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ABSTRACT

Full-waveform inversion (FWI) estimates subsurface properties by minimizing differ-
ences between synthetic and observed data. It is important for the success of FWI that
the synthetic modeling can reproduce the physical mechanisms which give rise to the ob-
served data. Attenuation plays a prominent role in wave propagation, and thus its inclusion
in FWI is desirable. An anacoustic FWI is not a trivial extension of FWI however, and
problems arise when incautiously applying the same optimization, regularization, and fre-
quency band updating strategies. Specific problems like these and some of their solutions
are outlined in this report.

INTRODUCTION

Full waveform inversion (FWI) is a technique which attempts to recover the true subsur-
face parameters by iteratively minimizing the difference between measured data and mod-
eled data generated from the current estimated subsurface parameters (Tarantola (1984),
Lailly (1983)). While multiparameter versions of FWI have been formulated and studied,
the majority of research on FWI is focused on a single parameter problem, specifically
that in which acoustic wave propagation is assumed and density is treated as constant. In
this problem, only p-wave velocity varies in the model. This formulation of FWI can be
unsatisfactory for a number of reasons. The acoustic physics assumed are not sufficient to
describe seismic wave propagation in the earth, where elastic, anisotropic, and attenuative
effects can all play a major role. Consequently, the measured data may not be reproducible
with an acoustic model, and there is no guarantee that the acoustic model which most
closely matches the measured data will be the one which most accurately recovers the true
velocity structure of the subsurface. Given that FWI is designed to minimize the misfit
between the measured and modeled data, this is a serious concern. Additionally, p-wave
velocity may not be the only parameter of interest for a geophysical problem. AVO, AVAZ,
and the spectral ratio and frequency shift methods are existing geophysical techniques for
the recovery of elastic, anisotropic and attenuation parameters, respectively, and are of-
ten useful to geophysicists. If FWI were able to perform the role of one or all of these
techniques, its utility would be greatly enhanced.

Much of the research done on multiparameter FWI has focused on full acoustic FWI,
which includes density as well as p-wave velocity, and elastic FWI, which recovers three
elastic parameters (Tarantola (1986), Choi et al. (2008)). Anisotropic parameters have also
been investigated (Barnes et al. (2008)). This paper is focused on anacoustic FWI, and the
unique challenges confronted when attenuation is considered.

Anacoustic FWI has previously been investigated, for example in Hak and Mulder
(2011), Hicks and Pratt (2001), Malinowski et al. (2011), Kamei and Pratt (2013) and oth-
ers. In much of this research, however, recovering attenuation is treated as a small change
to the classic FWI problem, with little focus on fundamental issues. For example, many
authors, when considering attenuation, neglect to include dispersion (which is physically

CREWES Research Report — Volume 28 (2016) 1



Keating and Innanen

necessary). Hak and Mulder (2011) demonstrated that dispersion is necessary to resolve
between otherwise ambiguous velocity and attenuation models. This report is not focused
on an immediately practical implementation of anacoustic FWI, but rather on hazards like
this and the means of navigating them which will be necessary in a practical anacoustic
FWI.

THEORY

Anacoustic FWI

Full waveform inversion performs a numerical optimization to minimize a misfit func-
tion, which quantifies the discrepancy between measured seismic data, and the data pre-
dicted by numerical modeling on a subsurface model. This optimization is done with re-
spect to the parameters of the subsurface model. The most commonly used misfit function
in FWI is given by

φ(m) =
1

2
||dobs − dmod||22 , (1)

where φ, the misfit, is a function of the subsurface model m which measures the discrep-
ancy between the measured data dobs and the modeled data dmod. There are many methods
by which this misfit function can be minimized. One of the most effective, albeit costly
methods is to iteratively apply the Newton update, given by

u = −H−1g , (2)

where the gradient, g, is given by

g = ∇mφ = <{Jt(dobs − dmod)} = <{Jtδd} , (3)

the Hessian, H, is given by

H = ∇2
mφ = <(JtJ∗) + <

{(
∂J
∂m

)
(δd∗...δd∗)

}
, (4)

and the Jacobian, J, by

J =
∂dmod

∂m
. (5)

While the Newton update is a very effective update direction, it is typically much too
expensive to calculate in FWI, as H is usually exceedingly large, and thus impractical to
store and invert. Most formulations of FWI instead use some approximation to the full
Newton update. These approximations include the Gauss Newton update, the truncated
Newton update, quasi-Newton methods, the conjugate gradient method and the steepest
descent method.

In this paper, the Gauss Newton update is used. This update is obtained by calculating
the Newton update as in equation 2, with H replaced with HGN , where

HGN = <(JtJ∗) . (6)
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The Gauss Newton Hessian neglects the residual dependent part of the full Newton Hessian,
and is consequently less expensive to compute. The problems associated with inverting a
large Hessian matrix persist however. As a result, the synthetic models tested in this report
are very small to allow for the computations to be tractable.

Forward Modeling

The frequency domain modeling approach was adopted in this research for several rea-
sons. Firstly, it is usually necessary to employ a multiscale approach in FWI (Bunks et al.
(1995)), where early iterations consider only low frequency information and high frequency
information is gradually introduced at later iterations. The frequency domain lends itself
to this approach, as it allows for efficient methods which only model the frequencies that
are used at each iteration. Secondly, constant Q attenuation of the form studied here is
difficult to model in the time domain, requiring the use of convolutional operators, whereas
in the frequency domain it is relatively simple to introduce these attenuation terms. The
anacoustic wave propagation we consider in this report is given by[

ω2s(r) +∇2
]
u(r, ω) = f(r, ω) , (7)

where the model parameter s is given by

s(r, ω) =
1

c2(r)

{
1 +

1

Q(r)

[
i− 2

π
log

(
ω

ω0

)]}
, (8)

c is the acoustic wave velocity, Q is the quality factor, ω0 is a reference frequency, u is
the pressure field, and f is a source term. This equation is solved for u by the frequency
domain finite difference (FDFD) method. In FDFD, the x second derivative operators are
discretized as

∂2u
∂x2

=
uh−1,j − 2uh,j + uh+1,j

∆x2
, (9)

where ∆x is the x spacing of the model, and uh,j denotes the pressure field at the hth x
position and jth z position (Franklin (2005)). The expression for the discretization of the z
second derivative operators is similar. With the discretized derivative operators, equation 7
can be restated as[

ω2sh,juh,j +
uh−1,j − 2uh,j + uh+1,j

∆x2
+
uh,j−1 − 2uh,j + uh,j+1

∆z2

]
= fh,j . (10)

If positions are mapped to a single 1D index k via k = (h − 1) ∗ N + j, we can follow
Franklin (2005) and restate eq. 10 as

Mu = f , (11)

where u and f are vectors, and M is a sparse matrix. Equation 11 can then be solved for u.

Equation 10 is valid for the interior of the model, but cannot be applied on the outer
edges, where we require an alternate finite difference scheme. In order to avoid unwanted
reflections at the model edge, it is important that we adopt absorbing boundary conditions.
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In this research, first order Enquist boundary conditions were used. While more sophisti-
cated absorbing boundary conditions are available, such as higher order Enquist boundary
conditions and perfectly matched layers, boundary reflections were found to have limited
impact on the results in this research. The first order Enquist boundary conditions are
designed to produce no reflection for a normal incidence plane wave. They are given by

∂u
∂n
− iω

c
= 0 , (12)

where n is the direction normal to the interface (Clayton and Enquist (1977)). Depend-
ing on the edge in question, this can be discretized using the forward or backward finite
difference approximation, and is given for example at the top of the model by

uh,2 − uh,1
∆z

− i ω
ch,1

= 0 . (13)

In this research report, the spatial resolution used was 10m. The models studied were
500m by 500m.

Gradient and Hessian for the anacoustic case

While equations 3, 6 can be used to compute the gradient and Hessian, it is impractical
and unnecessary to explicitly calculate the Jacobian. Instead, we follow (Innanen (2015))
and calculate the gradient using

gc(r) =
∑
rg ,rs

∫
dωω2(1 + β(ω)sq0(r))G0(rg, r)G0(r, rs)δd∗(rg, rs) (14)

and
gq(r) =

∑
rg ,rs

∫
dωω2β(ω)sc0(r)G0(rg, r)G0(r, rs)δd∗(rg, rs) , (15)

where sc0 = 1
c2

, sq0 = 1
Q

, G0(r, rs) is the Green’s function in the recovered medium with a
source at rs, and

β = i− 2

π
log

(
ω

ω0

)
. (16)

Similarly, the Gauss Newton Hessian can be calculated using

Hcc(r, r′) =
∑
rg ,rs

∫
dωω4(1+β(ω)sq0(r′))(1+β(ω)sq0(r))G∗0(rg, r′)G∗0(r′, rs)G0(rg, r)G0(r, rs) ,

(17)

Hcq(r, r′) =
∑
rg ,rs

∫
dωω4β(ω)sc0(r′))(1+β(ω)sq0(r))G∗0(rg, r′)G∗0(r′, rs)G0(rg, r)G0(r, rs) ,

(18)

Hqc(r, r′) =
∑
rg ,rs

∫
dωω4(1+β(ω)sq0(r′))β(ω)sc0(r))G∗0(rg, r′)G∗0(r′, rs)G0(rg, r)G0(r, rs) ,

(19)
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and

Hqq(r, r′) =
∑
rg ,rs

∫
dωω4β(ω)sc0(r′))β(ω)sc0(r)))G∗0(rg, r′)G∗0(r′, rs)G0(rg, r)G0(r, rs) .

(20)
These can then be used to calculate a Gauss Newton update by solving[

Hcc Hcq

Hqc Hqq

] [
uc

uq

]
=

[
gc

gq

]
(21)

for velocity and Q model updates uc and uq.

OBSTACLES

There are a number of obstacles which arise in multiparameter anacoustic FWI which
are not present in the monoparameter acoustic case. Among these challenges are conflicts
in determining an appropriate frequency updating scheme, an increase in the importance of
the Hessian in the inversion, and an increase in the consequences of applying a regulariza-
tion scheme. Each of these issues is outlined in greater detail in the following subsections.

Frequency band updating strategies

In FWI, local minima caused by cycle skipping can cause be significantly harmful to
results. Consequently, Bunks et al. (1995) have suggested employing a multiscale approach
to FWI. The motivation behind this approach is to avoid local minima caused by high
frequency information in the objective function by first minimizing the objective function
where only the lowest frequency information is considered, and then slowly introducing
higher frequencies on following iterations. Ideally, as higher frequencies are introduced,
the associated local minima are avoided because the previous estimates are already in the
region of the global minimum. This approach is widespread in FWI as it is currently used.

Multiparameter anacoustic FWI introduces an additional requirement on the frequency
updating scheme. Attenuation is a frequency dependent effect, and so comparing data
behaviour at different frequencies is essential for its recovery. This is evident in non FWI
approaches for recovering Q, such as the spectral ratio and frequency shift methods, which
use changes in the amplitude spectrum to recover an estimate of attenuation (Quan and
Harris (1997)). This reliance on frequency dependent effects for the recovery of Q leads to
an expectation that we will require a range of frequencies at any given update to accurately
recover Q. If we use a small frequency band or single frequencies at each step ofo the
inversion, it is likely to introduce cross talk, where data residuals caused by one variable
are attributed to another.

Hessian in multiparameter FWI

The Hessian matrix plays a major role in multiparameter FWI. It is largely through the
Hessian that crosstalk is mitigated by reducing the attribution of data residuals to the wrong
parameters (Innanen (2014), Operto et al. (2013)). Consequently, gradient based methods
such as the steepest descent method and the conjugate gradient method which neglect the
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Hessian become much less appealing in anacoustic FWI. Methods which more appropri-
ately consider the Hessian, such as quasi-Newton, truncated-Newton, Gauss Newton and
Full Newton methods are likely to provide much better results in this case.

Regularization

Full waveform inversion is an ill posed problem, and regularization is required to stabi-
lize the problem. This ill-posed nature manifests itself in a Gauss Newton update through
the structure of the Hessian, which is not generally a full rank matrix. Consequently, the
inverse Hessian is unstable and non-unique. We can stabilize this problem by adding a reg-
ularization term to the objective function. By introducing a regularization term, we better
restrict the range of acceptable models, which leads to a stable, full rank Hessian matrix.
Unfortunately, introducing this term results in a solution which does not exactly solve the
original problem. In many applications, this effect has a minimal impact on the quality
of the solution to the regularized problem. In multiparameter anacoustic FWI, however,
there are interesting effects which arise when regularization terms are introduced, notably
affecting cross-talk.

The regularization scheme which was used in this research is designed to minimize
the spatial gradient of the update at each iteration. We introduce this regularization by
redefining the objective function as

Φ(m) = φ(m) +R(m) , (22)

where
R(m) = ||∇(m−m0)||2 , (23)

m0 is the recovered model at the previous iteration, and∇ here is the first order central finite
difference operator for the spatial gradient, a sparse matrix. This regularization function
penalizes model updates with rapid spatial variations in an attempt to stabilize the inversion,
but applies no explicit penalties to any particular final inversion result. The contribution to
the gradient term by this regularization function is given by

∂R

∂m
=
{
∇T [∇(m−m0)] +

[
∇T [∇(m−m0)]

]T}
. (24)

In an FWI update, the gradient will be evaluated at the recovered model from the previous
iteration, so m = m0 when evaluating the gradient, and the contribution in eq 24 will
always be zero. The contribution to the Hessian matrix by this regularization function is
given by

∂2R

∂m2
= 2∇2 . (25)

Other regularizations tested were found to provide similar results in terms of stability and
crosstalk for the examples tested.

NUMERICAL EXAMPLES

In order to demonstrate some of the challenges described in the previous section, some
tests on a simple model were conducted. This model is shown in figure (1). The initial
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FIG. 1. True model. Left: Velocity. Right: Reciprocal Q. The background velocity is 2500 m/s,
anomalies are 2200 m/s. The background Q value is 80, the anomaly Q is 20.

model for the inversion was simply a homogeneous medium with a velocity of 2500 m/s
and a Q value of 80. The ‘measured’ data was generated using the true model and the same
forward modeling as was used in the FWI. In these examples, receivers were placed at
lateral positions from 15m to 485m with spacings of 10m, at a depth of 7.5m. The sources
were placed at lateral positions from 15m to 475m with spacings of 20m, at a depth of
12.5m. While a wavelet could easily have been included, the data was generated using a
uniform amplitude spectrum, to simplify the analysis.

Frequency band updating strategies

In order to demonstrate the effect of frequency band size, several different frequency
updating strategies were tested. In each case a Gauss Newton optimization was used, with a
regularization factor of 1. Figure 2 shows the result of an anacoustic FWI in which a single
frequency is inverted at each iteration in 25 steps from 1 Hz to 25 Hz. It is evident by
comparing the recovered velocity and Q models that there is severe cross talk in this case.
The relative difficulty of updating either parameter independently has also prevented the Q
anomaly from being recovered. This has contributed to the poor recovery of the velocity
anomaly that lies below the Q anomaly.

In figure 3, an alternate updating scheme is shown in which at each iteration, 6 frequen-
cies in a 1 Hz band were inverted. This band moved in 1Hz increments from 1Hz-2Hz to
24Hz-25Hz. One iteration was performed at each frequency band. The recovered model
in this updating scheme shows a clear improvement over the single frequency approach.
Cross-talk is significantly reduced, but artifacts remain evident, especially in the recovered
Q model, where recovered features closely match velocity anomalies.

A third updating scheme is applied to obtain the results in figure 4. In this example
six frequencies, evenly spaced from 1Hz to a maximum frequency, were inverted. This
maximum frequency was increased from 2Hz to 25Hz in 1Hz increments. One iteration
was performed at each frequency band. Figure 4 demonstrates that this broader frequency
band leads to even better results, and a further reduction in cross-talk.
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FIG. 2. Result of Gauss Newton FWI using only one frequency at each iteration. Left: Recovered
velocity. Right: Recovered reciprocal Q. Considerable cross-talk is readily apparent, contributing to
the very poor reconstruction of the attenuation model.

FIG. 3. Result of Gauss Newton FWI using a small frequency band at each iteration. Left: Recov-
ered velocity. Right: Recovered reciprocal Q. Considerable improvement is evident as compared to
figure 2, but evidence of cross talk is still apparent, especially in the recovered attenuation.

FIG. 4. Result of Gauss Newton FWI using a broad frequency band at each iteration, regularization
factor of 1. Left: Recovered velocity. Right: Recovered reciprocal Q. Some cross talk persists, but
there is noticeable improvement over figure 3
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FIG. 5. Result of conjugate gradient FWI using a broad frequency band at each iteration, regular-
ization factor of 1. Left: Recovered velocity. Right: Recovered reciprocal Q. Extreme crosstalk is
present, the features of the recovered models are very similar and both recover significant ampli-
tudes at locations where anomalies in the other parameter are present.

Optimization

As discussed above, the Hessian plays a major role in cross-talk suppression in multi-
parameter FWI. In order to highlight this importance, a conjugate gradient based FWI was
tested to compare with the Gauss Newton result shown in figure 4. The same regularization
factor and frequency bands were used as for figure 4, but 20 iterations were performed at
each frequency band to help compensate for the slower convergence rate of the conjugate
gradient method. This value was chosen based on tests which indicated that in the acoustic
case results comparable to the GN result could be obtained with this number of CG itera-
tions. The results of this example are shown in figure 5. As anticipated, the neglect of the
Hessian matrix has coincided with considerable crosstalk.

Regularization and Stability

To demonstrate the effects of regularization, several regularization factors were tested.
Figure 4 shows the result using a regularization factor of 1. Figure 6 shows the result when
the regularization factor used is 103. As discussed previously, figure 4 is a result close to the
answer we would hope to have. Figure 6 by contrast shows significant crosstalk artifacts,
and does a poor job of reconstructing the true model. The shift in the solution introduced by
regularization is clearly having undesirable effects in the large regularization factor case.
This demonstrates the necessity of using as small a regularization term as possible, in order
to avoid cross-talk problems.

Figures 4 and 6 show results in a noise-free case. In reality however, unwanted noise
is an inevitability in seismic data. As noise increases, the demands on the stability of our
inversion also increase. Figures 7 and 8 show the results of inversions using the same
parameters as figures 4 and 6, but with noise introduced. The noise used was normally
distributed random noise, with a signal to noise ratio of 10, where signal is taken to be
the measured data with the direct arrivals removed. The effects of noise are pronounced in
figure 7, where a smaller regularization factor is used, and are significantly detrimental to
the recovered result. In comparison, the effects of noise in figure 8 are exceedingly minor,
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FIG. 6. Result of Gauss Newton FWI using a regularization factor of 1000. Left: Recovered velocity.
Right: Recovered reciprocal Q. In comparison with the small regularization factor case (figure 4)
there is considerable crosstalk, and attenuation is poorly reconstructed.

FIG. 7. Result of Gauss Newton FWI using a regularization factor of 1, signal to noise ratio of 10.
Left: Recovered velocity. Right: Recovered reciprocal Q. High amplitude, unpredictable changes
from the noise free case (figure 4) are clear. Regularization here is too small to recover a reliable
result.

due to the much larger regularization factor. An intermediate regularization factor may be
expected to outperform these examples. Figure 9 shows the equivalent result with noisy
data and regularization factor of 10. In this example, this value seems to provide a good
compromise between inaccuracies caused by regularization and those caused by noise.

All regularizations investigated in this research displayed the same trade-off between
stability and cross-talk, but differed in the extent of this trade-off. Determining a regu-
larization scheme which maximizes the stability at a given level of crosstalk is a subject
of ongoing investigation. Alternate approaches where stability is achieved by iteratively
solving a system with a shrinking regularization factor are also being studied.

CONCLUSIONS

There are several factors which complicate multiparameter anacoustic FWI as com-
pared to monoparameter acoustic FWI. Gradient based methods which entirely neglect the
Hessian become impractical due to crosstalk between parameters. Frequency updating
schemes are confronted with the need to provide sufficient information to distinguish be-
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FIG. 8. Result of Gauss Newton FWI using a regularization factor of 1000, signal to noise ratio of
10. Left: Recovered velocity. Right: Recovered reciprocal Q. Changes from the noise free case
(figure 6) are negligible. The large regularization has contributed significant robustness to noise.

FIG. 9. Result of Gauss Newton FWI using a regularization factor of 10, signal to noise ratio of 10.
Left: Recovered velocity. Right: Recovered reciprocal Q. Significant improvements from figures 7
and 8 are noticeable when using this intermediate regularization factor.
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tween velocity and attenuation effects while still preserving the multiscale approach. Reg-
ularizations are necessary to provide stability to the system, but tend to introduce cross-talk
in doing so. A successful implementation of anacoustic full waveform inversion will likely
need to address each of these issues.
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