
1.5D internal multiple prediction

CREWES Research Report — Volume 28 (2016) 1

1.5D internal multiple prediction in the wavenumber-time domain
with implementation in Python

Matthew Eaid and Kris Innanen

ABSTRACT
Most seismic interpretation and processing algorithms treat primaries as signal and

multiples as noise. Multiple reflections are separated into two major categories. Multiples
which have at least one down going reflection at the earth’s surface are called surface
related internal multiples. Multiple reflections where all downward reflections are
contained to the subsurface are referred to as internal multiples. While the prediction and
subsequent removal of surface related internal multiples is a fairly well understood
problem, the prediction of internal multiples is not. Historically internal multiples have
been predicted by exploiting assumptions about the multiples that the primaries do not
obey. However, when these assumptions are not met by the internal multiples the prediction
algorithms fail to properly predict the internal multiples. Weglein et al., (1997) proposed a
fully data driven, wave equation method of predicting internal multiples based on the
inverse scattering series. The algorithm derived by Weglein et. al, performs the prediction
in the frequency-wavenumber domain, and then converts the prediction back to the offset-
time domain. In recent years The CREWES project has adapted the original algorithm into
many different domains in order to investigate the optimal domain in which to predict
internal multiples; one such domain is the wavenumber time domain. We will present the
wavenumber-time algorithm, provide pseudocode examples of how to implement it in the
Python programming language, and will show a synthetic prediction example.

INTRODUCTION
While primary reflections are typically treated as signal in seismic processing and

interpretation, multiples are treated as noise, and their removal is usually desirable.
Multiple reflections are seismic signals in which the wavefield has undergone more than
one upward reflection before being recorded. Multiples come in two distinct categories,
multiples in which one of the downward reflections has occurred at the surface of the earth
are called free surface multiples, multiples in which all reflections are confined to the
subsurface are termed internal multiples. Surface multiples are typically periodic and
predictable in nature, and thus their removal is a fairly well understood problem. The same
cannot be said for internal multiples, although promising strides have been made in recent
years.

Many of the methods of predicting surface multiples rely on exploiting assumptions
about the primary event. Primaries and multiples have differing moveout, and when the
gathers are NMO corrected, then stacked, the under corrected multiples are attenuated
(Yilmaz, 2001). Alam and Austin (1981) and Treitel et al. (1982) were the first to recognize
that multiples are exactly periodic in the tau-p domain, and proposed using predictive
deconvolution to attenuate them. While both of these methods performed well on surface
multiples, their assumptions are generally violated by internal multiples. When the
assumptions of these algorithms are violated the resulting prediction is a poor one.

Eaid and Innanen

2 CREWES Research Report — Volume 28 (2016)

Several wave equation-based internal multiple prediction schemes exist, (Weglein et al.
1997; Jakubowicz, 1998; Berkhout, 1999), nevertheless the inverse scattering series
approach originally presented by Weglein et al. (1997) remains the pinnacle for predicting
internal multiples. The original algorithm was originally designed to perform the prediction
algorithm in the wavenumber-frequency domain, however an important research topic is
adapting the algorithm to predict multiples in other domains. For instance, Sun and Innanen
(2015) showed that performing the prediction in the tau-p domain reduced the number of
artifacts in the resulting prediction. While the algorithm is limited to search for
combinations of sub-events in either time or depth, the domains in which the prediction is
calculated can vary quite widely.

One such domain is the wavenumber-time domain, this paper will review the work
presented by Innanen (2015) on internal multiple prediction in the time domain. We will
then discuss the implementation of the algorithm in the wavenumber time domain, and
provide a synthetic prediction example.

WAVENUMBER-TIME DOMAIN PREDICTION

Let 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) represent a single split-spread shot record, over 1.5D laterally homogenous
and isotropic medium, with 𝑡𝑡 being time and 𝑥𝑥𝑔𝑔 being the geophone locations. Since the
inverse scattering series approach to internal multiple prediction searches through the
dataset in an automatic way, and combines subevents obeying a lower-higher-lower
relationship, it is important that the data is pre-processed prior to the prediction phase. In
particular, it is important the data is noise free (although it is not required), the data is also
assumed to have all ghosts, surface related multiples, and direct arrivals removed. Although
it is helpful to deconvolve the data it is not always required, especially in the case of
synthetics. The original formula presented by Weglein et al. (1997) after reduction to the
1.5D case is:

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧�∞
−∞ ∫ 𝑑𝑑𝑧𝑧′𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧

′
𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧′�𝑧𝑧−𝜖𝜖

−∞

 × ∫ 𝑑𝑑𝑑𝑑′′𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧′′𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑧𝑧′′)∞
𝑧𝑧′+𝜖𝜖 (1)

where 𝑘𝑘𝑔𝑔 is the Fourier conjugate of the geophone location 𝑥𝑥𝑔𝑔, 𝑧𝑧 is the pseudo-depth, and
𝜖𝜖 is a search limiting parameter that enforces a minimum separation distance between
events that may be combined. Replacing 𝑧𝑧 with 𝑡𝑡 and 𝑏𝑏1(𝑘𝑘𝑔𝑔,𝜔𝜔) with 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) has no effect
on equation (1). Then letting 𝐷𝐷(𝑘𝑘𝑔𝑔, 𝑡𝑡) be the Fourier transform of 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡), we arrive at the
formula presented by Innanen (2015). Beginning with

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖ω𝑡𝑡S�𝑘𝑘𝑔𝑔, 𝑡𝑡�∞
−∞ ∫ 𝑑𝑑𝑡𝑡′𝑒𝑒−𝑖𝑖ω𝑡𝑡

′
𝑆𝑆�𝑘𝑘𝑔𝑔, 𝑡𝑡′�𝑡𝑡−𝜖𝜖

−∞

 × ∫ 𝑑𝑑𝑑𝑑′′𝑒𝑒𝑖𝑖ω𝑡𝑡′′S(𝑘𝑘𝑔𝑔, 𝑡𝑡′′)∞
𝑡𝑡′+𝜖𝜖 (2)

and recognizing the products of the integral as partial convolutions and cross-correlations
over time, it can be shown that equation (2) can be written in the time domain as:

1.5D internal multiple prediction

 CREWES Research Report — Volume 28 (2016) 3

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔, 𝑡𝑡� = ∫ 𝑑𝑑𝑑𝑑′𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′𝑆𝑆�𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡′′�𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡′′)𝛽𝛽(𝑡𝑡)
𝛼𝛼(𝑡𝑡,𝑡𝑡′)

∞
−∞ (3)

where,

 𝛼𝛼(𝑡𝑡, 𝑡𝑡′) = 𝑡𝑡′ − (𝑡𝑡 − 𝜖𝜖)

 𝛽𝛽(𝑡𝑡) = 𝑡𝑡 − 𝜖𝜖 (4)
Equation (3) represents the wavenumber-time domain formula as presented by Innanen

(2015), equation (4) evokes the limits on the convolution integral to restrict the
combination of subevents to a lower-higher-lower relationship. Innanen (2015) produces a
mathematical proof of how to transform equation (2) into equation (3).

The Masking Operator
Equation (3) represents a partial convolution, followed by a correlation of the input data.

The limits on the second integral of equation (3) can be replaced through the use of a
masking operator.

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔, 𝑡𝑡� = ∫ 𝑑𝑑𝑑𝑑′𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′[𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′)𝑆𝑆�𝑘𝑘𝑔𝑔, 𝑡𝑡′ − 𝑡𝑡′′�𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡′′)∞
−∞

∞
−∞ (5)

The masking operator “O” consists of two Heaviside step functions that act as the
integration limits.

 𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′) = 𝐻𝐻[𝑡𝑡′′ − 𝛼𝛼(𝑡𝑡, 𝑡𝑡′)]𝐻𝐻[𝛽𝛽(𝑡𝑡) − 𝑡𝑡′′] (6)

This masking operator works to remove contributions from the convolution for 𝑡𝑡" values
less than 𝛼𝛼(𝑡𝑡, 𝑡𝑡′) and 𝑡𝑡′′ values above 𝛽𝛽(𝑡𝑡). Both of these regions represent violations of
the lower-higher-lower relationship, and any values within them must be suppressed.

In matrix notation equation (5) becomes:

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔, 𝑡𝑡� = 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ (𝑂𝑂 ∘ 𝐶𝐶𝐶𝐶𝐶𝐶) ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (7)

where 𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶, and 𝑂𝑂 are the cross correlation matrix of the trace, the convolution matrix
of the trace, and the masking operator matrix respectively, and " ∘ " represents the
Hadamard product. Letting the x-coordinate and the y-coordinate of the masking matrix be
𝑡𝑡′′ and 𝑡𝑡′ respectively, then the limit 𝑡𝑡′′ = 𝑡𝑡 − 𝜖𝜖 becomes a vertical line in the masking
matrix, and the limit 𝑡𝑡′′ = 𝑡𝑡′ − (𝑡𝑡 − 𝜖𝜖) becomes a sloped line. Figure 1 shows a schematic
diagram of what the masking matrix looks like, the black regions in figure 1 represent
regions of ones, or in other words pass regions, the white regions are regions of zeros, or
rejection areas. It can be seen from figure one that the matrix acts as the integration limits
rejecting values for which 𝑡𝑡′′ > 𝑡𝑡 − 𝜖𝜖 and 𝑡𝑡" < 𝑡𝑡′ − (𝑡𝑡 − 𝜖𝜖). Figure 1 also shows that as
the algorithm searches through more of the data, the pass region grows, and the reject
region shrinks. When the masking matrix is multiplied by the convolution matrix using the
Hadamard product, the convolution becomes a partial convolution over the pass region.
Each time sample of the prediction can be represented as:

 𝐼𝐼𝐼𝐼𝑘𝑘𝑘𝑘�𝑘𝑘𝑔𝑔, 𝑡𝑡(𝑗𝑗)� = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗, :) ∙ (𝑂𝑂(𝑡𝑡(𝑗𝑗), 𝜖𝜖) ∘ 𝐶𝐶𝐶𝐶𝐶𝐶) ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (8)

Equation (8) is then repeated for every value of 𝑘𝑘𝑔𝑔.

Eaid and Innanen

4 CREWES Research Report — Volume 28 (2016)

FIG. 1. Schematic diagram of the masking matrix and how it grows with time

PREDICTION IN PYTHON
Data Preparation

The first step for predicting internal multiples is to prepare the data so that they may be
used in our desired domain. For some prediction domains this process can involve multiple
steps, but in the wavenumber-time domain this is a fairly straightforward process. We
assume the data takes the form of a single shot gather of the form 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) where 𝑥𝑥𝑔𝑔 is a
vector of geophone locations and 𝑡𝑡 is the time vector. Reviewing equation (2) the input
data to the algorithm must take the form 𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡), since 𝑘𝑘𝑔𝑔 is the Fourier conjugate of 𝑥𝑥𝑔𝑔
the data can simply be prepared through the use of a Fourier transform over 𝑥𝑥𝑔𝑔.

 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) → 𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡) (9)

Preparation of time vectors and matrices
Before internal multiple prediction can take place the matrices of equation (7) must first

be created. In order to build the matrices, it is important to first initialize time vectors,
corresponding to the matrix sizes. We will require a vector that is twice the size of our
input trace, and is zero padded for negative times, we will call this vector 𝑡𝑡𝑝𝑝1. In addition,
we also require a vector that has size, (2𝑡𝑡𝑝𝑝1 − 1, 1) for use in the convolution we will call
this (𝑡𝑡𝑝𝑝2), and another that has size (3𝑡𝑡𝑝𝑝1 − 2, 1) for use in the correlation matrix called
(𝑡𝑡𝑜𝑜). All of these vectors are created using a Python function called imtimevectors. The
zero padded trace will be used as an input to the convolution matrix, giving it a size of
(2𝑡𝑡𝑝𝑝1 − 1, 𝑡𝑡𝑝𝑝1). This zero padded trace is then time reversed and used as an input for the
correlation matrix, giving it a size of (3𝑡𝑡𝑝𝑝𝑝𝑝 − 2, 𝑡𝑡𝑝𝑝2). Both the convolution and correlation
matrices are constructed using the Toeplitz function in the linear algebra Python library
linalg contained in scipy.

The masking matrix
Creation of the masking matrix takes place inside a created function called createMask.

This function takes two inputs, one called 𝑁𝑁𝑡𝑡, and another called 𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 𝑁𝑁𝑡𝑡 is used to

1.5D internal multiple prediction

 CREWES Research Report — Volume 28 (2016) 5

initialize the size of the mask matrix, since the masking matrix is multiplied by the
convolution matrix using the Hadamard product, both matrices must have the same size.
Therefore, in our case 𝑁𝑁𝑡𝑡 must be 𝑡𝑡𝑝𝑝1 so that the mask matrix has a size (2𝑡𝑡𝑝𝑝1 − 1, 𝑡𝑡𝑝𝑝1).
The function input, 𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 takes the form of (𝑡𝑡 − 𝜖𝜖), from figure 1 it can be seen that when
𝑡𝑡′′ is zero, 𝑡𝑡′ = 𝑡𝑡 − 𝜖𝜖. Therefore, the variable 𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, sets the limits for both the right
vertical line of figure 1, and the sloped line. A for loop is used to construct the limits for
the sloped line, for the first column of the masking matrix every value from the first row
to the row equating to (𝑡𝑡 − 𝜖𝜖) is given the value 1. The loop then updates the column
number by 1, and fills in one more row, in this way the sloped limit is created with a slope
of 1. The straight line limit can be realized by simply setting every column from the column
equating to (𝑡𝑡 − 𝜖𝜖) to the end of the matrix to zero. By setting up these two limits, the
reject and pass regions are initialized, for every prediction output the mask matrix grows
in size as 𝑡𝑡 increases.

 Table 1. Pseudocode for creating mask matrix in Python

Prediction

With the masking, convolution, and cross-correlation matrices initialized and created
the prediction phase may begin. Equation (8) is the mathematical formula that will be used
to carry out the prediction in Python. The problem can be made more computationally
efficient by limiting the 𝑘𝑘𝑔𝑔 values over which the algorithm occurs, in this example the
algorithm computed for every positive value of 𝑘𝑘𝑔𝑔, predictions for the negative values will
be filled in through the use of conjugate symmetry. For every chosen value of 𝑘𝑘𝑔𝑔 the
algorithm will run through the trace for every time value, and combine subevents that obey
the lower-higher-lower relationship. The start time will be initialized as 3𝑁𝑁𝑡𝑡 and the end
time will be the length of 𝑡𝑡𝑝𝑝2 due to the size of the cross-correlation matrix. At every 𝑗𝑗𝑡𝑡ℎ
time sample, a new masking matrix is created, multiplied by the convolution matrix using
the Hadamard product, and then multiplied by the row of the cross-correlation matrix
relating to the 𝑗𝑗𝑡𝑡ℎ time sample; the product of which is then multiplied by the padded input
trace. Let b𝐾𝐾𝑔𝑔,𝑒𝑒𝐾𝐾𝑔𝑔 be the first and last wavenumbers to perform the prediction on
respectively. After the prediction we only need the last samples from 3Nt to the end of the
vector, since our start time for the loop began at 3Nt.

For ii in range(1,𝑡𝑡𝑝𝑝1):
u[1:𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+ii,ii]=np.ones(np.size(u[1:𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖]))
END

 u[:,𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑡𝑡𝑝𝑝1] = 0

return u

Eaid and Innanen

6 CREWES Research Report — Volume 28 (2016)

Table 2. Pseudocode for the prediction of internal multiples in the wavenumber-time domain

Complex conjugation and inverse Fourier transform
The last step after the prediction phase is to fill in the negative wavenumber

components, and then inverse Fourier transform the data to return it to the offset-time
domain. The second half of the vector contains the positive wavenumbers, since the
wavenumbers were shifted to center the wavenumber vector at zero. Therefore, the first
half of the vector is to be filled in with the complex conjugates of the positive wavenumber
predictions. The wavenumbers are then shifted back so that zero occurs at the start of the
vector, this can be achieved with the Python numpy function np.fft.ifftshift. Once this has
occurred, np.fft.ifft can be used to inverse Fourier transform the data back to the offset-time
domain.

SYNTHETIC EXAMPLE
For 1.5D internal multiple prediction it is assumed that the input data is a single shot

record acquired over a layered, horizontally homogenous geology. Figure 2 below shows
the velocity model that was used to generate the synthetic data. This velocity model
provides a simple example of the powerful nature of the inverse scattering series prediction
algorithm.

Figure 3, shows the data that was created from the velocity model in figure 2. This data
was created using the CREWES acoustic finite difference algorithm afd_shotrec contained
in the CREWES toolbox. The data has had the direct arrival removed, and was given
absorbing boundaries to limit the effects of ghosts and surface multiples. The first event
seen is the primary from the first interface, while the second event is the primary from the
second interface. The event with a zero-offset traveltime near 1.6s is a first order internal
multiple, while the event with a traveltime of approximately 2s is a second order internal
multiple.

Figure 4, shows the result of Fourier transform over 𝑥𝑥𝑔𝑔, the result of figure 4 is the
image representation of 𝑆𝑆(𝑘𝑘𝑔𝑔, 𝑡𝑡). Figure 5, shows the result of carrying out the outlined
prediction algorithm contained in table 2.

For ii in range(b𝐾𝐾𝑔𝑔,𝑒𝑒𝐾𝐾𝑔𝑔):
trace = S(: , 𝑁𝑁𝑔𝑔

2
+ 𝑖𝑖𝑖𝑖)

traceP1=np.concatenate([pad,trace])
CNV = convmtx(traceP1, len(tP1))
traceP1R = np.flipud(traceP1)
CRR = convmtx(traceP1R, len(tP2))

 For jj in range(3Nt:len(𝑡𝑡𝑝𝑝2))
iie = ii-3Nt
tINDEX = Nt - epsilon[iie]+iie
mask = alberta(len(tP1), tINDEX)
 prediction[ii] = (CRR[ii,:], (mask*CNV, traceP1))

1.5D internal multiple prediction

 CREWES Research Report — Volume 28 (2016) 7

FIG. 2. Velocity model used in the 1.5D wavenumber-time domain prediction

FIG. 3. Synthetic data set used in the 1.5D wavenumber-time prediction algorithm.

Eaid and Innanen

8 CREWES Research Report — Volume 28 (2016)

FIG. 4. Synthetic data after transformation to the wavenumber-time domain

FIG. 5. Data from figure 3 (left), and the resulting internal multiple prediction (right).

CONCLUSION
Weglein et al. (1997) introduced a method of internal multiple prediction based on the

inverse scattering series, that was fully data. The original algorithm derived by Weglein et
al. performed the prediction the wavenumber-frequency domain. Since then the CREWES
project has investigated inverse scattering internal multiple prediction in numerous
domains in order to investigate of an optimal prediction domain exists. One such domain

1.5D internal multiple prediction

 CREWES Research Report — Volume 28 (2016) 9

is the wavenumber-time domain. Innanen (2015) presented the 1D time domain prediction
algorithm as well as extensions to the wavenumber-time, and offset-time domains. This
work expanded on the work presented by Innanen (2015), by explaining how to implement
the algorithm within the Python programming language. A synthetic example was then
shown to provide a simple demonstration of how the algorithm performs.

Figure 5 shows the input data created from the velocity model in figure 3, as well as the
resulting prediction. Figure 5 shows that the prediction algorithm originally presented by
Innanen, and explained in further detail in this paper, accurately predicts the traveltime,
and approximately predicts the amplitude of the two internal multiples shown.

ACKNOWLEDGEMENTS
I would like to thank my supervisor Dr. Kristopher Innanen for his support and

guidance. The authors also thank the CREWES sponsors and NSERC through grant
CRDPJ 461179-13 for supporting this work.

REFERENCES
Alam, A. and Austin, J., 1981, Multiple attenuation using slant stacks: Tech. Rep., Western Geophysical

Company.

Berkhout, A. J., 1999, Multiple removal based on the feedback model: The Leading Edge, 18, 127–131.

Innanen, K., 2015, Time domain internal multiple prediction: CREWES Research Report, 27, 30.1-30.14.

Jakubowicz, H., 1998, Wave equation prediction and removal of interbed multiples: Soc. Expl. Geophys.

Internat. Exp. and 68th Annual Mtg., 1527-1530.

Sun, J., Innanen, K., 2014, 1.5D internal multiple prediction in the plane wave domain: CREWES Research

Report, 26, 74.1-74.11.

Treitel, S., Gutowski, P., Wagner, D. E., 1982, Plane wave decomposition of seismograms: Geophysics, 47,

1372-1401.

Weglein, A. B., Gasparotto, F. A., Carvalho, P. M., Stolt, R. H., 1997, An inverse scattering series method

for attenuating multiples in seismic reflection data: Geophysics, 62, 1975-1989.

Yilmaz, O., 2001, Seismic data analysis, Soc. Expl. Geophys.

	1.5D internal multiple prediction in the wavenumber-time domain with implementation in Python
	Abstract
	Introduction
	Wavenumber-Time Domain Prediction
	The Masking Operator

	Prediction in python
	Data Preparation
	Preparation of time vectors and matrices
	The masking matrix
	Prediction
	Complex conjugation and inverse Fourier transform

	Synthetic Example
	Conclusion
	Acknowledgements
	references

