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PP and PS reflection and transmission coefficients in anelastic 
media: the anomalous case 

P.F. Daley and E.S. Krebes 

ABSTRACT 
Using the derivation of reflection and transmission coefficients at the interface 

between two elastic given in Aki and Richards (1980) as a starting point, modified 
coefficients may be obtained for the case of two anelastic media in welded contact at a 
similar (plane) boundary. The anelastic equivalents of two elastic velocity distributions 
are considered for waveP −  incidence on the plane boundary separating the two medium. 
Figures showing the plots of amplitude and phase of the four coefficients P1P1, P1P2, 
P1S1 and P1S2 are produced with the results from the elastic case included in all of the 
plots. As the term “anomalous” requires some preliminary introduction of terms, its 
definition, used in context here, will be left be left until later in the report. 

INTRODUCTION 
The topic of wave propagation in anelastic media has been an area of study and 

moderate controversy for about a century. There are not many matters on this subject that 
have been resolved to the satisfaction of all. The second author listed above has written 
an extremely comprehensive paper in which a significant amount of the related literature 
is cited (Krebes and Daley, 2007). Consequently, they will not be repeated here in their 
entirety. The first author’s views, tempered by the second author, are presented in the 
papers, Daley and Krebes (2004) and Daley and Krebes (2015). What is hoped is that 
what can be achieved here is that the anelastic reflection and transmission coefficients 
presented here appear as one would expect them to realistically look like. For this 
purpose two models have been chosen for investigation. The first is a very standard 
model often seen in actual field data (at least where the velocity of the elastic waves are 
concerned). This elastic model is given by the inequality, 2 1 2 1α α β β> > > , is shown 
schematically in Fig.1.and defined in Table 1. Here, α and β are the real values of the 
compressional P and shear S velocities in an elastic media, with the subscripts indicating 
the medium, 1 upper medium− and 2 lower medium− (Fig. V). The values of the quality 
factors for the four modes of propagation also appear in Table 1.and are inferred in Fig.1. 
The inequality for these is ( ) ( ) ( )( ) ( )2 2 1 1, ,P S S PQ Q Q Q> . 

The second model considered is one not often encountered in field data, but is a 
possibility. As indicated in Fig.2. it is marginally more complex. The elastic model for 
this is given by 2 2 1 1α β α β> > >  with the same quality factors used for model 1. 

Agreement may be reached for the figures produced for model 1. Model 2 introduces a 
number of other possible debatable points plus a consensus that further investigation is 
required. 
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THEORY 
The incident horizontal component of the slowness vector (p) associated with an 

incident P – wave lies along the straight line between the points ( )0,0 and the point, 1p , 
in the first quadrant of the complex p – plane, inclusive of the real axis. A specific 
location on this line will be denoted as 0p . In an elastic medium for P – wave incidence, 

0p  has the more familiar form, 0 1 1sinp θ α= , a real quantity, related to all modes of 
propagation by Snell’s Law. For the anelastic case, 0p is in general complex and an 
analogue of Snell’s Law is used. 

 [ ] [ ]1 1 2 2Re 1 Re 1p pα α= = . (1) 

 [ ] [ ]3 1 4 2Re 1 Re 1p pβ β= = . (2) 

Apart from the elastic parameters of the two media, ( ), and 1,2j j j jα β ρ = , the P – 
wave  and S – wave velocities and density in the two media, the factors 

( ) ( ) ( )and 1,2j j
P SQ Q j = are assumed to be known. These control the amount of 

dissipation attributable to the waves associated with each of these modes in the medium 
of propagation. 

Assuming that the quantities ( ) ( ) ( )and 1,2j j
P SQ Q j = are such that 

( ) ( )1 and 1j j
P SQ Q>> >>  then the following may be used. For numerical applications, it 

saves only minimal time and the exact expressions can be used. However, they are 
included here as many readers may be more familiar with the second equations for 

( )1,4jp j = , the complex horizontal components of the slowness vector associated 
with each mode of propagation. 
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In Aki and Richards (1980), the vertical components of the slowness vector for the four 
modes of propagation (five if the incident wave is included) are given in the form of 
cosines as 
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 ( )
cos

1,2 for  - wavesj
j

j

j P
θ

ξ
α

= = . (7) 

and 

 ( )
cos

1,2 for  - wavesj
j

j

j S
θ

η
β

= = . (8) 

As the andj jξ η are generally complex quantities in the anelastic case they are most 
often written as the radicals 

 ( ) ( )1 22 2 1, 2j jp p jξ = − = . (9) 

 ( ) ( )1 22 2
2 1, 2j jp p jη += − = . (10) 

where at the saddle point, 0p p→ . For 0p near the branch point at 2p , 2ξ may be 
approximated as 

 
( ) ( )
( ) ( )

1 2 1 2
2 2 0 2 0

1 2 1 2
2 2 2 02

p p p p

p p p

ξ

ξ

= + −

≈ −
. (11) 

which is not used in this report but is worthy of note. 

At this point a theoretical overview of this topic should be given. However, this has 
been done in another publication (Daley and Krebes, 2015). It is also not for general 
consumption as the contents refer on numerous occasions to a graduate complex variable 
theory text similar to Alfors (1969) as well as to a text on classical and quantum 
mechanics (Razavy, 2005). 

The term anomalous has taken too long to be defined. Consider Model 1, defined in 
Table 1 and shown schematically in Figure 2. If ( )2

PQ were less than ( )1
PQ , the branch point 

2p would lie above the saddle point progression path ( )10 top p p= = and as a 
consequence, would not cross the branch cut corresponding to 2p p= . In this case there 
would be no need to take any type of corrective action to produce results similar to the 
related elastic case. In Figure 2 it is clear that the model parameters are such that the 
saddle point progression path crosses a branch cut, specifically the one associated 
with 2p p= . The formulae used to compute reflection and transmission coefficients in 
this case produce results not consistent with the elastic case. This has been termed the 
anomalous case. Without going into lengthy detail it required that the radical associated 

with 2p p= ( )( )1 22 2
2 2 0p pξ = − is required to remain an analytic function (no 

discontinuous first derivative) in the first quadrant of the complex planep − . A précised 
explanation of this is given in Daley and Krebes (2015). For more detailed analysis a 
graduate level complex variable analysis text should be consulted. 
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NUMERICAL RESULTS 
What is considered here are, for lack of better terminology, will be referred to as the 

bad or anomalous cases of waveP − incidence from half space 1 (upper) on an interface 
between two anelastic medium, with medium 2 referring to the lower half space (Figure 
1). The bad designation comes from the fact that ( )1

PQ is less than either or both of the 

quantities ( )2
PQ and ( )2

SQ . The saddle point progression line is a straight line between the 
origin and the point 1p p= in the upper right quadrant of the complex horizontal slowness 
( )p plane. The result is that this line must cross either the branch cut associated with the 

waveP − in medium 2 (Figure 2) or both this branch cut and the one linked to the 
waveS − in medium (Figure 3).  

Before proceeding further, it should be noted that the measures taken here to get what 
are perceived to be reasonable results are not required if ( ) ( ) ( )1 2 2and/orP P SQ Q Q> (the good 
case). It was for this reason that this problem was addressed. It was difficult to believe 
that some infinitesimal change in one medium parameter could dramatically change the 
results of the reflection and transmission coefficients. 

The first case to be considered is shown in Figure 2 where ( ) ( )1 2
P PQ Q< . This is similar to 

the HS discussed in (Daley and Krebes, 2015). The media parameters are given in Table 1 
and the reflection and transmission coefficients for waveP − incidence from the upper 
half space 1 are presented in figures 4 – 9. Amplitude and phase are plotted for the four 
reflection and transmission coefficients, 1 1PP , 1 1PS , 1 2PP and 1 2PS  versus the real part of 

1p . The anelastic cases are shown in black, while the corresponding elastic cases are 
given in red. As a check, the real and imaginary parts of the coefficients 1 1PP and 1 2PP are 
presented in figures (5) and (8). In these two figures, the anelastic cases are shown in 
green and the elastic cases in red. 
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Fig.1. A schematic of a P – wave incident from the upper medium on an interface between two 
media and the resulting wave types that arise. The subscripts “inc.”, “ref.” and “trans.” refer to 
incident, reflected and transmitted modes, respectively. 

The reflection and transmission coefficients for Model 2 are displayed in figures 10 – 
14. The positions of the branch points in the upper right quadrant of the complex 

planep − are shown in Figure 3. The difference between Model 1 and Model 2 is clear. 
In Model 2 the saddle point progression path crosses two branch cut as it traverses the 
path from 0p = to 1p p= . The remainder of Model 2 is the same as Model 1 and the 
parameters used are given in Table 2. This is not a media type that is mathematically 
possible but not often or ever physically seen. However, it will be pursued here and its 
existence will be left for future discussion.  

As for Model 1, the four reflection and transmission coefficients shown here are due to 
a waveP − incidence from the upper. The resulting coefficients are shown schematically 
in Figure 1 and include 1 1PP , 1 1PS , 1 2PP and 1 2PS . As in the previous case, the amplitudes 
and phases of the generally complex coefficients are plotted versus the real the real part 
of 1p (in black) with the elastic cases plotted in red, in Figures 10, 11, 13 and 14. Figure 
12 is a plot of the real and imaginary parts of the 1 1PP coefficient plotted against the real 
part of 1p (in green) with the elastic case in red. The uncorrected (anomalous) case is not 
shown in the second set of figures related to Model 2 so as not overly clutter the figures. 
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Fig.2. A schematic of the first quadrant of the complex p – plane (horizontal component of the 
slowness vector). The velocity model shown is a very standard one described in the text. The 
points jp , ( )1,4j = are branch points of andj jξ η , ( )1,2j =  (vertical components of the 

related slowness vectors). The branch cuts for these are chosen to be the paths from jp to ∞ , 

such that Im or Imj jξ η       are equal to zero along the cut. The saddle point progression 

path is the values that the incident P – wave may have corresponding to the elastic case 
of [ ]10 sin 1; 0 2θ α θ π≤ ≤ ≤ ≤ . Of note in this figure is that the saddle point progression path 
crosses one branch cut, corresponding to the P – wave in the second medium. 
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Fig.3. A schematic of the first quadrant of the complex p – plane (horizontal component of the 
slowness vector). The velocity model shown is a very standard one described in the text. The 
points jp , ( )1,4j = are branch points of andj jξ η , ( )1,2j =  (vertical components of the 

related slowness vectors). The branch cuts for these are chosen to be the paths from jp to ∞ , 

such that Im or Imj jξ η       are equal to zero along the cut. The saddle point progression 

path is the values that the incident P – wave may have corresponding to the elastic case 
of [ ]10 sin 1; 0 2θ α θ π≤ ≤ ≤ ≤ . Of note in this figure is that the saddle point progression path 
crosses two branch cuts, associated with the P – wave and S – wave in the second medium. 

 

Table 1. Medium parameters for Model 1. The real valued velocities ( )andα β have dimensions 

of km s , density has the dimensions of 3gm cm and the ( ),kQ k P S= are dimensionless. 

   Layer        α         β         ρ       QP        QS 

       1        1.0                    0.57        1.0       10.0        20.0 

       2        1.5       0.82        1.0       15.0        22.0 
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Fig.4. P1P1 reflection coefficient for Model 1 for P – wave incidence from the upper medium onto 
the plane interface separating the upper and lower media. Amplitude and phase of the generally 
complex valued reflection coefficient are plotted versus the real part of the horizontal slowness 
vector ( )1 10 Re[ ] 1p α≤ ≤ . (Purple – the anelastic case before corrective action taken.) 
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Fig.5. P1P1 reflection coefficient for Model 1 for P – wave incidence from the upper medium onto 
the plane interface separating the upper and lower media. Real and imaginary parts of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . (Green – anelastic case.) (Purple – the anelastic case 
before corrective action taken.) 

P1P1  
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Fig. 6. P1S1 reflection coefficient for Model 1 for P – wave incidence from the upper medium onto 
the plane interface separating the upper and lower media. Amplitude and phase of the generally 
complex valued reflection coefficient are plotted versus the real part of the horizontal slowness 
vector ( )1 10 Re[ ] 1p α≤ ≤ . 

 

P1S1  
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Fig.7. P1P2 transmission coefficient for Model 1 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued transmission coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . (Purple – the anelastic case before corrective action 
taken.) 
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Fig.8. P1P2 transmission coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Real and imaginary parts of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . (Green – anelastic case.) (Purple – the anelastic case 
before corrective action taken.) 
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Fig.9. P1S2 transmission coefficient for Model 1 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued transmission coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . 
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Table 2. Medium parameters for Model 2. As in Model 1, the real valued velocities 
( )andα β have dimensions of km s , density has the dimensions of 3gm cm and the 

( ),kQ k P S= are dimensionless. 

 

 

 

 

 

 

 

 

   Layer        α          β          ρ        QP         QS 

       1       1.0                    0.57        1.0       10.0        20.0 

       2        1.5       1.10        1.0       15.0        22.0 
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Fig.10. P1P1 reflection coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤  
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Fig.11. P1P1 reflection coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . 

P1P1  
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Fig.12. P1S1 reflection coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . 
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Fig.13. P1P2 reflection coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . 
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Fig.14. P1S2 reflection coefficient for Model 2 for P – wave incidence from the upper medium 
onto the plane interface separating the upper and lower media. Amplitude and phase of the 
generally complex valued reflection coefficient are plotted versus the real part of the horizontal 
slowness vector ( )1 10 Re[ ] 1p α≤ ≤ . 
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SUMMARY AND CONCLUSIONS 

Reflection and coefficients for a plane waveP − incidence at the interface of a plane 
interface separating two anelastic isotropic models have been presented for two different 
models. The first set is for what has been termed the anomalous case, Krebes and Daley 
(2007). When compared to the elastic case, these coefficients appear to behave in manner 
which would be expected.  

The second model used was similar to the first with only a minor modification of 
medium parameters. The results appear to be at least marginally consistent with the 
elastic case. However, there are some contentious points which warrant further 
investigation of this problem. These could be a consequence of a number of things, one 
being the nearness of two branch cuts to grazing incidence at 0 1p p≈ . 
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