Krze−2Kiz. (42)

Now, in the formation of the gradient, the sensitivities are the kernel of an operator:
∫
dω(∂G/∂s)[·],

which acts on the complex conjugate of the residuals:

gq(z) = −
∫
dωA(ω)ei2Krze−2KizδP ∗(ω). (43)

Now, this construction does not boost the high frequencies attenuated in the residuals. In
fact, it does the opposite. The residuals at high frequencies are further attenuated by the
e−2Kiz of the operator. So, we must not seek in gradient based methods a model recon-
struction which reintroduces the small wavelengths properly; the reconstruction will have
been doubly attenuated.

Is this compensated for in the inverse Hessian. In a 1 parameter problem, Hqq from
equation (33) is the complete Hessian. In 1D, it reduces to

H(z, z′) =

∫
dω
∂G(0, 0)

∂sq(z)

∂G∗(0, 0)

∂sq(z′)

=

∫
dωω4s2q0

[
ei2Kz

i2K

] [
e−i2K

∗z′

−i2K∗

]
.

(44)
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Once again breaking K up into real and imaginary parts, the Hessian takes on the form:

H(z, z′) =

∫
dωB(ω)ei2Kr(z−z′)e−2Ki(z+z′). (45)

In acoustic settings, Ki → 0, and B goes over such that H becomes a weighted delta
function. With finite Ki, the right hand term attenuates proportionally to the sum of z and
z′. Inverting this operator, the effect is to correct for attenuation, boosting proportionally
to this sum. So, it is the residual-independent component of the Hessian which corrects the
small model wavelengths for Q compensation as the model is constructed.

CONCLUSIONS

Two questions concerning the inclusion in seismic FWI of QP are considered. The
first question is whether or not to do so: anecdotally, attenuation parameters have been
suggested to be unimportant to FWI, since they dominate at high frequencies and FWI is
primarily concerned with low. Because of the accompanying phenomenon of dispersion,
the answer is no. The second is: where in the mechanisms of FWI (e.g., within the ma-
chinery of the gradient and the various approximate Hessians), are the tasks we normally
associate with Q contained? Is there a component of the Hessian operator tasked with
Q compensation, for instance. Indeed, in fact, the gradient alone aggravates attenuation
beyond what is nominally present in the residuals.
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