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ABSTRACT

Elastic wave propagating in anisotropic media can be treated as a polarization devia-
tion of wave vector in terms of isotropic media. The deviation angle between the wave
normal and qP-wave’s polarization direction can be estimated based on the phase angle
and elastic constants(or Thomsen parameters). The anisotropic polarization vectors’ com-
ponents are thus determined according to the rotation matrix calculated by the deviation
angle. The anisotropic wavefield-separation operators are constructed at each point using
the calculated polarization vectors. Finally, the vector wavefield decomposition based on
the Helmholtz theory are then used to decompose coupled qP- and SV- modes.

INTRODUCTION

True responses of elastic earth media are recorded by multicomponent seismic re-
ceivers. Elastic wave-equation migration for the recorded multicomponent data is able
to provide more physically meaningful migration results, which are directly related to re-
flectivity and can thus be used to invert the physical parameters of reservoir rocks. The
elastic reverse time migration (ERTM) can provide more accurate images than the acoustic
RTM (Chang and McMechan, 1987; Chon et al., 2003; Lu et al., 2009). In general, P- and
S-wave modes are mixed on all wavefield components and cause crosstalk and image arti-
facts. Yan and Sava (2008) suggest using cross-correlation imaging conditions of separated
modes.

Research on P- and S-wavefield separation has been carried out for decades. The P-
wavefield is curl-free and the S-wavefield is divergence-free in theory. Helmholtz decom-
position (Morse et al., 1953) calculates potentials to determine decomposed vector modes,
but this is applicable only for isotropic media and is not able to completely separate wave
modes in anisotropic media. Dellinger and Etgen (1990) projected divergence and curl
operators onto the mode polarization vectors in anisotropic media . However, the phases
of the separated P- and S- components are both shifted by π/2 radian (Sun et al., 2001).
Zhang and McMechan (2010) proposed a pragmatic decomposition of a vector wavefield
based on the Helmholtz theory and the Christoffel equation which is used to calculate the
polarization distribution, however, because the anisotropic phase polarization is local, the
wavefield decomposition needs to be done separately for each region with different polar-
ization distributions. (Rommel, 1994) proposed q-P- and q-SV-wave polarization vectors
in 2D VTI media by solving Christoffel equation, but he pointed out that uncertainty exists
when determining the polarization vector direction. Zhou (Zhou and Wang, 2016) pro-
posed wave mode separation operators in anisotropic media, in which these operators are
constructed by local rotation of wave vector polarization. The rotational angle is estimated
using poynting vector (Dickens et al., 2011).

In this paper, we proposed a wavefield decomposed method based on the polarization
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angle. For the polarization angle calculation in anisotropic media, the additional rotational
angle is calculated according to Tsvankin(Tsvankin, 2012). The corresponding P- and S-
components can thus be determined in terms of the polarization angle and the azimuthal
angle. The 2D synthetic models in both isotropic and anisotropic media show the validity
of the new scheme. The decomposed components are then used in ERTM to get imaging
results for each reflection mode.

ELASTIC WAVE VECTOR DECOMPOSITION

Given any vector field U(x, y, z), it can be decomposed into a curl-free part UP and a
divergence-free part US according to Helmholtz decomposition theory (Aki and Richards,
2002):

U = UP + US, (1)

with

∇× UP = 0, (2)

and
∇ · US = 0, (3)

in which,∇ = ∂
∂x
i+ ∂

∂y
j + ∂

∂z
k. The divergence of the 3-D elastic wave field U(x, y, z)

is
∇·U =

∂Ux
∂x

+
∂Uy
∂y

+
∂Uz
∂z

, (4)

In the Fourier domain, the above equation is

∇̂·Û = ikxÛx + ikyÛy + ikzÛz, (5)

where Û and ∇̂· are the Fourier-domain forms of U and ∇·, respectively. i =
√
−1 and

k = (kx, ky, kz) are the wavenumber components at each direction. According to equation
(2) and (3), for a P wave in Fourier domain, we have,

∇̂·Û = ∇̂·Û
P
. (6)

Similarly, for an S wave in Fourier domain, we have,

∇̂×Û = ∇̂×Û
S
, (7)

with Û
P

= (ÛP
x , Û

P
y , Û

P
z ) and Û

S
= (ÛS

x , Û
S
y , Û

S
z ) in the space domain as,

UP = UP
x i+ UP

y j + UP
z k, (8)

and
US = US

x i+ US
y j + US

z k. (9)
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Based on the above equations, Zhang and McMechan (2010) proposed the solution for
the three Fourier components of P-wavefield in isotropic media as

ÛP
x = K2

xÛx +KxKyÛy +KxKzÛz,

ÛP
y = K2

y Ûy +KxKyÛx +KyKzÛz,

ÛP
z = K2

z Ûz +KxKzÛx +KyKzÛy,

(10)

with K = (Kx, Ky, Kz) being the normalized wavenumber components (e.g., Kx =
kx/k, k =

√
k2x + k2y + k2z). Similarly, the solution for the three Fourier components of

S-wavefield in isotropic media are,

ÛS
x = (K2

y +K2
z )Ûx −KxKyÛy −KxKzÛz,

ÛS
y = (K2

x +K2
z )Ûy −KxKyÛx −KyKzÛz,

ÛS
z = (K2

x +K2
y )Ûz −KxKzÛz −KyKzÛy,

(11)

He also gives the vector forms of ÛP and ÛS as

ÛP = K(K · Û),

ÛS = −K × (K × Û).
(12)

In polar coordinate system, the wavenumber, polarization angle θ and azimuthal angle
ϕ has the relationship as

(sin θ cosϕ, sin θ sinϕ, cos θ) = (Kx, Ky, Kz). (13)

Therefor equation (6) and (10) can be expressed as

ÛP
x = (sin θ cosϕ)2Ûx + (sin2 θ sinϕ cosϕ)Ûy + (sin θ cos θ cosϕ)Ûz,

ÛP
y = (sin θ sinϕ)2Ûy + (sin2 θ sinϕ cosϕ)Ûx + (sin θ cos θ sinϕ)Ûz,

ÛP
z = cos2 θÛz + (sin θ cos θ cosϕ)Ûx + (sin θ cos θ sinϕ)Ûy,

(14)

CREWES Research Report — Volume 28 (2016) 3



Li et. al

and

ÛS
x = (sin2 θ sin2 ϕ+ cos2 θ)Ûx − (sin2 θ sinϕ cosϕ)Ûy − (sin θ cos θ cosϕ)Ûz,

ÛS
y = (sin2 θ cos2 ϕ+ cos2 θ)Ûy − (sin2 θ sinϕ cosϕ)Ûx − (sin θ cos θ sinϕ)Ûz,

ÛS
z = sin2 θÛz − (sin θ cos θ cosϕ)Ûx − (sin θ cos θ sinϕ)Ûy,

(15)

In two dimensions (XOZ plane), based on the directional cosines ((sin θ, cos θ) = (Kx, , Kz)),
the decomposed P- and S-wavefield components are

ÛP
x = sin2 θÛx + sin θ cos θÛz,

ÛP
z = cos2 θÛz + sin θ cos θÛx,

(16)

and
ÛS
x = cos2 θÛx − sin θ cos θÛz,

ÛS
z = sin2 θÛz − sin θ cos θÛy,

(17)

Figure 1 (a) shows vertical and horizontal components (particle velocity) of one snap-
shot in a two-layer isotropic model using staggered-grid finite difference solution. The
interface is set at 6 m depth. vp, vs and density in each layer are shown in Table1

VP (m/s) VS(m/s) ρ(g/cm3)

Upper layer 3450 1870 2.0
Lower layer 4000 2300 2.1

Figure 1 (b) and (c) show vertical and horizontal components of P- and S-mode acquired
by equation (16) and (17), respectively. The amplitude and phase of the decomposed x- and
z-components of the P- and S-waves are equal to those of input P- and S-wavefields. P-
and S- mode have been precisely decomposed and they don’t interferce with each other.

In isotropic media, propagation direction and the polarization direction of P wave are
completely parallel, but propagation direction and the polarization direction of S wave are
completely perpendicular, so they are called "pure P wave" and "pure S wave". While
in anisotropic media, there is usually a deviation of the polarization from the isotropic
reference. This deviation can also be treated as an additional rotation ∆θ of qP polarization
angle θ+ ∆θ. In addition to particular direction, the propagation direction and polarization
direction of P wave are not completely parallel but cut across each other; the propagation
direction and the polarization direction of S wave are also not completely perpendicular, so
called "qP wave" and "qS wave" (including SV wave and SH wave). Based on (Dellinger,
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FIG. 1. 2D isotropic layered model (a) and
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1991), Zhang and McMechan (2010) presented P- and S- wave vector decomposition forms
as

ÛP = AP (AP · Û),

ÛS = −AP × (AP × Û).
(18)

where, AP = (APx , A
P
y , A

P
z )T denotes the P-wave polarization vector. Assuming the po-

larization direction direction in anisotropic media is A = (Ax, Ay, Az)
T , the propagation

direction is n = (sin θ cosϕ, sin θ sinϕ, cos θ)T , the angle between propagation direction
and Z axis is θ and the azimuth angle of propagation direction is ϕ. Christoffel equation in
anisotropic medium (Slawinski, 2003) is as followsΓ11 − ρV 2 Γ12 Γ13

Γ12 Γ22 − ρV 2 Γ23

Γ13 Γ23 Γ33 − ρV 2

AxAy
Az

 = 0 (19)

with Γ in terms of the elasticity parameters Cmn as

Γ11 = C11n
2
1 + C66n

2
2 + C55n

2
3 + 2(C16n1n2 + C56n2n3 + C15n1n3),

Γ22 = C66n
2
1 + C22n

2
2 + C44n

2
3 + 2(C26n1n2 + C24n2n3 + C46n1n3),

Γ33 = C55n
2
1 + C44n

2
2 + C33n

2
3 + 2(C45n1n2 + C34n2n3 + C35n1n3),

Γ12 = Γ21 = C16n
2
1 + C26n

2
2 + C45n

2
3

+(C12 + C66)n1n2 + (C25 + C46)n2n3 + (C14 + C56)n1n3,

Γ13 = Γ31 = C15n
2
1 + C46n

2
2 + C35n

2
3

+(C14 + C56)n1n2 + (C36 + C45)n2n3 + (C13 + C55)n1n3,

Γ23 = Γ32 = C56n
2
1 + C24n

2
2 + C34n

2
3

+(C25 + C46)n1n2 + (C23 + C44)n2n3 + (C36 + C45)n1n3,

(20)

The P-wave polarization vectorAP = (APx , A
P
y , A

P
z )T is always polarized in symmetry

axis planes which are formed by symmetry axis vector n and wave vector k. As has
discussed above, the P-wave polarization vector can be determined by rotating from wave
vector k by an additional deviation angle ∆θ. According to the trigonometric relations, the
rotated wave vectors k′ = (k′x, k

′
z) can be expressed as

k′ = Rk, (21)
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where,R is the rotation matrix with a rotation axis u = n×k
|n×k|

For VTI media, the additional rotational angle ∆θ can be represented by the expression
(Tsvankin, 2012)

∆θ = B
[
δ + 2 (ε− δ) sin2 θ

]
sin 2θ. (22)

where B = 1

2(V 2
S0/V

2
P0)

, ε and δ are Thomson parameters (Thomsen, 1986), VP0 and VP0

are the phase velocities which are perpendicular to isotropic plane of TI media. The above
equation can also be expressed as

∆θ =
C33

C33 − C44

[
δ cos(2θ) + 2ε sin2 θ

]
sin θ cos θ. (23)

TTI media in observation coordinates can be derived from VTI(or HTI) media by the
rotation of constitutive coordinates. In this paper, we assume the symmetry axis of TTI
media lies in XOZ plane and C0

11, C
0
33, C

0
13, C

0
44, C

0
66 are independent elastic parameters in

VTI media in constitutive coordinates. For a TTI meidium with a nonzero tilt angle ν, the
above equation can be expressed as

∆θ =
C33

C33 − C44

[
δ cos(2θ − 2ν) + 2ε sin2(θ − ν)

]
sin (θ − ν) cos (θ − ν). (24)

Taking this deviation angle into equations (14) and (15), the qP- and qS- decomposed
wave components can be expressed as

ˆU qP
x = (sin (θ + ∆θ) cosϕ)2Ûx + (sin2 (θ + ∆θ) sinϕ cosϕ)Ûy

+ (sin (θ + ∆θ) cos (θ + ∆θ) cosϕ)Ûz,

ˆU qP
y = (sin (θ + ∆θ) sinϕ)2Ûy + (sin2 (θ + ∆θ) sinϕ cosϕ)Ûx

+ (sin (θ + ∆θ) cos (θ + ∆θ) sinϕ)Ûz,

ˆU qP
z = cos2 (θ + ∆θ)Ûz + (sin (θ + ∆θ) cos (θ + ∆θ) cosϕ)Ûx

+ (sin (θ + ∆θ) cos (θ + ∆θ) sinϕ)Ûy,

(25)
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and

Û qS
x = (sin2 (θ + ∆θ) sin2 ϕ+ cos2 (θ + ∆θ))Ûx − (sin2 (θ + ∆θ) sinϕ cosϕ)Ûy

− (sin (θ + ∆θ) cos (θ + ∆θ) cosϕ)Ûz,

Û qS
y = (sin2 (θ + ∆θ) cos2 ϕ+ cos2 (θ + ∆θ))Ûy − (sin2 (θ + ∆θ) sinϕ cosϕ)Ûx

− (sin (θ + ∆θ) cos (θ + ∆θ) sinϕ)Ûz,

Û qS
z = sin2 (θ + ∆θ)Ûz − (sin (θ + ∆θ) cos (θ + ∆θ) cosϕ)Ûx

− (sin (θ + ∆θ) cos (θ + ∆θ) sinϕ)Ûy.
(26)

Û qS = (Û qS
x , Û qS

y , Û qS
z ) includes both SH- and qSV- waves. For the SH wave decom-

position, setting the determinant of equation(19) as zero, the analytical phase velocity of
qP-, qSV- and SH-waves in TTI media (Slawinski, 2003) are

VP =
√

1
2ρ

[
(C0

11 + C0
44)F + (C0

33 + C0
44)E

2 +
√
D3D

]
,

VSV =
√

1
2ρ

[
(C0

11 + C0
44)F + (C0

33 + C0
44)E

2 −
√
D3D

]
,

VSH =
√

1
ρ

(C0
66F + C0

44E
2),

(27)

where,

D3D = [(C0
11 − C0

44)F − (C0
33 − C0

44)E
2]

2
+ 4(C0

13 + C0
44)

2FE2,

E = (−sin(θ + ∆θ) cosϕ sin ν + cos(θ + ∆θ) cos ν),

F = (sin(θ + ∆θ) cosϕ cos ν + cos(θ + ∆θ) sin ν)2 + sin2(θ + ∆θ) sin2 ϕ

. (28)

Substituting SH wave phase velocity into Christoffel equations yields the general solu-
tions of SH polarization (WU et al., 2010)

ASH = c

 sin(θ + ∆θ) sinϕ cos θ
− (sin(θ + ∆θ) cosϕ cos θ + cos(θ + ∆θ) sin θ)

sin(θ + ∆θ) sinϕ sin θ

 (29)

Therefore, the decomposed SH-wave can be determined by substituting the above ma-
trix into the SH-wave polarization equation (Zhang and McMechan, 2010)

Û
SH

= ASH(ASH · Û), (30)
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P SH ·n = 0 shows that the polarization direction of SH wave in VTI media is perpen-
dicular to the propagation direction, which is called pure SH wave.

According to equations (25) and (26), the qP- and qSV- wave decomposition in XOZ
plane can be determined as

ˆU qP
x = (sin (θ + ∆θ))2Ûx + (sin (θ + ∆θ) cos (θ + ∆θ))Ûz,

ˆU qP
z = cos2 (θ + ∆θ)Ûz + (sin (θ + ∆θ) cos (θ + ∆θ))Ûx,

(31)

and
ˆU qSV
x = (cos2 (θ + ∆θ))Ûx − (sin (θ + ∆θ) cos (θ + ∆θ))Ûz,

ˆU qSV
z = sin2 (θ + ∆θ)Ûz − (sin (θ + ∆θ) cos (θ + ∆θ))Ûx.

(32)

EXAMPLES

In this section, we illustrate the elastic wave-vector decomposition in anisotropic media
with a synthetic model and elastic Sigsbee 2A model.

The 2D elastic graben model

Firstly, a simple graben model is used to test our wave-mode decomposition method.
There are two horizontal layers and a graben structure, shown in Figure. The total grid
number is 391 × 291 grids, including a PML layer of 20 grids at each boundary of this
model. The model size is 17.55× 12.55 m2, with a grid size of 0.05× 0.05 m2. The time
sample is 8 µs, and the total recording time is 14.4 ms. The source signal is represented by
a Ricker wavelet with a dominant frequency of 3500 Hz. 26 shots are placed 1.5 m below
the surface with an interval of 0.5 m, and 26 receivers are evenly distributed at the same
depth with the source from 1.1 m to 13.6 m in x direction. The model and its parameters
are shown in Figure 2 (a). Figure 2 (b) and (c) show the original polarization angle θ and
its additional rotational angle ∆θ. The magnitude of angle ∆ is normally smaller than 0.25
radians.

The normalized wavenumber K (Kx, Kz) are shown in Figure 3 (a) and (b). As is dis-
cussed, K denotes not only the wave-propagation direction but also the P-wave-polarization
direction in isotropic media. In anisotropic media, the P- and SV- wave polarization vectors
AP and ASV can be determined according to Rommel(Rommel, 1994), which are shown
in Figure 3 (c)-(f). As Rommel pointed out in his paper, the direction of polarization vector
AP

x or AS
xV is ambiguous, only absolute values of AP

x or AS
xV are shown. Compared

with 3 (a) and (b), the directions of polarization vectors in isotropic layers (when kz <-0.5
and kz>0.8) have also changed. In contrast, the polarization vectors calculated by equation
(16) and equation (17) are shown in Figure 4. Compared with Figure 3, the directions of
polarization vectors in isotropic layers are the same as those in Figure 3 (a) and (b), and
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FIG. 2. (a) 2D anisotropic graben model, (b) the original polarization angle and (c) additional
rotational angle.

they change slightly in anisotropic layers (roughly when -0.5<kz<0.8) because of an ad-
ditional rotation. But the signs of these vectors keep unchanged as the rotational angle is
relatively small, which differs from 3 (c)-(f). By implementing our new proposed method,
the decomposed wavefield components can be obtained.

The upper two of Figure 5 show the vertical and horizontal components of elastic wave-
field snapshots using staggered-grid finite difference solution. The P- and S- modes are
mixed in both components. The middle two of Figure 5 show the x- and z-components of
the decomposed P-wave, the P-mode that travels faster than the S mode, which performs
as an envelope outside S-mode. The decomposed S- components in x- and z- direction
are illustrated in the last two of Figure 5, where the shape of S-mode in different prop-
agation distances submerges. The decomposed x- and z-components of P-and SV-waves
don’t include each other. The components are well separated with the phase, amplitude and
physical units unchanged.

The 2D anisotropic thrust fault model

The second model is a thrust fault model, in which anisotropy present through different
depth intervals. The upper right picture of Figure 6 shows the original velocity component
vx, the model is shown as background layers, the P- and S- waves are mixed with each other
especially in the sharp structural areas. The S mode can barley detected in the interior layers
of the model, in contrast, the lower left picture of Figure 6 shows the decomposed S wave
component vsx, which shows clear S mode propagation in both sharp areas interior layers.
The combination between the decomposed vpx and vsx on the lower right of Figure 6 has
the same phase and amplitude with the original vx mode (upper right picture of Figure 6).
Figure 7 shows the decomposed P- and S- wave components vpz and vsz as well as the
original vz before decomposition.
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FIG. 8. (a) 2D anisotropic two-layer model, (b) the original phase angle and the additional rotation
angle.

Elastic waveform migration for two-layer VTI model

After wave decomposition, each composed component can be used in elastic reverse
time migration(ERTM). The images can be obtained from the commonly used imaging
condition ∫ t

0

s(x, τ )r(x, t− τ )dτ. (33)

where t is the total recording time, s and r denote the source and receiver P- or S- wavefields.

In this section, a two-layer model is used as an example for decomposed components
ERTM, the model is shown in Figure 8 (a), the model size is 2000m× 1500m, the first
layer is isotropic, with Vp, Vs and density of 4000m/s, 2300m/s, 2000kg/m3. The
second layer is a VTI formation with c11 = 14e9N/m2, c13 = 2.1e9N/m2, c33 =
17e9N/m2, c44 = 6.7e9N/m2 and density of 2500kg/m3. A Ricker wavelet with
a dominant frequency of 30 Hz is used as source during forward simulation. The space and
time intervals are 5 m and 0.5 ms respectively. Figure 8 (b) and (c) show the original phase
angle and the additional rotation angle. We then implement the new waveform decompo-
sition scheme to get separated wave modes, which are further used in ERTM according to
equation (33).

Figure 9 shows the PP- PS-, SP- and SS imaging results using ERTM, respectively.
The PP- image performs best among the for images, which is barely contaminated by some
noise. The PS image suffers some interfering noise, yet the overall imaging result is still
acceptable.

CONCLUSIONS

A 3D elastic wave field decomposition scheme for anisotropic media is proposed in this
paper, in which the anisotropic polarization vectors’ components are determined according
to the rotation matrix calculated by the deviation angle. This new scheme solves the un-
certainty issue of the polarization vector direction. The decomposition example of a 2D
synthetic anisotropic model as well as the anisotropic thrust fault model prove the validity
of this new scheme. Finally, the decomposed components are used in ERTM to get the
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FIG. 9. PP- PS-, SP- and SS imaging results using ERTM.

PP-, PS-, SP- and SS imaging results, the imaging results correlate to the model quite well,
which further validates our decomposition method.

For further study, some comparisons for the decomposition methods as well as the
imaging results are needed to prove the robustness of the new scheme. Although the 3D
elastic wavefield decomposition equations are proposed in this paper, we haven’t illustrated
any of the 3D decomposition examples, which should be under further study.
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