
Internal multiple prediction in MatLab

CREWES Research Report — Volume 28 (2016) 1

1D and 1.5D internal multiple prediction in MatLab

Matthew Eaid, Jian Sun, Scott Keating and Kris Innanen

ABSTRACT
An inverse scattering series approach to internal multiple prediction was developed by

Weglein et al. in the late 1990’s. Their method exploited the idea that all multiples can be
constructed from a combination of primary events and other multiples, in a fully data driven
manner (Weglein et al., 1997). Innanen (2015) presented the mathematics behind the
inverse scattering series approach in the time domain. Sun and Innanen (2014) show the
prediction algorithm in the planewave domain, while Pan and Innanen (2013) explore the
prediction in the frequency-wavenumber domain. This paper is meant as a companion to
the 2016 CREWES MatLab toolbox release, it will summarize the key ideas behind an
inverse scattering series approach to internal multiple prediction in each domain listed
above. The implementation of each algorithm will be reviewed and synthetic examples will
be provided. Adaptive subtraction is also reviewed with synthetic examples.

INTRODUCTION
In the late 1990’s Weglein et al. presented a fully data driven method for attenuating

internal multiples. Their idea focuses around the fact that the traveltime of any multiple is
simply a combination of traveltimes from the primaries that make up the multiple. The
original algorithm derived by Weglein et al., (1997) predicted multiples in the frequency-
wavenumber domain. Their algorithm searches for combinations of subevents containing
reflections that obey a deeper-shallower-deeper relationship and then combines these
events to predict internal multiples.

Although it is required that the algorithm searches for subevents in time or depth, the
domains in which the prediction occurs can vary widely. In recent years it has been a
budding research interest of CREWES to explore internal multiple prediction in various
domains to optimize the environment in which multiples are predicted.

Pan and Innanen (2013) explored internal multiple prediction in the frequency-
wavenumber domain. Sun and Innanen (2014) adapted the algorithm for the planewave
domain, while Innanen (2015) examined a time domain version of internal multiple
prediction. As will be discussed later, while internal multiple prediction is well tuned to
predicting the traveltime of multiples, the raw predictions contain phase and amplitude
errors. Keating et al., (2015) presented a method of adaptive subtraction to deal with these
errors. Their method creates a filter based on the optimization of a hybrid L1/L2 norm,
when this filter is convolved with the internal multiple trace the phase and amplitude errors
are corrected for in a least squares approach.

This paper will begin with a review of the algorithm presented by Weglein et al., and
show how it can be reduced to the 1.5D wavenumber-frequency and 1D frequency domain
versions of the algorithm. Adaption of the algorithm to other domains will also be
discussed. Finally, a review of adaptive subtraction will be given, along with a discussion
of how to implement each in MatLab.

Eaid et al.

2 CREWES Research Report — Volume 28 (2016)

 REVIEW: INTERNAL MULTIPLES PREDICTION
The inverse scattering series approach at its core is a data driven method of combining

subevents in the data in a such a way that internal multiples are predicted. In one dimension
it is easy to show that any first order internal multiple will arrive at the same time as the
sum of the traveltimes of two primaries, minus the traveltime of a third primary. By
combining traveltimes in this way, internal multiples can be predicted.

In two dimensions the prediction algorithm (Weglein et al., 1997) is:

 𝑏𝑏3�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔� = 1
(2𝜋𝜋)2 ∬ 𝑑𝑑𝑑𝑑1𝑒𝑒−𝑖𝑖𝑞𝑞1(𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠)𝑑𝑑𝑑𝑑2𝑒𝑒𝑖𝑖𝑞𝑞2(𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠)∞

−∞ × 𝜑𝜑 (1)

where

 𝜑𝜑�𝑘𝑘𝑔𝑔,𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑠𝑠�𝜖𝜖� = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖�𝑞𝑞𝑔𝑔+𝑞𝑞1�𝑧𝑧𝑏𝑏1�𝑘𝑘𝑔𝑔,−𝑘𝑘1, 𝑧𝑧�

 × ∫ 𝑑𝑑𝑧𝑧′𝑧𝑧−𝜖𝜖
−∞ 𝑒𝑒−𝑖𝑖(𝑞𝑞1+𝑞𝑞2)𝑧𝑧′𝑏𝑏1(𝑘𝑘1,−𝑘𝑘2, 𝑧𝑧′)∫ 𝑑𝑑𝑧𝑧′′∞

𝑧𝑧′+𝜖𝜖 𝑒𝑒𝑖𝑖(𝑞𝑞2+𝑞𝑞𝑠𝑠)𝑧𝑧′′𝑏𝑏1(𝑘𝑘2,−𝑘𝑘𝑠𝑠, 𝑧𝑧′′) (2)

and where

 𝑞𝑞𝑥𝑥 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 − 𝑘𝑘𝑥𝑥2𝑐𝑐𝑜𝑜2

𝜔𝜔2 (3)

Equation (3) represents the lateral wavenumbers pertaining to the vertical wavenumbers
and the reference velocity, 𝑐𝑐𝑜𝑜.

Preparation of data
Equation (2) shows that the inputs to the integration is a prepared form of the data and

not the acquired data itself. In the case of the wavenumber-frequency prediction, the data
is prepared in the following manner. First, the data is Fourier transformed over all three
variables.

 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑠𝑠, 𝑡𝑡) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔) (4)

Next, a change of variables is made from 𝜔𝜔 to 𝑘𝑘𝑧𝑧.

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝜔𝜔) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝑘𝑘𝑧𝑧) (5)

where 𝑘𝑘𝑧𝑧 = 𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑠𝑠 and

 𝑞𝑞𝑔𝑔 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2 , 𝑞𝑞𝑠𝑠 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 − 𝑘𝑘𝑠𝑠2𝑐𝑐𝑜𝑜2

𝜔𝜔2 (6)

the data is then scaled by an obliquity factor (Weglein et al., 2003).

 𝐵𝐵1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠, 𝑘𝑘𝑧𝑧� = −𝑖𝑖2 𝑞𝑞𝑠𝑠 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,𝑘𝑘𝑧𝑧) (7)

Finally, the data is inverse Fourier transformed over the 𝑘𝑘𝑧𝑧 variable

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 3

 𝐵𝐵1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠, 𝑘𝑘𝑧𝑧� → 𝑏𝑏1�𝑘𝑘𝑔𝑔,𝑘𝑘𝑠𝑠,ω� (8)

Equation (8) represents the input to equation (2), where the data has been prepared for
use in the wavenumber-frequency domain prediction. While the data is prepared in a
different manner for each prediction domain, the data preparation steps are fairly similar
in each domain. A brief description of data preparation will be given for each algorithm.

Reduction to 1D and 1.5D
The original algorithm presented by Weglein et al., reduces to its one dimensional form

when:

 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑠𝑠 = 0 (9)

Equation (9) represents a condition of normal incidence, equation (1) then reduces to,

 𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧𝑏𝑏1(𝑧𝑧)∫ 𝑑𝑑𝑧𝑧′𝑧𝑧−𝜖𝜖

−∞ 𝑒𝑒−𝑖𝑖2
𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′𝑏𝑏1(𝑧𝑧′)

 × ∫ 𝑑𝑑𝑑𝑑∞
𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′′𝑏𝑏1(𝑧𝑧′′) (10)

Comparing (10) to (1) it is obvious that the computational difficulty has greatly decreased.
In (1) 𝜑𝜑�𝑘𝑘𝑔𝑔,𝑘𝑘1,𝑘𝑘2,𝑘𝑘𝑠𝑠�𝜖𝜖� is computed for every 𝑘𝑘1,𝑘𝑘2 and summed, then this is repeated
for every pair of 𝑘𝑘𝑔𝑔 and 𝑘𝑘𝑠𝑠. In (10) the integration is carried out for every depth and then
repeated for every frequency. Equation (10) represents the 1D frequency form of the
inverse scattering internal multiple algorithm.

Equation (1) reduces to a 1.5D algorithm when,

 𝑘𝑘𝑔𝑔 = 𝑘𝑘𝑠𝑠 (11)

Equation (11) represents the case of horizontally layered strata. When the condition of
(11) is met, then (1) becomes,

𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = � 𝑑𝑑𝑑𝑑
∞

−∞

𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧� � 𝑑𝑑𝑧𝑧′
𝑧𝑧−𝜖𝜖

−∞

𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧′�

 × ∫ 𝑑𝑑𝑑𝑑∞
𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧′′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧′′� (12)

Equation (12) is similar to equation (10), however, it is repeated for every value of 𝑘𝑘𝑔𝑔
(trace).

1D FREQUENCY DOMAIN PREDICTION IN MATLAB
Input Data

For 1D internal multiple prediction it is assumed that a single normal incidence trace is
available from a one-dimensional earth. It is important when performing internal multiple
prediction that the data has been deghosted, that free surface multiples (FSM) have been
removed and that the direct arrivals have been muted. Since internal multiple prediction is
achieved by combining the traveltimes of subevents, if the data is not prepared in this way,
then the algorithm will predict artifacts arriving with traveltimes that are combinations of

Eaid et al.

4 CREWES Research Report — Volume 28 (2016)

the traveltime of the undesired events (ghosts, FSM, and direct arrivals), and the internal
multiples and primaries.

Preparation of input data
The preparation of data for the 1D frequency domain prediction is quite trivial. The first

step is to Fourier transform the normal incidence trace.

 𝑑𝑑�𝑥𝑥𝑔𝑔, 𝑡𝑡� = 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔) (13)

However, in the case of normal incidence 𝑘𝑘𝑔𝑔 = 0 and (13) reduces to 𝐷𝐷(𝜔𝜔). The
conversion is then made from frequency to wavenumber.

 𝑘𝑘𝑧𝑧 = 2𝜔𝜔
𝑐𝑐0

 (14)

Time must also be converted to psuedodepth in order to acquire the Fourier conjugate to
𝑘𝑘𝑧𝑧.

 𝑧𝑧 = 𝑐𝑐0𝑡𝑡
2

 (15)

where 𝑐𝑐0 is the reference velocity, which is 1500 m/s for marine surveys, and should be
taken as the velocity around the geophones in land applications.

Prediction of internal multiples
The role of the Heaviside step function

Although the 1D frequency domain prediction is already computationally efficient, the
algorithm can be improved through the use of an identity that makes use of the Heaviside
step function.

 � 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)∫ 𝑑𝑑𝑑𝑑′𝑔𝑔(𝑡𝑡′)𝑡𝑡
−∞

∞

−∞
= ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)∞

−∞ ∫ 𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞
−∞ (16)

where

 𝐻𝐻[𝑡𝑡 − 𝑡𝑡′] = �1, 𝑡𝑡 > 𝑡𝑡′
0, 𝑡𝑡′ > 𝑡𝑡 (17)

is the Heaviside step function, and works to replace the integration limits of (16).

 ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)∞
−∞ ∫ 𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞

−∞ = ∬ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′)∞
−∞ (18)

 ∬ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡′𝐻𝐻[𝑡𝑡 − 𝑡𝑡′]𝑔𝑔(𝑡𝑡′) = ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞

∞
−∞ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑[𝑡𝑡 − 𝑡𝑡′]𝑓𝑓(𝑡𝑡)∞

−∞ (19)

 ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑[𝑡𝑡 − 𝑡𝑡′]𝑓𝑓(𝑡𝑡)∞

−∞ = ∫ 𝑑𝑑𝑡𝑡′𝑔𝑔(𝑡𝑡′)∞
−∞ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)∞

𝑡𝑡′ (20)

By using the proof in equations (16-20), equation (10) reduces accordingly.

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 5

 𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖2

𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧𝑏𝑏1(𝑧𝑧) �∫ 𝑑𝑑𝑑𝑑∞

𝑧𝑧′+𝜖𝜖 ′′𝑒𝑒𝑖𝑖2
𝜔𝜔
𝑐𝑐𝑜𝑜
𝑧𝑧′′𝑏𝑏1(𝑧𝑧′′)�

2
 (21)

In equation (21), one of the three integrals has effectively been removed. Now only two
integrals have to be computed for every frequency, where the second integral is now
squared. The computational problem has now been greatly reduced. This will be especially
useful when the algorithms are expanded to 1.5 dimensions.

The prediction Integrals
Prediction of internal multiples in the 1D frequency domain case can be realized through

the use of two nested loops. The first loops over every positive 𝑘𝑘𝑧𝑧(𝑖𝑖𝑖𝑖) value, at every value
of 𝑘𝑘𝑧𝑧 the algorithm searches for subevents to combine, by searching through every depth
𝑧𝑧(𝑗𝑗𝑗𝑗).

Table 1. 1D Frequency domain prediction integral pseudocode

The first for loop loops through every wavenumber, for every wavenumber, the inner
for loop calculates the prediction integrals of (21) at every depth. The variables 𝑘𝑘𝑧𝑧𝐵𝐵 and
𝑘𝑘𝑧𝑧𝐸𝐸 represent the minimum and maximum wavenumbers respectively, while 𝑧𝑧𝑧𝑧 and 𝑧𝑧𝑧𝑧
represent the minimum and maximum depths to search through.

Synthetic example
Figure 1a shows the three interface velocity model used to create a zero offset, normal

incidence trace for use in the 1D frequency domain prediction algorithm. In figure 1b, the
reflectivity series containing all primaries and first order internal multiples for this velocity
model is illustrated. Note that the bottom layer has been treated as a basal half space. The
reflectivity series was created using the CREWES function makeTraceWithIm.m, this
function takes in the velocity model and then calculates, with transmission loses, the
reflectivity series and trace with all primaries and first order internal multiples.

For ii = kzB:kzE
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = exp (𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖) ∗ 𝑧𝑧;
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = exp (−𝑖𝑖 ∗ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖) ∗ 𝑧𝑧;

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏1𝑧𝑧.∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼;
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏1𝑧𝑧.∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼;

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝑧𝑧𝑧𝑧: 𝑧𝑧𝑧𝑧 − 𝜖𝜖
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝑧𝑧𝑧𝑧)�;

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2;
END

END

Eaid et al.

6 CREWES Research Report — Volume 28 (2016)

FIG. 1. Velocity model (left), normal incidence trace containing primaries and first order internal
multiples (right).

FIG. 2. Trace created by convolving reflectivity series with a 40 Hz minimum phase wavelet (top)
result of the 1D frequency domain internal multiple prediction (bottom). Red circles show arrival
time of primaries, while blue crosses show arrival time of first order internal multiples.

Figure 2a shows the trace created by convolving the reflectivity series with a 40 Hz
minimum phase wavelet. Figure 2b illustrates the result of the internal multiple prediction
using (21). Note that the red circles and blue crosses of 2a, and 2b illustrate the arrival
times of the primaries and first order internal multiples respectively.

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 7

The results of this synthetic example show that the internal multiple prediction scheme
of equation (21) is a very robust algorithm for the prediction of internal multiples on a
single normal incidence trace. Figure 2b shows that the internal multiples have been
predicted with correct traveltime but with erroneous amplitudes, in addition, none of the
primary energy has been predicted. These erroneous amplitudes are corrected through
adaptive subtraction, which will be discussed in a following section. The algorithm has
also predicted some ‘extra’ energy where no events appear to be. This is due to the fact that
the algorithm predicts multiples by combining subevents because the input data contained
primaries and first order internal multiples, these two types of events were combined and
second order internal multiples were predicted. Some of the energy predicted in figure 2b,
that does not align with a blue cross, can be interpreted to second order internal multiples.

1D TIME DOMAIN PREDICTION IN MATLAB
The requirements of the input data for time domain prediction are similar to those of the

frequency domain prediction. The major difference is that in the time domain prediction
algorithm there is not data preparation step, the prediction can simply be carried out on an
input trace, provided that trace is a normal incidence trace.

Internal multiple prediction in the time domain
It can be shown that the prediction algorithm used in free surface multiple elimination

(SRME), can be achieved through simple auto-convolution of the data. In order to extend
SRME to internal multiple prediction an autocorrelation step is introduced, in fact, equation
(10) can be visualized as partial auto-convolution, followed by an autocorrelation. Innanen
(2015) presents a formula for time domain internal multiple prediction with artifacts.

 𝐼𝐼𝐼𝐼(𝑡𝑡) + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∫ 𝑑𝑑𝑡𝑡′∞
−∞ 𝑠𝑠(𝑡𝑡′ − 𝑡𝑡)∫ 𝑑𝑑𝑡𝑡′′∞

−∞ 𝑠𝑠(𝑡𝑡′ − 𝑡𝑡′′)𝑠𝑠(𝑡𝑡′′) (22)

 The artifacts are a result of the fact that equation (22) contains a full convolution
followed by a correlation. In order to correctly predict the artifact free, internal multiples,
the convolution must be transformed into a partial convolution. Innanen (2015) shows that
this can be achieved through the use of a masking function.

 𝑂𝑂(𝑡𝑡, 𝑡𝑡′, 𝑡𝑡′′) = 𝐻𝐻[𝑡𝑡′′ − 𝛼𝛼(𝑡𝑡, 𝑡𝑡′)]𝐻𝐻[𝛽𝛽(𝑡𝑡) − 𝑡𝑡′′] (23)
where,

 𝛼𝛼(𝑡𝑡, 𝑡𝑡′) = 𝑡𝑡′ − (𝑡𝑡 − 𝜖𝜖2)
 𝛽𝛽(𝑡𝑡) = 𝑡𝑡 − 𝜖𝜖1 (24)
The mask function invokes limits on the convolution that force the algorithm to combine

events obeying the lower-higher-lower relationship required for internal multiple
prediction. With this in mind the matrix form of the 1D time domain prediction (Innanen,
2015) becomes:

 𝐼𝐼𝐼𝐼�𝑡𝑡𝑗𝑗� = 𝑀𝑀𝑅𝑅(𝑗𝑗, :)�𝑂𝑂�𝑡𝑡𝑗𝑗 , 𝜖𝜖� ∙ 𝑀𝑀𝐶𝐶�𝑠𝑠 (25)

The masking function “O” is effectively blocking a portion of the convolution matrix
from being involved in the prediction. The portion of the convolution matrix included in
the prediction increases with time.

Eaid et al.

8 CREWES Research Report — Volume 28 (2016)

1D time domain prediction in MatLab
Step 1: Create time vectors

We start with the assumption that the input to the 1D time domain prediction is taken to
be a trace in the form of an (n x 1) column vector. This trace is then padded to include
negative times to create a (2n x 1) column vector. Thus the convolution and mask matrices
must have a size that is (2n-1 x n) and the correlation matrix must have a size that is (3n-2
x 2n-1). The output of the prediction algorithm will, therefore, be a (3n-2 x 1) column
vector. With this in mind, the first step is to create time vectors to aid in the initialization
of the correlation and convolution matrices. Three time vectors need to be created, one that
is twice the length of the input time, and is to be padded with negative times (𝑡𝑡𝑝𝑝1), the
second will have a size (2𝑡𝑡𝑝𝑝1 − 1) and will be used to create the trace used in the
convolution (𝑡𝑡𝑝𝑝2). The third time vector will have a size (3𝑡𝑡𝑝𝑝1 − 2), this vector will be
used to initialize the trace in the correlation matrix (𝑡𝑡𝑜𝑜).

Step 2: Initialize convolution and correlation matrices

The first step is to create a trace that is the same length as 𝑡𝑡𝑝𝑝1 that is padded with zeros
for negative times (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1), and a time reversed version of this trace (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1𝑅𝑅). These
two traces (𝑡𝑡𝑡𝑡𝑎𝑎𝑐𝑐𝑐𝑐𝑝𝑝1, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1𝑅𝑅) will be used as the input to build the convolution and
correlation matrices respectively. Figure 3 shows a schematic of how steps 1 and 2 are
realized in practice. It is important to note that in figure 3, the mask matrix and the
convolution matrix (CNV) are multiplied together element wise. In the three middle
matrices, the white areas indicate regions of zeros, whereas the gray areas indicate areas of
non-zero data. The convolution matrix is built to have a number of columns equal to the
length of 𝑡𝑡𝑝𝑝1, while the correlation matrix has a number of columns equal to the length of
𝑡𝑡𝑝𝑝2.

FIG. 3. Schematic of matrix multiplication for 1D time domain prediction

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 9

Step 3: The masking matrix
The masking matrix enforces the limits on the integration such that the lower-higher-

lower relationship is satisfied. If the x coordinate of the mask matrix is taken to be t” then
the limit invoked by the second step function of (23) becomes a vertical straight line. When
the y coordinate is taken to be t’, then the limit invoked by the first step function of (23)
becomes a sloped straight line.

FIG. 4. Masking operator growth with time

In figure 4 the section shown in black is a region of unity, while the section in white
indicates a region of zeros. When multiplied by the convolution matrix the masking
operator restricts the portion of the convolution that contributes to the prediction, which is
the portion obeying a lower-higher-lower relationship. Figure 4 shows how the masking
operator grows with increasing time.

The masking operator is created using the CREWES function makeMask.m, as its input
it takes in a tIndex and the length of the 𝑡𝑡𝑝𝑝1 time vector Nt. The first input tIndex is
equivalent to t(j) of figure 4, tIndex starts at a value equal to the length of the input trace
minus the value of epsilon, and increases by 1 for each time step. The second input Nt is
equivalent to the length of 𝑡𝑡𝑝𝑝1. Construction of the masking operator takes place within a
for loop, for the first column of the mask matrix every value from the first row up until the
row defined by tIndex is initialized to one. Then with every iteration of the for loop, the
range of ones is extended by one row, and one column, creating a slanted line with a slope
of one. This step is forming the condition of 𝑡𝑡" = 𝑡𝑡′ − (𝑡𝑡(𝑗𝑗) − 𝜖𝜖) shown in figure 4. Outside
of the for loop, every value to the right of tIndex is then set to zero, creating the vertical
line limit.

Step 4: Prediction of internal multiples
As discussed previously internal multiple prediction in the time domain can be viewed

as partial convolution followed by correlation. In order to invoke a partial convolution, a
full convolution matrix of the zero padded trace is created, the Hadamard product of this
convolution matrix with the masking matrix creates the partial convolution matrix. The

Eaid et al.

10 CREWES Research Report — Volume 28 (2016)

Table 2. Pseudocode for creation of mask matrix

zero padded trace is then time reversed and used to create the cross correlation matrix.
Each row of the correlation matrix is then multiplied by the masked convolution matrix,
the result of which is multiplied by the input trace.

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, :)[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⊙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶](𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝1) (26)

Where (⨀) represents the Hadamard product. The prediction vector will have a length
of (3𝑡𝑡𝑝𝑝1 − 2), therefore it is important to set the final prediction to be equal to
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(3𝑁𝑁𝑁𝑁: 3𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁 − 1).

Synthetic Example
The requirements for the 1D time domain prediction are the same as for the 1D

frequency domain prediction. That is a single normal incidence trace is assumed as the
input to the algorithm. For consistency and simplicity, the same velocity model and input
of figure 1 will be utilized.

FIG. 5. Trace created by convolving reflectivity series with a 40 Hz minimum phase wavelet (top),
the result of the 1D time domain internal multiple prediction (bottom). Red circles show arrival time
of primaries, while blue crosses show arrival time of first order internal multiples.

For ii = 1:length(𝑡𝑡𝑝𝑝1)
mask(1:tIndex+ii-1,ii) = 1;

END

 mask(:,tIndex:length(𝑡𝑡𝑝𝑝1)) = 0;

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 11

Comparing figure 5 to figure 2 the 1D time and frequency domain predictions produce
comparable results. One noticeable difference is that the time domain prediction has
predicted much smaller amplitudes than the frequency domain prediction.

 1.5D FREQUENCY WAVENUMBER PREDICTION IN MATLAB
Internal multiple prediction in the frequency wavenumber domain

 Equation (12) above represents the 1.5D equation for the prediction of multiples in the
wavenumber-frequency domain. By letting 𝑘𝑘𝑧𝑧 = 2𝑞𝑞𝑔𝑔 and making use of the identity in
(20), equation (12) is transformed.

 𝑏𝑏3�𝑘𝑘𝑔𝑔,𝜔𝜔� = ∫ 𝑑𝑑𝑑𝑑′∞
−∞ 𝑒𝑒−𝑖𝑖2𝑞𝑞𝑔𝑔𝑧𝑧′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧′��∫ 𝑑𝑑𝑧𝑧′′∞

𝑧𝑧′+𝜖𝜖 𝑒𝑒𝑖𝑖2𝑞𝑞𝑔𝑔𝑧𝑧′′𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧′′��
2
 (27)

where,

 𝑞𝑞𝑔𝑔 = 𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2 (28)

Input Data
For 1.5D internal multiple prediction algorithms, the input data is assumed to be a split

spread shot record, over a horizontally stratified geology. It is also assumed that the shot
record has been deghosted, and has had free surface multiples and direct arrivals removed.
Although not imperative for synthetic datasets, the application of deconvolution prior to
prediction is a helpful step, in this case, deconvolution was not applied.

FIG. 6. Velocity model (left) and split spread shot record (right).

Figure 6 shows the velocity model that will be used for the 1.5D predictions and the
resulting shot record created by the CREWES finite difference algorithm.

Eaid et al.

12 CREWES Research Report — Volume 28 (2016)

Data preparation
Step 1: 2D Fourier Transform

The input data as seen by figure 6 is acquired with the coordinates of horizontal
geophone location (𝑥𝑥𝑔𝑔) and the vertical coordinate of time. Equation (12) shows that we
require the data in the (𝑘𝑘𝑔𝑔, 𝑧𝑧) domain, thus the first step in the data preparation phase is to
perform a two dimensional Fourier transform taking the data to the wavenumber-frequency
domain.

 𝑑𝑑�𝑥𝑥𝑔𝑔, 𝑡𝑡� → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔) (29)

Step 2: Change of variables 𝜔𝜔 → 𝑘𝑘𝑧𝑧

The next step that is performed is to make a change of variables from 𝜔𝜔 to 𝑘𝑘𝑧𝑧.

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝜔𝜔) → 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) (30)

Step 2a: Resampling

Since 𝑘𝑘𝑧𝑧 is equal to twice 𝑞𝑞𝑔𝑔, it is easy to see through equation (28) that this change of
variables is not a linear operation. Since this change of variables is non-linear, a simple
swap of variables would result in an irregularly sampled (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid. To overcome this
hurdle, a regular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid is computed, and then the irregular frequency values that
adhere to this new grid are computed. The data is then linearly interpolated to fit the regular
(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid.

Starting with,

 𝑘𝑘𝑧𝑧 = 2𝑞𝑞𝑔𝑔 = 2𝜔𝜔
𝑐𝑐𝑜𝑜
�1 −

𝑘𝑘𝑔𝑔2𝑐𝑐𝑜𝑜2

𝜔𝜔2 (31)

solving for 𝜔𝜔 and making the conversion to frequency, the irregular frequency values are,

 𝑓𝑓 = 𝑐𝑐𝑜𝑜𝑘𝑘𝑧𝑧
2𝜋𝜋

�1 +
𝑘𝑘𝑔𝑔2

𝑘𝑘𝑧𝑧2
 (32)

Using these irregular frequency values, the data on the irregular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid, is linearly
interpolated onto a regular (𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) grid.

 𝑦𝑦−𝑦𝑦𝐿𝐿
𝑥𝑥−𝑥𝑥𝐿𝐿

= 𝑦𝑦𝐻𝐻−𝑦𝑦𝐿𝐿
𝑥𝑥𝐻𝐻−𝑥𝑥𝐿𝐿

 (33)

Equation (33) represents the standard linear interpolation formula, changing the
placeholder variables to the variables of interest,

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿

 (34)

Solving for the interpolated data,

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 13

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿) �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿

� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 (35)

Equation (35) is carried out for every (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧), the term to the left of the addition must be
computed for both the real and imaginary portions of the data.

Table 3. Pseudocode for the resampling of data to a regular grid.

Step 3: Data Scaling

The data are then scaled by the obliquity factor −𝑖𝑖2𝑞𝑞𝑠𝑠 due to the fact that the 1.5D
internal multiple prediction is basically an un-collapsed Stolt migration (Weglein et al.,
2003).

 𝐷𝐷�𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧� = −2𝑖𝑖𝑞𝑞𝑠𝑠𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) (36)

Step 4: Inverse Fourier transform
The last step in the data preparation phase is to inverse Fourier transform the data over

the 𝑘𝑘𝑧𝑧 variable.

 𝐷𝐷(𝑘𝑘𝑔𝑔,𝑘𝑘𝑧𝑧) → 𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧� (37)

Figure 7 below shows the result of performing the four data preparation steps on the data
in figure 6 (right).

Internal multiple prediction
Internal multiple prediction in 1.5 dimensions is very similar to the prediction in 1

dimension, except the prediction integral is repeated over a given variable. In this case, the
prediction is carried out for every positive lateral wavenumber.

𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑁𝑁/2 + 2:𝑁𝑁𝑁𝑁 − 1

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝑁𝑁𝑧𝑧 2⁄ + 2:𝑁𝑁𝑧𝑧 − 1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗𝑗𝑗, 𝑖𝑖𝑖𝑖)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓((𝑓𝑓 < 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑑𝑑𝑑𝑑)&((𝑓𝑓 > 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑑𝑑𝑑𝑑))
indexLow = index(1);

indexHigh = max(index)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ, 𝑖𝑖𝑖𝑖)
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ)

data(jj,ii) =(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿) �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐻𝐻−𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎𝐿𝐿
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐿𝐿

� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐿𝐿
END

END

Eaid et al.

14 CREWES Research Report — Volume 28 (2016)

FIG. 7. Prepared input data 𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑧𝑧) to be used in the 1.5D wavenumber frequency internal multiple
prediction algorithm (left), same data plotted against vector index (right).

Table 4. Frequency wavenumber prediction in pseudocode

𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑘𝑘𝑘𝑘: 𝑘𝑘𝑘𝑘𝑘𝑘
𝐹𝐹 = 𝑘𝑘𝑘𝑘(𝑖𝑖𝑖𝑖)2𝑐𝑐𝑜𝑜2./𝜔𝜔.2
𝑞𝑞𝑔𝑔 = (𝜔𝜔/𝑐𝑐𝑜𝑜).∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝐹𝐹)

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝜔𝜔𝜔𝜔:𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼 = 𝑖𝑖 ∗ 2𝑞𝑞𝑔𝑔(𝑗𝑗𝑗𝑗) ∗ 𝑧𝑧;
𝐼𝐼𝐼𝐼 = −𝑖𝑖 ∗ 2𝑞𝑞𝑔𝑔(𝑗𝑗𝑗𝑗) ∗ 𝑧𝑧;
𝐼𝐼1 = b1(: , ii) ∗ exp (𝐼𝐼𝐼𝐼);
𝐼𝐼2 = b1(: , ii) ∗ exp (𝐼𝐼𝐼𝐼);

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘 = 𝑧𝑧𝑧𝑧: 𝑧𝑧𝑧𝑧
𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐼𝐼1(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝑧𝑧𝑧𝑧)�;
𝑆𝑆 = 𝑑𝑑𝑑𝑑 ∗ 𝑆𝑆;
𝑃𝑃 = 𝑃𝑃 + 𝐼𝐼2(𝑘𝑘𝑘𝑘) ∗ 𝑆𝑆 ∗ 𝑆𝑆;
END

 𝑃𝑃 = 𝑃𝑃 ∗ 𝑑𝑑𝑑𝑑;
END

END

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 15

Table 4 shows the prediction algorithm in pseudocode, 𝑘𝑘𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘𝑘𝑘,𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔, 𝑧𝑧𝑧𝑧,𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑧𝑧,
represent the integration limits for the wavenumber, angular frequency and depth
respectively. As seen in figure 7, it is only necessary to integrate over depths and
wavenumbers where meaningful data exists, thus by carefully selecting
𝑘𝑘𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘𝑘𝑘, 𝑧𝑧𝑧𝑧, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑧𝑧 computational efficiency can be improved. In table 4, “S” takes
care of the integral inside the square brackets of equation 27, while I2 takes care of the
second integral.

FIG. 8. Input data (left), the result of the prediction using pseudocode in table 4 (right). The blue
dashed lines indicate the zero offset travel time of the two primary events. The red dashed lines
indicate the zero offset travel time of a first order internal multiple, and a second order internal
multiple.

Table 4 above shows the pseudocode representation of the 1.5D internal multiple
prediction algorithm in the wavenumber frequency domain. Figure 8 shows the results of
applying this pseudo code to the prepared data of figure 7. The algorithm has predicted the
multiples at the correct traveltimes, again the amplitudes can be corrected by employing
adaptive subtraction to the prediction results.

 1.5D TAU-P PREDICTION IN MATLAB
Internal multiple prediction in the tau-p domain

 Coates and Weglein (1996) presented a planewave (tau-p) domain version of the
internal multiple prediction algorithm.

Eaid et al.

16 CREWES Research Report — Volume 28 (2016)

 𝑏𝑏3(𝑝𝑝, 𝜏𝜏) = ∫ 𝑑𝑑𝑑𝑑∞
−∞ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏1(𝑝𝑝, 𝜏𝜏)∫ 𝑑𝑑𝜏𝜏′𝜏𝜏−𝜖𝜖

−∞ 𝑒𝑒−𝑖𝑖𝑖𝑖𝜏𝜏′𝑏𝑏1(𝑝𝑝, 𝜏𝜏′)

 × ∫ 𝑑𝑑𝑑𝑑′∞
𝜏𝜏′+𝜖𝜖 ′𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖′′𝑏𝑏1(𝑝𝑝, 𝜏𝜏′′) (38)

Making use of the Heaviside step identity, (38) becomes,

 𝑏𝑏3(𝑝𝑝, 𝜏𝜏) = ∫ 𝑑𝑑𝑑𝑑′∞
−∞ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖′𝑏𝑏1(𝑝𝑝, 𝜏𝜏′)�∫ 𝑑𝑑𝜏𝜏′′∞

𝜏𝜏′+𝜖𝜖 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖′′𝑏𝑏1(𝑝𝑝, 𝜏𝜏′′)�
2
 (39)

The input data for the 1.5D tau-p prediction maintains the same assumptions as the
wavenumber-frequency prediction. The data in figure 6, will also serve as the input data in
the tau-p internal multiple prediction algorithm.

Data preparation
Step 1: Tau-p transform

The first step in preparing the data is performing a tau-p transform on the data. In this
study, the CREWES tool box MatLab function tptran.m is used, which performs the
transform in the frequency domain through a linear phase shift.

 𝑑𝑑(𝑥𝑥𝑔𝑔, 𝑡𝑡) → 𝐷𝐷(𝑝𝑝, 𝜏𝜏) (40)

Step 2: Fourier transform

The next step is to Fourier transform the data over the “𝜏𝜏” variable so that the data may
be scaled in a following step.

 𝐷𝐷(𝑝𝑝, 𝜏𝜏) → 𝐷𝐷(𝑝𝑝,𝜔𝜔) (41)
Step 3: Data scaling

The data is then scaled by an obliquity factor (Weglein et al., 2003),

 𝐷𝐷(𝑝𝑝,𝜔𝜔) = −𝑖𝑖2𝑞𝑞𝑠𝑠𝐷𝐷(𝑝𝑝,𝜔𝜔) (42)
Step 4: Inverse tau-p transform

The final step is to take the data back to the tau-p domain through the use of an inverse
tau-p transform. The CREWES toolbox function iptran.m is used to accomplish this.

 𝐷𝐷(𝑝𝑝,𝜔𝜔) → 𝑏𝑏1(𝑝𝑝, 𝜏𝜏) (43)
Figure 9 below shows the result of carrying out equations (40-43) on the shot record in

figure 6. It is important to note that in both figures 7 and 9 that only the positive horizontal
slowness and wavenumbers are used. In 1.5 dimensions the algorithms only need to be
calculated for positive values, the negative values can be filled in by conjugate symmetry,
greatly increasing the computational efficiency of the algorithm.

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 17

FIG. 9. Prepared input data 𝑏𝑏1(𝑝𝑝, 𝜏𝜏) to be used in the 1.5D tau-p internal multiple prediction
algorithm.

Internal multiple prediction
Internal multiple prediction in 1.5 dimensions is very similar to the prediction in 1

dimension, except the prediction integral is repeated over a given variable. In this case, the
prediction is carried out for every positive value of the horizontal slowness.

Table 5. Tau-p prediction in pseudocode

𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝:𝑝𝑝𝑝𝑝

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑗𝑗𝑗𝑗 = 𝜔𝜔𝜔𝜔:𝜔𝜔𝜔𝜔
𝐼𝐼𝐼𝐼 = 𝑖𝑖 ∗ 𝜔𝜔(𝑗𝑗𝑗𝑗) ∗ 𝜏𝜏;
𝐼𝐼𝐼𝐼 = −𝑖𝑖 ∗ 𝜔𝜔(𝑗𝑗𝑗𝑗) ∗ 𝜏𝜏;
𝐼𝐼1 = b1(: , ii) ∗ exp (𝐼𝐼𝐼𝐼);
𝐼𝐼2 = b1(: , ii) ∗ exp (𝐼𝐼𝐼𝐼);

 𝐹𝐹𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘 = 𝜏𝜏𝜏𝜏: 𝜏𝜏𝜏𝜏
𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝐼𝐼1(𝑘𝑘𝑘𝑘 + 𝜖𝜖: 𝜏𝜏𝜏𝜏)�;
𝑆𝑆 = 𝑑𝑑𝑑𝑑 ∗ 𝑆𝑆;
𝑃𝑃 = 𝑃𝑃 + 𝐼𝐼2(𝑘𝑘𝑘𝑘) ∗ 𝑆𝑆 ∗ 𝑆𝑆;
END

 𝑃𝑃 = 𝑃𝑃 ∗ 𝑑𝑑𝑑𝑑;
END

END

Table 5 shows the prediction algorithm in pseudocode, 𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔, 𝜏𝜏𝜏𝜏, 𝜏𝜏𝜏𝜏,
represent the integration limits for the horizontal slowness, angular frequency and
traveltime respectively. Once again 𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝, 𝜏𝜏𝜏𝜏,𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏𝜏𝜏 can be selected to improve the

Eaid et al.

18 CREWES Research Report — Volume 28 (2016)

computational efficiency. In table 5, “S” takes care of the integral inside the square
brackets of equation 39, while I2 takes care of the second integral.

Figure 10 shows the results of applying this pseudo code to the prepared data of figure
9. The algorithm has predicted the multiples at the correct traveltimes, again the amplitudes
can be corrected by employing adaptive subtraction to the prediction results.

FIG. 10. Input data (left), the result of the prediction using pseudocode in table 5 (right). The blue
dashed lines indicate the zero offset travel time of the two primary events. The red dashed lines
indicate the zero offset travel time of a first order internal multiple, and a second order internal
multiple.

ADAPTIVE SUBTRACTION
Inverse scattering series internal multiple prediction is a very robust algorithm for

accurately predicting the travel times of internal multiples. However, as seen in the
previous examples the prediction suffers from both amplitude and phase differences. Series
truncation, incomplete deconvolution of the source wavelet, noise, and residual ghosts all
contribute to the erroneous results. Adaptive subtraction methods work to correct this by
more accurately matching the prediction to the measured data. This hurdle is typically
overcome by convolving a filter with the prediction, which allows for corrections in both
phase and amplitude (Abma et al. (2005), Wang (2003), Verschuur et al. (1992). The result
of this adaptive subtraction is,

 𝑎𝑎 = 𝑑𝑑 −𝑀𝑀𝑀𝑀 (44)

Where (𝑑𝑑,𝑀𝑀,𝑓𝑓) are the data, a convolution matrix of the multiple prediction, and the
filter respectively, the goal being to solve for this filter. Verschuur et al. (1992) suggest
accomplishing this by minimizing the L2 norm, and thus minimizing the energy. Their idea
is that if multiples and primaries do not overlap, then the filter which acts to completely

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 19

remove the multiples will have less energy than any other prediction where the multiples
are not completely removed. The L2 norm for equation (44) is as follows.

 ‖𝑎𝑎‖2 = ‖𝑑𝑑 −𝑀𝑀𝑀𝑀‖2 = � 𝑎𝑎𝑛𝑛2
𝑁𝑁
𝑛𝑛=1 (45)

The least squares solution for f is,

 𝑓𝑓 = (𝑀𝑀𝑇𝑇𝑀𝑀)−1𝑀𝑀𝑇𝑇𝑑𝑑 (46)
If the assumption that multiples and primaries do not overlap is violated, as it often is

with land data, then the minimization of the L2 norm is no longer appropriate. When
multiples overlap with primaries, the filter which minimizes the energy will also remove
primary energy. In fact, because primaries contain more energy than multiples, the
attenuation of primaries is actually given precedence.

To overcome this problem Verschuur et al. (2004) suggested instead minimizing the L1
norm, which works to minimize amplitude instead of energy.

 ‖𝑎𝑎‖1 = ‖𝑑𝑑 −𝑀𝑀𝑀𝑀‖1 = ∑ |𝑎𝑎𝑛𝑛|𝑁𝑁
𝑛𝑛=1 (47)

 Finding the filter from the L1 norm requires solving the normal equations given by (Bube
and Langan (1997)).

 𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊 (48)

Where W is a diagonal matrix with entries 𝑊𝑊𝑖𝑖𝑖𝑖 related to the residual at time “i” by:

 𝑊𝑊𝑖𝑖𝑖𝑖 = |𝑟𝑟𝑖𝑖|−1 (49)
The residuals are the given by,

 𝑟𝑟 = 𝑀𝑀𝑀𝑀 − 𝑑𝑑 (50)
While the L1 norm works to correct for the short comings of the L2 norm it is often hard

to calculate in practice, whenever the residuals are zero, the elements of W become singular
and the norm becomes difficult to calculate. (Keating et al., 2015). Keating et al. (2015)
proposed the idea of a hybrid L1/L2 norm, a norm that acts like the L1 norm when residuals
are large but acts more like an L2 norm when the residuals approach zero. To accomplish
this (48) is solved for “f”.

 𝑓𝑓 = (𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊)−1𝑀𝑀𝑇𝑇𝑊𝑊𝑊𝑊 (51)
Where the weighting matrix takes the form.

 𝑊𝑊 = � 1

1+�
𝑟𝑟𝑖𝑖
𝜎𝜎�
�
1/2

 (52)

Adaptive subtraction in MatLab
Equation 51 cannot be solved in a linear fashion, instead, it must be solved iteratively.

To begin, the convolution matrix of the multiple prediction is calculated having the same
number of rows as the length of the prediction, and having the same number of columns as

Eaid et al.

20 CREWES Research Report — Volume 28 (2016)

the filter length. Next, the first iteration of (51) is calculated with the weighting matrix set
to an identify matrix with the MatLab function eye() having the same size as the length of
the trace. After the first iteration is complete the residuals are calculated according to (50),
and then the weight matrix is recalculated according to (52). The user of the function
adaptiveSubtraction.m provides as an input the number of iterations to be performed. In
addition, they also alter the filter length, smoother length, and norm type. Based on the
selection of the norm type, sigma is chosen to more heavily weight either the L1 or the L2
norm.

Synthetic Example
In the previous section a 1D adaptive subtraction algorithm was reviewed, as such the

input to the prediction algorithm will be assumed to be a normal incidence trace.

FIG. 11. Velocity model (left) and the reflectivity series used to create the input trace for the adaptive
subtraction algorithm (right).

Figure 11 shows the velocity model and the resulting reflectivity series with first order
internal multiples. The reflectivity series is convolved with a 45 Hz ricker wavelet to create
the trace that will be used as an input to the prediction algorithm. The reflectivity series
was once again created using makeTraceWithIM.m, the prediction, in this case, was carried
out in the frequency domain.

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 21

FIG. 12. The input trace (blue) and scaled prediction with no adaptive subtraction filter applied
(red).

FIG. 13. Input trace (blue), and prediction with a filter dominated by the L2 norm (red).

Eaid et al.

22 CREWES Research Report — Volume 28 (2016)

FIG. 14. Input trace (blue), and prediction with a filter dominated by the L1 norm (red).

Figures 12-14 show the results of the raw prediction, the prediction convolved with a
filter dominated by the L2 norm, and the prediction convolved with a filter dominated by
the L1 norm. It is evident from figure 13 that the L2 norm filter has improved the prediction
but is struggling to match multiples in the more complicated middle portion of the trace.
The L1 dominated filter has matched the multiples better in all regions of the trace.

Changing the filter length and smoother length causes the prediction to become more
aggressive or less aggressive. A shorter filter matches less of the data in the least squares
solution, where as a filter that is long enough will perfectly match and signal.

FIG. 15 The result of using a shorter smoother in the L1 norm solution

Internal multiple prediction in MatLab

 CREWES Research Report — Volume 28 (2016) 23

FIG. 16. The result of using a longer filter in the L1 norm solution

Figures 15 and 16 show the results of applying a shorter smoother, and longer filter
respectively. Comparing both figures to figure 14, it is evident in this case that applying a
shorter smoother, and the longer filter has provided a poorer match to the data. In both
cases, the multiple that interacts with the third primary are poorly matched. In addition,
poorer matches to other multiples are also evident.

DISCUSSION
This paper has served to review four domains of internal multiple prediction, as well as

1D adaptive subtraction. Throughout this paper the prediction equation has been reviewed
for the 1D frequency, 1D time, 1.5D tau-p, and the 1.5D wavenumber-frequency domains.
In each section both the equation used to predict the internal multiples is reviewed, as well
as the steps needed to prepare the dataset for the prediction step. Synthetic examples of
each prediction type are shown to emphasize the robustness of inverse scattering series
internal multiple prediction. Internal multiple prediction produces accurate traveltime
estimates of internal multiples but contains phase and amplitude errors due to series
truncation, noise, and incomplete deconvolution. Adaptive subtraction has been shown to
be a promising method for correcting for phase and amplitude errors. An L1/L2 hybrid
adaptive subtraction algorithm (Keating et al., 2015) was reviewed, and then a description
of its MatLab implementation is given. The work presented here is intended to be a
companion paper to the internal multiple toolbox contained in the 2016 CREWES software
release. It will work to aid the user in a better understanding of the algorithms contained in
the internal multiple toolbox and their applications.

Eaid et al.

24 CREWES Research Report — Volume 28 (2016)

ACKNOWLEDGEMENTS
I would like to thank the sponsors of the CREWES project as well as NSERC for

funding this work through the grant CRDPJ 461179-13. I would like also like to
acknowledge my supervisor Kris Innanen for his guidance, as well as Scott Keating and
Jian Sun for their insights, discussion, and aid in programming some of the algorithms
presented.

REFERENCES
Abma, R., Kabir, N., Matson, K., Shaw, S., and McLain, B., 2005, Comparison of adaptive subtraction

methods for multiple attenuation: The Leading Edge, 24, 277-280.

Bube, K., and Langan, R., 1997, Hybrid l1/l2 minimization with applications to tomography: Geophysics,

62, 1183-1195.

Coates, R. T., A. B. Weglein, 1996, Internal multiple attenuation using inverse scattering: results from pre-

stack 1D & 2D elastic synthetics, SEG Technical Program Expanded Abstracts pp 1522-1525.

Guitton, A., Verschuur, D. J., 2004, Adaptive subtraction of multiples using the L1 – norm: Geophysical

Prospecting, 52, 27-38.

Innanen, K., 2015, Time domain internal multiple prediction: CREWES Research Report, 27, 30.1-30.14.

Keating, S., Sun, J., Pan, P., Innanen, K., Nonstationary L1 adaptive subtraction with application to inverse

scattering multiple attenuation: CREWES Research Report, 27, 37.1-37.17.

Pan, P., Innanen, K., 2013, Numerical analysis of 1.5D internal multiple prediction: CREWES Research

Report, 25, 65.1-65.12.

Sun, J., Innanen, K., 2014, 1.5D internal multiple prediction in the plane wave domain: CREWES Research

Report, 26, 74.1-74.11.

Verschuur, D., Berkhout, A., and Wapenaar, C., 1992, Adaptive surface-related multiple elimination:

Geophysics, 57, 1166-1177.

Wang, Y., 2003, Multiple subtraction using an expanded multichannel matching filter: Geophysics, 68, 346-

354.

Weglein, A. B., Araujo, F. V., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T., Corrigan, D.,

Foster, D. J., Shaw, S. A., Zhang, H., Inverse scattering series and seismic exploration: Institute of
Physics Publishing, Inverse Problems, 19, R27-R83.

Weglein, A. B., Gasparotto, F. A., Carvalho, P. M., Stolt, R. H., 1997, An inverse scattering series method

for attenuating multiples in seismic reflection data: Geophysics, 62, 1975-1989.

	1D and 1.5D internal multiple prediction in MatLab
	Abstract
	Introduction
	REVIEW: INTERNAL MULTIPLES PREDICTION
	Preparation of data
	Reduction to 1D and 1.5D

	1D Frequency Domain Prediction in Matlab
	Input Data
	Preparation of input data
	Prediction of internal multiples
	The role of the Heaviside step function
	The prediction Integrals
	Synthetic example

	1D Time Domain Prediction in Matlab
	Internal multiple prediction in the time domain
	1D time domain prediction in MatLab
	Step 1: Create time vectors
	Step 2: Initialize convolution and correlation matrices
	Step 3: The masking matrix
	Step 4: Prediction of internal multiples
	Synthetic Example

	1.5D Frequency Wavenumber Prediction in Matlab
	Internal multiple prediction in the frequency wavenumber domain
	Input Data
	Data preparation
	Step 1: 2D Fourier Transform
	Step 2: Change of variables 𝜔→,𝑘-𝑧.
	Step 2a: Resampling
	Step 3: Data Scaling
	Step 4: Inverse Fourier transform

	Internal multiple prediction

	1.5D Tau-P Prediction in Matlab
	Internal multiple prediction in the tau-p domain
	Data preparation
	Step 1: Tau-p transform
	Step 2: Fourier transform
	Step 3: Data scaling
	Step 4: Inverse tau-p transform

	Internal multiple prediction

	Adaptive Subtraction
	Adaptive subtraction in MatLab
	Synthetic Example

	Discussion
	Acknowledgements
	References

