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ABSTRACT

We analyze the scattering of seismic waves from both anisotropic and viscoelastic in-
clusions in an attenuative isotropic background. There are mainly two methods used in
investigation of seismic wave scattering, the method of so-called Aki-Richards approxi-
mation based on the linearization of the exact solutions of the Zoepprits equation, and,
alternatively the Born approximation which is based on the first order perturbation the-
ory. Solution of Zoeppritz equation even for elastic medium has a complicated form and
these coefficients should be linearized with respect to the changes in elastic properties.
For anisotropic viscoelastic media the situation is more complicated. Born approximation
overcome this difficulty as we don’t need to solve the Zoeppritz equation and linearized the
the reflection coefficients. Instead by having the perturbed stiffness tensor and polariza-
tions in the background medium we can derived the linearized reflection coefficients. The
resulted scattering amplitudes are called scattering potentials which can be transformed
to the weak reflection coefficients by proper transformations. We consider to the Vertical
Transverse Isotropic (VTI) and orthorhombic media with low loss attenuation and weak
anisotropy such that the second and higher orders of quality factors and Thompson param-
eters are neglected. In a viscoelastic medium we have P-wave, SI-wave and SII waves, all
with complex slowness vectors. We derived the expressions for potentials of scattering of
P-to-P, P-to-SI, SI-to-SI and SII-to-SII. We show that how our results cover the previously
derived scattering potentials for elastic/viscoelastic media. The resulting expressions for
scattering potentials are sensitivity kernels related to the Fréchet derivatives which linearly
link data and parameters perturbations.

INTRODUCTION

The weak contrast linearized reflection coefficients play a major role in inversion of
seismic data as they contain unique information on sensitivity of the seismic data to the
changes in earth properties (Beylkin and Burridge, 1990; Tarantola, 1986). The traditional
way to compute the linearized reflection coefficients is based on the solution of the Zeop-
pritz equation assuming that properties across the boundary are slightly change (Aki and
Richards, 2002).

The exact and approximate reflection and transmission coefficients have been derived
for layered viscoelastic isotropic medium taking into the changes in the viscoelastic pa-
rameters for incident homogeneous wave (Ursin and Stovas, 2002). The same problem
for an inhomogeneous viscoelastic plane wave interacting with a low contrast two layered
isotropic viscoelastic media wherein the jumps in the inhomogeneity angle is accommo-
dated recently have been derived (Moradi and Innanen, 2016). It has been shown that these
linearized reflection coefficients can be transformed into the viscoelastic scattering poten-
tials as derived in the general volume scattering framework (Moradi and Innanen, 2015).
Cervený & Psencík studied the homogeneous and inhomogeneous plane waves propagat-
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ing in a viscoelastic anisotropic medium (Cervený and Psencík, 2005a,b, 2008). Linearized
weak reflection coefficients for viscoelastic anisotropic media including the inhomogeneity
angle of incident wave are derived based on the exact solutions of the Zoeppritz equations
by (Behura and Tsvankin, 2009a,b).

Understanding the scattering patterns induced by perturbations in medium properties is
an essential prerequisite for AVO inversion and Full Waveform Inversion (FWI) (Virieux
and Operto, 2009; Fichtner, 2010; Castagna and Backus, 1993). The Born approximation
method based on the perturbation theory is an efficient method to evaluate the sensitiv-
ity kernel for FWI. In this approach actual medium is regarded as a reference medium
with the slightly different properties occupied with perturbations in medium properties. In
the case of vertically attenuative isotropic medium perturbations are in density, vertical P-
and S-wave velocities, vertical P- and S-wave quality factors, three anisotropic Thompson
parameters and three Q-dependent Thompson parameters. Insight into the seismic wave
propagation in an attenuative anisotropic earth is of fundamental interest. Our paper is a
self contained presentation of the scattering volume from inclusions both in anisotropic and
viscoelastic properties. Comparing to the isotropic elastic medium derivation of such ap-
proximations is extremely complicated and needs the assumption of both weak anisotropy
and low attenuation in lower and upper media.

A summary of our paper follows. It should be noted that we work throughout with
a theory of scattering of seismic waves in a vertically isotropic viscoelastic media: the
extension of the scattering of seismic waves in isotropic media. In section 2 we discuss the
complex stiffness tensor for viscoelastic VTI media staring with the matrix form followed
by the subscript notation of the stiffness tensor. In entire paper we assume (a) the anisotropy
is weak, and (b) the media is low-loss attenuative. In view of (a) and (b) we introduce
the Q-dependent Thompson parameters in terms of real stiffness tensor components and
Quality factor matrix components. In section 3 we describe the perturbations in stiffness
tensor which are essential in deriving the approximate forms of the scattering potentials.
In particular we will show how the perturbed VTI stiffness tensor decomposed into the
isotropic part and the contributions from the anisotropic parameters. In section 4 we present
the general form of scattering potential for scattering of P-wave to P wave, P-wave to SI-
wave, SI-wave to SI-wave and SII-wave to SII-wave. We also present the polarization and
slowness vectors of incident and scattered P- and SI-waves which are essential to evaluate
the scattering potentials. The results obtained for scattering potentials will be discussed in
more detail in section 5. It will be shown that scattering potentials can be decomposed into
the isotropic elastic, anisotropic elastic, isotropic viscoelastic and anisotropic visocelastic
components.

STIFFNESS TENSOR FOR VTI VISCOELASTIC MEDIUM AND COMPLEX
THOMPSON PARAMETERS

One of the most common anisotropic model that have been used in exploration seismol-
ogy is the VTI/HTI media (Rüger, 2001). For a VTI media with axis of symmetry along
the z-direction, there are parallel planes perpendicular to the z-axis. The stiffness tensor in
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terms of symmetric 6×6 matrix is given by

cVTI =


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c55 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 . (1)

P-wave phase velocity along the vertical axis z is given by VP =
√
c33/ρ, vertically S-

wave velocity for shear wave polarized in z-direction is given by V ⊥S =
√
c55/ρ and the

velocity of the vertically propagating shear wave polarized in the y direction is given by
VS =

√
c44/ρ. Since in VTI media c55 = c44 we have V ⊥S = VS, as a result in what follows

for VTI media the shear wave velocity is shown by VS. However for Horizontal Transverse
Isotropic (HTI) media V ⊥S 6= VS.

In this section we derive the components of the complex VTI stiffness tensor in terms of
elastic, anelastic and anisotropic parameters. We start with the tensor form of the stiffness
tensor in subscript notation Ikelle and Amundsen (2005)

ĉVTI
ijkl = (ĉ11 − 2ĉ66)δijδkl + ĉ66(δikδjl + δilδjk)

+ (2ĉ66 − ĉ11 + ĉ13)(δijδk3δl3 + δklδi3δj3)

+ (ĉ55 − ĉ66)(δikδj3δl3 + δjkδi3δl3 + δilδj3δk3 + δjlδi3δk3)

+ (ĉ11 − 2ĉ13 + ĉ33 − 4ĉ55)δi3δj3δk3δl3.

(2)

We use the upper mark ” ˆ ” to distinct the complex stiffness tensor ĉijkl from real cijkl.
The above form of ĉijkl in terms of Keroneker delta function is very useful to express the
scattering potential in terms of inner product of the polarizations and slowness vectors. It
is also useful to decompose the scattering potential into the contributions from isotropic
and anisotropic terms. In what follows we will explain in details the relationship between
the components of stiffness tensor and Thomsen anisotropic parameters and quality factors.
In an viscoelastic media, attenuation is characterized by quality factor Q. The following
definitions establishes the framework of our analysis of scattering induced by anisotropic
viscoelastic inclusions. In an attenuative media the stiffness tensor is complex which the
real part is related to the elastic and anisotropic properties and imaginary part is related to
the quality factors. Corresponding to each independent component of stiffness tensor there
is a quality factor defined by Qmn = cmn/c

I
mn, where cmn and cImn are real and imaginary

parts of the complex stiffness tensor ĉmn. We also use the Voigt notation where m = ij and
n = kl. As a result ĉmn can be written as a function of the quality factor tensor

ĉmn = cmn
(
1 + iQ−1mn

)
. (3)

The dependency on Q factor express the dissipative effects. To describe the effects of
anisotropy of the reflectivity there is a notation proposed by Thomsen (1986) which enables
us to separate the influence of anisotropy from the other properties. Complex Thomsen
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parameters are defined

ε̂ =
ĉ11 − ĉ33

2ĉ33
, (4)

γ̂ =
ĉ66 − c55

2ĉ55
, (5)

δ̂ =
(ĉ13 + ĉ55)

2 − (ĉ33 − ĉ55)2

2ĉ33(ĉ33 − ĉ55)
. (6)

In order to address the contributions of attenuation in scattering potentials we need to de-
composed the Thomsen parameters into the real and imaginary parts. Incorporating (3) in
(4)-(6) and assuming the low-attenuation condition Q−1ij � 1 we get

ε̂ = ε+
i

2
Q−133 εQ, (7)

δ̂ = δ +
i

2
Q−133 δQ, (8)

γ̂ = γ +
i

2
Q−155 γQ, (9)

where ε, δ and γ are the well known Thompson parameters.These parameters are related
to the phase velocities in an VTI media. ε is the P-wave anisotropy parameter refers to the
anisotropy of rock in the absence of attenuation. It is the difference between the vertical
and horizontal P-wave velocities. The parameter δ called small offset NMO factor which
controls the near-vertical anisotropy as it is not a function of horizontal P-wave velocity.
γ is related to the SH-wave anisotropy which is the difference between the vertical and
horizontal SH-wave velocities. In addition the contributions from attenuation in medium
in the Thomsen parameters are given by Yaping and Tsvankin (2006)

εQ =
Q33 −Q11

Q11

δQ = 2
c13(c13 + c55)

c33(c33 − c55)
Q33 −Q13

Q13

+
c55(c13 + c33)

2

c33(c33 − c55)2
Q33 −Q55

Q55

,

γQ =
Q55 −Q66

Q66

.

Since we are interested in understanding of dependency of the perturbations in complex
stiffness tensor in terms of the changes in medium properties, we first write the components
of ĉij in terms of Thomsen parameters and quality factors. Incorporating equations (7)-(9)
leads us to express the components of the stiffness tensor in terms of Thomsen parameters

ĉ33 =c33(1 + iQ−133 ),

ĉ55 =c55(1 + iQ−155 ),

ĉ11 =c33(1 + 2ε) + iQ−133 c33(1 + 2ε+ εQ),

ĉ66 =c55(1 + 2γ) + iQ−155 c55(1 + 2γ + γQ),

ĉ13 =c33(1 + δ)− 2c55 + iQ−133 c33(1 + δ + δQ)− 2iQ−155 c55.

(10)
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Throughout the present work we assume that the weak anisotropy |γ|, |δ|, |ε| � 1 and
weak attenuation Q−133 , Q

−1
55 � 1. It is clear that real part of the stiffness tensor depends

to five elastic-anisotropic components; c33 related to the P-wave impendence, c55 related
to the shear modulus, and Thomsen parameters ε, δ, γ. The imaginary part including
five viscoelastic-anisotropic parameters; P-wave quality factor Q−133 , S-wave quality factor
Q−155 and Q-dependent Thomsen parameters εQ, ∆Q, γQ. We want to have a theory which
describe the scattering from inclusions in viscoelastic VTI media. The natural basic tool
for such a theory will be explained in next section based on the equations we have derived
yet. In what follows for notational simplicity we use QP for P-wave quality factor instead
of Q33 and QS for S-wave quality factor instead of Q55.

PERTURBATIONS IN STIFFNESS TENSOR AND BORN APPROXIMATION

In this section we derive the central result of this paper, scattering potential for scatter-
ing of P-,SI and SII waves. Figure (1.a) , is a schematic description of the two layer vis-
coelastic VTI medium with weak anisotropy and attenuation. The properties can be divided
into four parts: elastic properties including density, P- and S-wave velocities; viscoelastic
properties including P- and S-wave quality factors; anisotropic parameters including three
Thomsen parameters and three anisotropic viscoelastic Thomsen parameters. For a low
contrast medium properties across the boundary are slightly different. As a result a small
portion of the incidence wave is reflected from the boundary and the majority transmitted
to the lower medium. In this case we can linearized the reflection coefficients in terms of
the first order perturbations in medium properties.

On the other hand figure (1.b) illustrate the configuration of the scattering in anisotropic
viscoelastic medium in the context of Born approximation. The background medium is de-
scribed by three elastic parameters P-wave velocity VP0, S-wave velocity VS0 and density
ρ0; two viscoelastic parameters P-wave quality factor QP0 and S-wave quality factor QS0;
three anisotropic parameters ε0, δ0 and γ0 and corresponding Q-dependent parameters
εQ0, δQ0, δQ0. Wave traveling in the reference medium interacts with these scatter points
that randomly distributed. Technically an incident wave undergoes a sequence of multiple
scattering events from the perturbations. If we consider the whole scattering process as a
series, the first term describes the single scattering of the incident wave, while the follow-
ing terms describe then scattering of successively higher order. For the small perturbations,
higher-order terms have negligible contributions. Thus, only the first iteration of the series
is taken into account, i.e. only single scattering. Scattering from elastic inclusions is well
known and studied by many authors and recently the volume scattering of the inhomoge-
neous and homogeneous waves in an low-loss viscoelastic media has been developed by
Moradi and Innanen (2016).

For a medium with welded boundary the difference between the density in lower layer
(ρ2) and density in upper layer (ρ1) is represented by ∆ρ = ρ2 − ρ1. Also properties
without subscripts 1(2) refers to the average of upper and lower properties, for example
ρ = (ρ1 + ρ2)/2, is the average of the upper and lower density. Fractional changes in
density across the boundary is given by ∆ρ/ρ which for low-contrast medium is much
smaller than unity. The same notation is valid for the fractional changes in P- and S-wave
velocities and P- and S-wave quality factors. We use the fractional changes for the five
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b) Born approximationa) Low-contrast approximation

FIG. 1. a) Schematic description of the two anisotropic viscoelastic layer Medium, the upper
medium is characterized by its three elastic parameters P-wave velocity VP1, S-wave velocity VS1
and density ρ1; two viscoelastic parameters P-wave quality factor QP1 and S-wave quality factor
QS1; three anisotropic parameters ε1, δ1 and γ1 and corresponding Thomsen parameters quality
factor εQ1, δQ1, δQ1. is characterized by its three elastic parameters P-wave velocity VP2, S-wave ve-
locity VS2 and density ρ2; two viscoelastic parameters P-wave quality factor QP2 and S-wave quality
factor QS2; three anisotropic parameters ε2, δ2 and γ2 and corresponding Thomsen parameters
quality factor εQ1, δQ2, δQ2. b) Diagram illustrating the mathematics of Born approximation based
on the perturbation theory. The background medium is anisotropic viscoelastic medium character-
ized by its three elastic parameters P-wave velocity VP0, S-wave velocity VS0 and density ρ0; two
viscoelastic parameters P-wave quality factor QP0 and S-wave quality factor QS0; three anisotropic
parameters ε0, δ0 and γ0 and corresponding Thomsen parameters quality factor εQ0, δQ0, δQ0. Per-
turbations in an anisotropic viscoelastic medium are characterized by 11 components represented
by ∆ρ, ∆VP, ∆VSE, ∆ε, ∆δ, ∆γ, ∆QP, ∆QS, ∆εQ, ∆δQ, ∆γQ.
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aforementioned parameters as the differences in these quantities are grater than unity and
can not be used as the perturbation terms. However for Thompson parameters since for the
weak anisotropy they are much smaller than unity we can use the differences in Thompson
parameters as perturbation terms.

In the context of Born approximation ∆ρ = ρ − ρ0 denotes the difference between
the density in actual medium ρ and density in the background medium ρ0. In this case
the fractional changes in properties can be represented by either ∆ρ/ρ0 or ∆ρ/ρ as both
of them are much smaller than unity and can be used as the perturbation. Similar to the
low contrast medium, the perturbation terms for anisotropic parameters are given by the
difference between the properties instead of the fractional changes. Variation in properties
also called fractional changes or inclusions. Waves propagating in the background can be
scattered by the inclusions in eleven properties are shown in figure (1.b).

Let us start our discussion with perturbations in anisotropic parameters. Changes in
complex Thomsen parameters can be expressed in terms of changes in real and in Q-
dependent Thomsen parameters

∆ε̂ =

(
ε+

i

2
Q−1P εQ

)
−
(
ε0 +

i

2
Q−1P0εQ0

)
, (11)

∆δ̂ =

(
δ +

i

2
Q−1P δQ

)
−
(
δ0 +

i

2
Q−1P0δQ0

)
, (12)

∆γ̂ =

(
γ +

i

2
Q−1S γQ

)
−
(
γ0 +

i

2
Q−1S0 γQ0

)
. (13)

As we have discussed earlier, quantities without the subscript ’0’ refers to the quantities
in the actual medium. To simplify the above expressions we replace all quantities in ac-
tual medium in terms of their values in reference medium and perturbations. First for the
Thomsen parameters we have

ε = ε0 + ∆ε, εQ = εQ0 + ∆εQ,

δ = δ0 + ∆δ, δQ = δQ0 + ∆δQ,

γ = γ0 + ∆γ, γQ = γQ0 + ∆γQ.

(14)

For inverse P- and S-wave quality factors Q−1P and Q−1S we can write

Q−1P = (QP0 + ∆QP)−1 ≈ Q−1P0

(
1− ∆QP

QP

)
,

Q−1S = (QS0 + ∆QS)−1 ≈ Q−1S0

(
1− ∆QS

QS

)
.

(15)

Where we take advantages of both low-loss attenuation and weak contrast assumptions re-
spectively given by

(
Q−1P0 , Q

−1
S0

)
� 1 and (∆QP/QP,∆QS/QS)� 1. Incorporating equa-

tions (14) and (15) into equations (11)-(13) and considering the first order in perturbations,
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we arrive at

∆ε̂ =∆ε+
i

2
Q−1P0∆εQ, (16)

∆δ̂ =∆δ +
i

2
Q−1P0∆δQ, (17)

∆γ̂ =∆γ +
i

2
Q−1S0 ∆γQ. (18)

As we can see for a elastic background as Q−1P0 = Q−1S0 = 0, the Q-dependent part vanishes
and has no effect on the radiation patterns. In trying to understand the dependency of the
perturbations in stiffness tensor to the changes in density, velocities and quality factors,
we expand the changes in isotropic components c33 and c55, as all other components of
stiffness tensor are expressed in terms of these two components. Let us first consider to the
change in c33 component

∆ĉ33 = ĉ33 − ĉ(0)330 = ρV̂ 2
P − ρ0V̂ 2

P0. (19)

Where the complex V̂P and V̂P0 are the P-wave velocity in actual and reference background
which are written in terms of elastic P-wave velocity and P-wave quality factors as

V̂ 2
P = V 2

P

(
1 + iQ−1P /2

)2 ≈ V 2
P

(
1 + iQ−1P

)
,

V̂ 2
P0 = V 2

P0

(
1 + iQ−1P0/2

)2 ≈ V 2
P0

(
1 + iQ−1P0

)
.

(20)

Inserting expressions in (20) into (19) and using ρ = ρ0 + ∆ρ and V 2
P = V 2

P0 + 2VP0∆VP
we finally arrive at

∆ĉ33
ĉ330

=

(
∆ρ

ρ
+ 2

∆VP
VP

)
− iQ−1P0

∆QP

QP

, (21)

where ĉP0 = ρ0V̂
2
P0. We can see that the fractional perturbation in ĉ33 decomposed into

two component. The real part is the perturbations in density and P-wave velocity and the
imaginary part as a function of changes in density, P-wave velocity and changes in P-wave
quality factor. In this expression we can see that even if the changes in P-wave quality
factor is zero but the reference medium is viscoelastic, the contributions for anelasticity is
not zero. In a similar manner we calculate the fractional perturbation in c55

∆ĉ55
ĉS0

=

(
∆ρ

ρ
+ 2

∆VS
VS

)
− iQ−1S0

∆QS

QS

, (22)

where ĉS0 = ρ0V̂
2
S0. As we can see changes in c55 depend to the changes in density, S-wave

velocity and S-wave quality factor. Changes in other components of the stiffness tensor are
expressed in terms of changes in c33, c55 and changes in Thomsen parameters.

∆ĉ11 = ĉ11 − ĉ(0)11 = ∆ĉ33 + 2ĉ
(0)
33 ∆ε̂,

∆ĉ13 = ĉ13 − ĉ(0)13 = ∆ĉ33 − 2∆ĉ55 + c
(0)
33 ∆δ̂,

∆ĉ66 = ĉ66 − ĉ(0)66 = ∆ĉ55 + 2ĉ
(0)
55 ∆γ̂,

∆ĉ12 = ĉ12 − ĉ(0)12 = ∆ĉ33 − 2∆ĉ55 + 2ĉ
(0)
33 ∆ε̂− 4ĉ

(0)
55 ∆γ̂.

(23)
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The perturbation in the aforementioned components of stiffness tensor are functions of
changes in elastic and anelastic parameters, Thomsen parameters and Q-dependent Thom-
sen parameters. These are the basic elements of out of which scattering potentials are
constructed by changes in different properties in media. To conclude this section let us
observe how changes in ĉijkl can decomposed into the isotropic and anisotropic terms. We
will see later that such expressions help us to compare our result with the previously driven
scattering potentials for elastic, and viscoelastic media. Using (2) and (23), it follows now
that the changes in complex stiffness tensor can be written in the following form

∆ĉijkl = ∆ĉIsoijkl + ∆ĉεijkl + ∆ĉδijkl + ∆ĉγijkl, (24)

where the isotropic part of the perturbation is given by

∆ĉIsoijkl = ∆ĉ33δijδkl + ∆ĉ55(δikδjk − 2δijδkl + δilδjk), (25)

and the perturbations related to the Thomsen parameters are

∆ĉεijkl = 2ĉ
(0)
33 ∆ε̂ {δijδkl}[1,2] ,

∆ĉδijkl = ĉ
(0)
33 ∆δ̂(δijδk3δl3 + δklδi3δj3)[1,2],

∆ĉγijkl = 2ĉ
(0)
55 ∆γ̂(δikδjl + δilδjk − 2δijδkl)[1,2] − 2ĉ

(0)
55 ∆γ̂(δjkδi3δl3 + δjlδi3δk3 − 2δklδi3δj3).

(26)
[1, 2] means the subscripts only take 1,2. The isotropic part ∆ĉIsoijkl including the changes
in density, P-wave velocity, S-wave velocity and P-wave quality factor, S-wave quality
factor. ∆ĉεijkl is sensitive to changes in Thomsen parameter ε and Q-dependent Thomsen
parameter εQ. Similar dependency is valid for ∆ĉγijkl and ∆ĉδijkl. In next section based on
definitions of the polarization and slowness vectors and perturbations in stiffness tensor we
formulate the scattering potentials.

SCATTERING POTENTIALS

Born approximation yields an expression for scattered wave which is linear in fractional
changes in medium properties. Second and higher order terms in this approximation are
neglected as these terms are related to the stronger contrast between the reference and actual
medium properties. Perturbations in stiffness tensor is essential to derive the scattering
potentials. In the case of elastic medium we have the perturbation in density, P- and S-
wave velocity. If we add attenuation and anisotropy to medium, in addition to changes
in elastic parameters we have the perturbations in three Thomsen parameters and three
Q-related Thomsen parameters we introduced in last section. Let us first consider to the
case that background medium and perturbations are both anisotropic viscoelastic with weak
anisotropy and weak attenuation. In this case the all parameters related to the background
medium are labeled by "0" otherwise parameters are related to the actual medium. Based
on the Born approximation, the difference between actual and background medium are
characterized by the perturbations. In what follows we consider the green function in actual
medium as the scattered wavefield whose incident wave is the green function in reference
medium. The so called Born kernel which is related to the scattering potential is given by
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(Beylkin and Burridge, 1990)

Kpq(x,xr,xs, ω) ≡ω2∆ρ(x)G
(0)
ip (xr,x, ω)G

(0)
iq (x,xs, ω)

−∆cijkl(x)
∂G

(0)
ip (xr,x, ω)

∂xj

∂G
(0)
kq (x,xs, ω)

∂xl
,

(27)

In the right hand side we applied the Einstein sum rule which states that there is sum
over repeated indexes. In addition, ∆ĉijkl = ĉijkl − ĉ

(0)
ijkl is the difference between the

non zero components of the stiffness tensor in actual and reference media. Additionally
G

(0)
iq (x,xs, ω) is the green function in the reference medium responsible for the propaga-

tion of the wave from source point xs to the point x where perturbations in density, ∆ρ,
and stiffness tensor ∆cijkl interact with the wavefield. After scattering, green function
G

(0)
ip (xr,x, ω) deliver the wavefield to the receiver point xr. We can write the green func-

tion in terms of the polarization vector in the source point xs as

G
(0)
ip (xr,x, ω) ≡ Sigp (xr − x, ω) ,

G
(0)
iq (x,xs, ω) ≡ Iigq (x− xs, ω) ,

(28)

where S and I respectively are the polarization vector of the scattered and incident wave,
defined at the scatter point x . In addition gp (xr − x, ω) is a vector field including the
function eiωkSc·(xr−x) where kSc is the slowness vector of the scattered wave field. In the
same way, gq (x− xs, ω) is a vector field defined at the scatter point x including the func-
tion eiωkIn·(x−xs) where kIn is the slowness vector of the incident wavefield. Consequently,
the differentiations in (27) takes the form

∂G
(0)
ip (xr,x, ω)

∂xj
= −iωSikSc

j gp (xr − x, ω) ,

∂G
(0)
kq (x,xs, ω)

∂xl
= iωIkkIn

l gq (x− xs, ω) .

(29)

Inserting (28) and (29) in equation (27) we get Kpq = ω2S(gpgq), where the frequency
independent scattering potential is given by

S = (S · I)∆ρ− ηmn∆ĉmn = (S · I)∆ρ− (SikSc
j IkkIn

l )∆ĉijkl (30)

where m = ij and n = kl refer to the Voigt notation. The scattering potential is a central
concept in Full waveform inversion as it is considered as sensitivity kernels. It also describe
the radiation pattern of scattered wavefield. Equation (30) is derived from the Lippmann-
Schwinger equation which represent the scattered wave as a superposition of the outgoing
waves scattered from the inclusions in media. In previous section we showed that changes
in stiffness tensor can be decomposed into the isotropic and anisotropic parts. By incorpo-
rating (25) and (26) in (30) and rearranging the the scattering potential in terms of changes
in isotropic and anisotropic parameters we have

SVTI = SIso + SAni
VTI, (31)
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with isotropic and anisotropic parts respectively given by

SIso = (S · I)∆ρ

− (S · kSc)(I · kIn)∆ĉ33

−
{

(S · I)(kSc · kIn) + (S · kIn)(I · kSc)− 2(S · kSc)(I · kIn)
}

∆ĉ55,

SAni
VTI = −2ĉ

(0)
33

{
(S · kSc)(I · kIn)

}
[x,y]

∆ε̂

− ĉ(0)33

{
(S · kSc)[x,y]IzkIn

z + (I · kIn)[x,y]SzkSc
z

}
∆δ̂

− 2ĉ
(0)
55

{
(S · I)(kSc · kIn) + (S · kIn)(I · kSc)− 2(S · kSc)(I · kIn)

}
[x,y]

∆γ̂.

(32)
Where superscripts ’Sc’ and ’In’, respectively refer to the scattered and incident waves.
Additionally [x, y] indicates the only x and y components in the expression. For exam-
ple (S · I)[x,y] = SxIx + SyIy. This unique decomposition of the scattering potential
into isotropic and anisotropic parts is quite significant as we will see in the course of our
discussions.

We note that the isotropic part includes not only contributions from changes in elastic
properties but also including the contributions from anelasticity in reference medium as
well as changes in quality factors. A similar explanation is valid for the anisotropic part,
it is sensitive to the changes in both real Thomsen parameters and Q-dependent Thomsen
parameters. To evaluate the scattering potential we need to determine the slowness and
polarization vectors for scattered and incident waves. In a viscoelastic media wave number
vector is given by a complex vector K = P− iA, where P is called the propagation vector
and A is attenuation vector which determines the direction of maximum attenuation. If
propagation and attenuation be in the same direction wave is called homogeneous. In
what follows we consider to the incident homogeneous wave which results the scattered
homogenous wave as well. In this case the polarization and slowness vectors for scattered
and incident waves for P-wave are given by

IP = V̂P0k
In
P ,

SP = V̂P0k
Sc
P ,

kIn
P =

KIn
P

ω
=

1

ω

(
PIn

P − iAIn
P

)
kSc
P =

KSc
P

ω
=

1

ω

(
PSc

P − iASc
P

)
(33)

In above equations, θP is the P-wave incident angle, the angle that direction of the inci-
dent P-wave makes with the z-axis. IP and SP respectively are the incident and scat-
tered P-wave polarization vectors; kIn

P and kSc
P respectively are the the incident and scat-

tered P-wave slowness vectors. Also incident P-wave propagation and attenuation vec-
tors respectively defined by PIn

P and AIn
P , and for scattered wave by PSc

P and ASc
P (Ap-

pendix B). Additionally complex P-wave velocity in background medium is defined by
V̂P0 = VP0(1+ i

2
Q−1P0) with elastic P-wave velocity VP0 and P-wave quality factor QP0 both

in reference medium. Furthermore for SI-wave also we have
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IS = V̂S0
(
y × kIn

S

)
,

SS = V̂S0
(
y × kSc

S

)
,

kIn
S =

KIn
S

ω
=

1

ω

(
PIn

S − iAIn
S

)
,

kSc
S =

KSc
S

ω
=

1

ω

(
PSc

S − iASc
S

)
.

(34)

Here we defined θS as the S-wave incident angle, IS and SS respectively are the inci-
dent and scattered P-wave polarization vectors; kIn

S and kSc
S respectively are the the incident

and scattered S-wave slowness vectors. Additionally complex S-wave velocity in back-
ground medium is defined by V̂S0 = VS0(1 + i

2
Q−1S0 ) with elastic S-wave velocity VS0 and

S-wave quality factor QS0 both in reference medium. Also incident S-wave propagation
and attenuation vectors respectively defined by PIn

S and AIn
S , and for scattered wave by PSc

S

and ASc
S (Appendix).

We note that the perturbations in stiffness tensor, expressed in the last section, is a
function of the changes in eleven anisotropic viscoelastic properties as a result the scat-
tering potential can change with corresponding medium properties. Inserting the polariza-
tion/slowness components (33) into (32), the scattering potential for scattering of P-wave
to P-wave is given by

SPP = (SP · IP)∆ρ

− (SP · kSc
P )(IP · kIn

P )∆ĉ33

−
[
(SP · IP)(kSc

P · kIn
P )− 2(SP · kSc

P )(IP · kIn
P ) + (SP · kIn

P )(IP · kSc
P )
]

∆ĉ55

− 2ĉ
(0)
33 (SPxkSc

PxIPxkIn
Px)∆ε̂

− ĉ(0)33 (SPxkSc
PxIPzkIn

Pz + SPzkSc
PzIPxkIn

Px)∆δ̂.

Where, ∆ĉ33 given (21) contains the contributions from the fractional in changes in density,
P-wave velocity, P-wave quality factor. Also ∆ĉ55 given by (22) including the fractional
in changes in density, S-wave velocity, S-wave quality factor. Additionally ∆ε̂ and ∆δ̂ are
given by equations (11) and (12) include the changes in Thomsen anisotropic parameters
and Q-dependent anisotropic parameters. Consequently the P-to-P scattering potential is
sensitive to changes in all other properties except changes in γ and γQ. Furthermore for
converted P-wave we have

SPSI = (SS · IP)∆ρ

−
[
(SS · IP)(kSc

S · kIn
P ) + (SS · kIn

P )(IP · kSc
S )
]

∆ĉ55

− 2ĉ
(0)
33 (SSxkSc

SxIPxkIn
Px)∆ε̂

− ĉ(0)33 (SSxkSc
SxIPzkIn

Pz + SSzkSc
SzIPxkIn

Px)∆δ̂.

Comparing to the P-to-P mode, the ∆ĉ33 terms does not appear here, as a result changes
in P-wave velocity and P-wave quality factors have a no contributions in P-to-SI scattering
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potential. For scattering of SI-wave to SI-wave the scattering potential

SSISI = (SS · IS)∆ρ

−
[
(SS · IS)(kSc

S · kIn
S ) + (SS · kIn

S )(IS · kSc
S )
]

∆ĉ55

− 2ĉ
(0)
33 (SSxkSc

SxISxkIn
Sx)∆ε̂

− ĉ(0)33 (SSxkSc
SxISzkIn

Sz + SSzkSc
SzISxkIn

Sx)∆δ̂.

The dependency of SI-to-SI mode to changes in properties is the same as P-to-SI mode.
For scattering of SII-wave to SII-wave the scattering potential is

SSIISII = ∆ρ− (kIn
S · kSc

S )∆ĉ55 − 2c
(0)
55 (kSc

Sxk
In
Sx)∆γ̂.

These expressions for scattering potentials demonstrate the role of changes in anisotropic
parameters in the scattering process. Changes in ε̂ and δ̂ affect the P-to-P, P-to-SI and SI-to-
SI scattering modes meanwhile changes in γ̂ occur only for SII to SII scattering mode. In
next section we will show that scattering potential can be separate out to the the following
components

• Isotropic Elastic (IS): sensitive to the changes in density P-and S-wave velocity.
This terms is the scattering potential for scattering of seismic wave in an isotropic
elastic reference media.

• Anisotropic Elastic (AE): sensitive to the changes in Thomsen parameters. In the
case that media is isotropic this term goes to zero. (IS+AE)-term is the scattering
potential for scattering of elastic wave in an anisotropic-elastic referent medium.

• Isotropic Viscoelastic (IV): is sensitive to the changes in density, P-and S-wave
velocities and P- and S-wave quality factors. In the case that Quality factors goes
to zero this term vanishes. (IS+iIV)-term is the scattering potential for scattering of
viscoelastic wave in an isotropic viscoelastic reference media.

• Anisotropic Viscoelastic (AV): is sensitive to the changes in Q-dependent Thomsen
parameters. In the case that media is either isotropic or elastic this term is zero.

So far we have discussed the elements of scattering potentials for various types of inci-
dent homogenous viscoelastic P, SI and SII waves. To conclude this section let us consider
that the scattering potentials derived so far can describe the distinct scattering problems
including, scattering of elastic waves in both isotropic and anisotropic media and scatter-
ing of viscoelastic waves in an isotropic viscoelastic media. Also the scattering potentials
coincides with the previously derived amplitude variations with offset for reflection of vis-
coelastic waves from boundary separating the two viscoelastic media or two anisotropic
viscoelastic media. In next section we discuss these problems one by one.

SCATTERING FORM ANISOTROPIC VISCOELASTIC INCLUSIONS

In what follows, we will present the scattering potentials developed in previous chapter
in more detail. We assume the low attenuation in which the higher orders of inverse quality
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factors Q−1P and Q−1S are negligible. The scattering potential can be decomposed into the
contributions in various types of medium properties in medium in Figure 2. Since we are
interested in the effects of changes in any medium properties either elastic or viscoelas-
tic/anisotropic, it is useful to decompose the scattering potential into the contribution in
changes in elastic, viscoelastic, anisotropic and viscoelastic-anisotropic parameters. Let us
consider the reference medium to be VTI viscoelastic media filled with the perturbations
in viscoelastic and anisotropic parameters. In what follows we defined the normalized
scattering potential as ρ−10 S. In this case the scattering potential decomposed into four
components

[PP] = [PP]IE + [PP]AE + i [PP]IV + i [PP]AV , (35)

with elastic, anisotropic, viscoelastic and viscoelastic anisotropic components

[PP]IE = [PP]ρIE
∆ρ

ρ
+ [PP]Vp

IE

∆VP
VP

+ [PP]Vs
IE

∆VS
VS

, (36)

[PP]AE = [PP]εAE ∆ε+ [PP]δAE ∆δ, (37)

[PP]IV = [PP]ρIV
∆ρ

ρ
+ [PP]Vs

IV

∆VS
VS

+ [PP]Qp
IV

∆QP

QP

+ [PP]Qs
IV

∆QS

QS

, (38)

[PP]AV = [PP]εAV ∆ε+ [PP]δAV ∆δ + [PP]
εQ
AV ∆εQ + [PP]

δQ
AV ∆δQ, (39)

where the sensitivities to each properties are

[PP]ρIE = −2 + 2 sin2 θP + 2V 2
SP sin2 2θP,

[PP]Vp
IE = −2,

[PP]Vs
IE = 4V 2

PS sin2 2θP,

[PP]εAE = −2 sin4 θP,

[PP]δAE = −1

2
sin2 2θP,

[PP]ρIV = 2V 2
SP sin2 2θP(Q−1S0 −Q

−1
P0) +Q−1P0

(
sin 2θP + 2V 2

SP sin 4θP
)

tan δP,

[PP]Vs
IV = 4V 2

SP sin2 2θP(Q−1S0 −Q
−1
P0) + 4Q−1P0V

2
PS sin 4θP tan δP,

[PP]Qp
IV = Q−1P0 ,

[PP]Qs
IV = −2Q−1S0 V

2
SP sin2 2θP,

[PP]εAV = −2Q−1P0 sin 2θP sin2 θP tan δP,

[PP]δAV = −1

2
Q−1P0 sin 4θP tan δP,

[PP]
εQ
AV = −Q−1P0 sin4 θP,

[PP]
δQ
AV = −1

4
Q−1P0 sin2 2θP.

Here we define VSP0 = VS0
VP0

. [PP]IE is the scattering potential illustrates the scattering of
the P-wave to P-wave in an isotropic elastic media. It has three components, [PP]ρIE is
the sensitivity of the scattered wavefield to density, [PP]Vp

IE is the sensitivity to the P-wave
velocity and [PP]Vs

IE sensitivity to the S-wave velocity.
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FIG. 2. Sensitivity of the elastic part of the P-to-P scattering potential to the changes in proper-
ties versus incident P-wave angle θP. From left to right, [PP]

ρ
IE, sensitivity to the density; [PP]

Vp
IE ,

sensitivity to the P-wave velocity; [PP]
Vs
IE , sensitivity to the S-wave velocity; [PP]

ε
AE sensitivity to the

Thompson parameter ε and [PP]
δ
AE sensitivity to the Thompson parameter δ. The S- to P-wave

velocity ratio for reference medium is chosen to be 1/2.
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FIG. 3. Sensitivity of the viscoelastic part of the P-to-P scattering potential to the changes in
properties versus incident P-wave angle θP. Top plots are the sensitivity of the isotropic viscoelastic
components. From left to right, [PP]

ρ
IV, sensitivity to the density; [PP]

Vs
IV, sensitivity to the S-wave

velocity; [PP]
Qp
IV , sensitivity to the P-wave quality factor; [PP]

Qs
IV , sensitivity to the S-wave quality

factor; The lower plots are the sensitivity of the anisotropic viscoelastic components. From left to
right ;[PP]

ε
AV, sensitivity to the Thomsen parameter ε; [PP]

δ
AV sensitivity to the Thomsen parameter

δ; [PP]
εQ
AV, sensitivity to the viscoelastic Thomsen parameter εQ; [PP]

δQ
AV sensitivity to the Thomsen

parameter δQ. Quality factor of P-wave for reference medium is to be 10 and for S-wave is 7. Also
the S- to P-wave velocity ratio for reference medium is chosen to be 1/2. P-wave attenuation angle
is chosen to be δP = π./6.
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FIG. 4. Sensitivity of the elastic part of the P-to-SI scattering potential to the changes in properties
versus incident P-wave angle θP. From left to right, [PSI]
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IE, sensitivity to the density; [PSI]
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sensitivity to the S-wave velocity; [PSI]
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AE sensitivity to the Thompson parameter ε and [PSI]
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sensitivity to the Thompson parameter δ. The S- to P-wave velocity ratio for reference medium is
chosen to be 1/2.
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FIG. 5. Sensitivity of the viscoelastic part of the P-to-SI scattering potential to the changes in
properties versus incident P-wave angle θP. Top plots are the sensitivity of the isotropic viscoelastic
components. From left to right, [PSI]

ρ
IV, sensitivity to the density; [PSI]

Vs
IV, sensitivity to the S-wave

velocity; [PSI]
Qp
IV , sensitivity to the P-wave quality factor; [PSI]

Qs
IV , sensitivity to the S-wave quality

factor; The lower plots are the sensitivity of the anisotropic viscoelastic components. From left to
right ;[PSI]

ε
AV, sensitivity to the Thomsen parameter ε; [PSI]

δ
AV sensitivity to the Thomsen parameter

δ; [PSI]
εQ
AV, sensitivity to the viscoelastic Thomsen parameter εQ; [PSI]

δQ
AV sensitivity to the Thomsen

parameter δQ. Quality factor of P-wave for reference medium is to be 10 and for S-wave is 7. Also
the S- to P-wave velocity ratio for reference medium is chosen to be 1/2. P- and S-wave attenuation
angle is chosen to be δP = π./6.
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The elastic component [PP]IE is the function of fractional changes in density, P-wave
and S-wave velocities. The anisotropic component [PP]AE desponds to the changes in
Thomsen parameters ε and δ. The viscoelastic component variate with the fractional
changes in P- and S-wave quality factors and S-wave velocity. Viscoelastic anisotropic
components depends to the changes in Q-dependent Thomsen parameters ∆εQ and ∆δQ.
For normal incident as θP = 0 the contributions from anisotropic and viscoelastic anisotropic
are zero. In [PP]AE and [PP]AV components there is no influence of changes in vertical P-
and S-wave velocities and corresponding quality factors. Also for small opening angles
only changes in δ and δQ influence the scattering potential. I the case that there is no frac-
tional changes in ε and δ, but the reference medium is anisotropic viscoelastic, scattering
potential is sensitive to the change in Q-dependent Thomsen parameters.

Our results coincides with the previously driven scattering potentials for special cases
like elastic and viscoelastic media. [PP]IE is the scattering potential for the case that both
reference medium and inclusions are elastic (Stolt and Weglein, 2012). ([PP]IE + i [PP]IV)
is the scattering potential for the scattering of inhomogeneous P-wave to P-wave in an
isotropic viscoelastic media (Moradi and Innanen, 2015). Finally in the case that both
reference medium and perturbations are VTI anisotropic media, the scattering potential is
given by ([PP]IE + [PP]AE).

In figure 2 we plot elastic isotropic and anisotropic sensitivities for scattering of P-wave
to P-wave versus the incident P-wave angle θP. Angle of incident have been considered to
be in the range (0◦, 360◦). The incident inhomogeneous P-wave propagates in an isotropic
viscoelastic reference medium and it can be scattered to either inhomogeneous P-wave or
SI-wave. The sensitivity of the elastic scattering potential potential, [PP]ρIE, to the density
has two lobes reaches maximum absolute values at 0◦ and 180◦. Radiation pattern of sen-
sitivity to P-wave velocity, [PP]Vp

IE , is circle independent of angle of incident. The similar
interpretation for the radiation patterns in figure 3 for viscoelastic components of the P-to-P
scattering potential. Figures 4-7 illustrates the radiation patters for elastic and viscoelastic
components of the P-to-SI, SI-to-SI and SII-to-SII scattering potentials.

The scattering potential that we derived can be transformed to the low-contrast reflec-
tion coefficients corresponding to incident P-wave to reflected P-wave. The proper trans-
formation is given by

RPP =
1

4 cos2 θP
[PP] = ÂPP + B̂PP sin2 θP + ĈPP sin2 θP tan2 θP (40)

where the coefficients ÂPP, B̂PP and ĈPP are complex depending to the changes in proper-
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ties as follows

ÂVTI
PP =

1

2

(
∆ρ

ρ
+

∆VP
VP

)
− i

4
Q−1P0

∆QP0

QP0

B̂PP =
1

2

[
∆VP
VP
− 4V 2

SP

(
∆ρ

ρ
+ 2

∆VS
VS

)
+ ∆δ

]
− i
[

1

4
Q−1P0

∆QP

QP

− 2V 2
SPQ

−1
S0

∆QS

QS

]
− i
[
2V 2

SP(Q−1S0 −Q
−1
P0)

(
∆ρ

ρ
+ 2

∆VS
VS

)
− 1

4
Q−1P0∆δQ

]
ĈPP =

1

2

[
∆VP
VP

+ ∆ε

]
− i

4
Q−1P0

∆QP

QP

+
i

4
Q−1P0∆εQ

(41)
Term ÂPP is called zero offset or normal incident reflection coefficient. It can be seen
that this term depends only to the changes in density, vertical P-wave velocity and P-wave
quality factor. Anisotropic and viscoelastic anisotropic properties does not influence this
term. The second coefficient B̂PP is called gradient and responsible for sin2 θP term. B̂PP

variate with changes in density, vertical P- and S-wave velocities, P- and S-wave quality
factors and δ and δQ. However changes in ε and εQ have no effect in the gradient term. The
last term ĈPP which is called curvature is influential for large angles of incident. This term
is affect by changes in P-wave related properties, vertical P-wave velocity, P-wave quality
factor, ε and εQ. We can rearrange the reflectivity into the following form

RVTI
PP = RIE

PP + RAE
PP + iRIV

PP + iRAV
PP, (42)

RIE
PP is the P-to-P reflection coefficients for low contrast elastic media well known to the

Aki-Richards approximation Aki and Richards (2002). (RIE
PP+iRIV

PP) is the approximate re-
flection coefficient for low contrast interfaces separating two arbitrary low-loss viscoelastic
media Moradi and Innanen (2016). Approximate PP reflection coefficient for weak-contrast
interfaces in weakly VTI anisotropic elastic media is given by (RIE

PP + RAE
PP) (Ruger 2000).

Finally RVTI
PP is the linearized homogeneous P-to-P reflection coefficients in attenuative

anisotropic VTI media (Behura and Tsvankin, 2009a). The only apparent difference is that
they present the P- and S-wave complex velocities as V̂P(S) = VP(S)(1 + iAP(S)) where
AP = Q−133 /2 and AS = Q−155 /2. As a result the changes in AP and AS can be written as

∆AP = AP −AP0 = −1

2
Q−1P0

∆QP

QP

,

∆AS = AS −AS0 = −1

2
Q−1S0

∆QS

QS

,

Now let us consider the converted wave, the discussion for the P-to-S wave scattering
can be carried out in an analogous manner that we did for PP scattering potential. The
scattering potential for scattering the P-wave to SI wave is given by

[PSI] = [PSI]IE + [PSI]AE + i [PSI]IV + i [PSI]AV , (43)
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with elastic, anisotropic, viscoelastic and viscoelastic anisotropic components

[PSI]IE = [PSI]ρIE
∆ρ

ρ
+ [PSI]Vs

IE

∆VS
VS

[PSI]AE = [PSI]εAE ∆ε+ [PSI]δAE ∆δ

[PSI]IV = [PSI]ρIV
∆ρ

ρ
+ [PSI]Vs

IV

∆VS
VS

+ [PSI]Qs
IV

∆QS

QS

[PSI]AV = [PSI]εAV ∆ε+ [PSI]δAV ∆δ + [PSI]
εQ
AV ∆εQ + [PSI]

δQ
AV ∆δQ

where

[PSI]ρIE = − sin(θP + θS)− VSP0 sin 2(θP + θS)

[PSI]Vs
IE = −2VSP0 sin 2(θP + θS)

[PSI]εAE = VPS0 sin 2θS sin2 θP

[PSI]δAE =
1

2
VPS0 cos 2θP sin 2θS

[PSI]ρIV = −1

2
VSP0(Q

−1
S0 −Q

−1
P0) sin 2(θP + θS)

− 1

2
[cos(θP + θS) + 2VSP0 cos 2(θP + θS)]

(
Q−1S0 tan δS +Q−1P0 tan δP

)
[PSI]Vs

IV = −VSP0(Q−1S0 −Q
−1
P0) sin 2(θP + θS)

− 2VSP0 cos 2(θP + θS)
(
Q−1S0 tan δS +Q−1P0 tan δP

)
[PSI]Qs

IV = VSP0Q
−1
S0 sin 2(θP + θS)

∆QS

QS

[PSI]εAV = −1

2
VPS0(Q

−1
S0 −Q

−1
P0) sin 2θS sin2 θP

+ VPS0
(
Q−1S0 cos 2θS sin θP tan δS +Q−1P0 sin 2θS cos θP tan δP

)
sin θP

[PSI]δAV = −1

4
VPS0(Q

−1
S0 −Q

−1
P0) cos 2θP sin 2θS

+
1

2
VPS

(
Q−1S0 cos 2θS cos 2θP tan δS −Q−1P0 sin 2θS sin 2θP tan δP

)
[PSI]

εQ
AV =

1

2
VPS0Q

−1
P0 sin 2θS sin2 θP

[PSI]
δQ
AV =

1

4
VPS0Q

−1
P0 cos 2θP sin 2θS

The elastic and viscoelastic component of the scattering potential [PSI]IE , [PSI]IV are sen-
sitive to the fractional changes in density and vertical S-wave velocity and S-wave quality
factor. Changes in vertical P-wave velocity and P-wave quality factor doesn’t have any
effects on these two terms. In addiction ([PSI]IE + i [PSI]IV) is the scattering potential
describe the scattering of the inhomogeneous P-wave into the inhomogeneous SI-wave in
an isotropic viscoelastic media. Regarding to the anisotropic and anisotropic viscoelastic
terms, for small angle of incident they are sensitive only to the changes in δ and δQ. For
large incident angle, changes in P-wave Thomsen parameter ε and δ would be influential.
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FIG. 6. Sensitivity of the elastic part of the SI-to-SI scattering potential to the changes in properties
versus incident S-wave angle θS. From left to right, [SISI]

ρ
IE, sensitivity to the density; [SISI]
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sensitivity to the S-wave velocity; [SIISII]
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the Thompson parameter γ. P-to-S velocity ratio, quality factor and attention angle same as figure
5.
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FIG. 7. Sensitivity of the viscoelastic part of the SI-to-SI scattering potential to the changes in
properties versus incident S-wave angle θS. Top plots are the sensitivity of the isotropic viscoelastic
components. From left to right, [SISI]

ρ
IV, sensitivity to the density; [SISI]

Vs
IV, sensitivity to the S-

wave velocity; [SISI]
Qs
IV , sensitivity to the S-wave quality factor; The lower plots are the sensitivity

of the anisotropic viscoelastic components. From left to right ;[SISI]
ε
AV, sensitivity to the Thomsen

parameter ε; [SISI]
δ
AV sensitivity to the Thomsen parameter δ; [SISI]

εQ
AV, sensitivity to the viscoelastic

Thomsen parameter εQ; [SISI]
δQ
AV sensitivity to the Thomsen parameter δQ. Quality factor of S-wave

for reference medium is 7. P-to-S velocity ratio, quality factor and attention angle same as figure 3.
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Similar to P-to-P case, for no contrast in anisotropic parameters ε and δ with anisotropic
viscoelastic medium the scattering potential is sensitive to the changes in εQ and δQ.

To evaluate the reflectivity scattering potential should be multiply with

RPSI = − sin θP
2 cos θS sin(θP + θS)

[PSI], (44)

In this case without loss of generality consider to the reflectivity for small incident angle.
We also use the Snell’s law in to express the reflected S-wave angle θS in terms of incident
P-wave angle θP. Keeping up to third order of sin θP the reflectivity in terms of power of
sin θP in an standard form of converted wave is given by

RVTI
PSI = (AIE

PSI + AAE
PSI + iAIV

PSI + iAVA
PSI) sin θP + (BIE

PSI +BAE
PSI + iBIV

PSI + iBVA
PSI) sin3 θP

(45)

where the complex coefficients are

AIE
PSI =−

(
1

2
+ VSP

)
∆ρ

ρ
− 2VSP

∆VS
VS

BIE
PSI =

1

4
VSP(3VSP + 2)

∆ρ

ρ
+ VSP(1 + 2VSP)

∆VS
VS

AAE
PSI =

1

1 + VSP
∆δ

BAE
PSI =

1

1 + VSP
∆ε+

VSP − 4

2(1 + VSP)
∆δ

AIV
PSI =− 1

2
VSP

(
Q−1S0 −Q

−1
P0

)(∆ρ

ρ
+ 2

∆VS
VS

)
+ VSPQ

−1
S0

∆QS

QS

BIV
PSI =

1

4
(3VSP + 1)

(
Q−1S0 −Q

−1
P0

) ∆ρ

ρ

− 1

2
VSP(1 + 2VSP)Q−1S0

∆QS

QS

+
1

2
VSP(4VSP + 1)

(
Q−1S0 −Q

−1
P0

) ∆VS
VS

AVA
PSI =

VSP
2(1 + VSP)2

(
Q−1S0 −Q

−1
P0

)
∆δ +

Q−1P0

2(1 + VSP)
∆δQ

BVA
PSI =−

VSP
(
Q−1S0 −Q

−1
P0

)
2(1 + VSP)2

{
∆ε− 5

2
∆δ

}
+

1

2(1 + VSP)
Q−1P0∆εQ +

VSP − 4

4(1 + VSP)
Q−1P0∆δQ

We can see that the isotropic elastic part including the first two coefficients P
SIA

IE and
P
SIB

IE is sensitive to the changes in density and S-wave quality factor. Anisotropic elastic
part is not affected by changes in anisotropic parameter γ, however the reflectivity changes
with ∆ε and ∆δ. For isotropic viscoelastic part denoted by coefficients P

SIA
AE
VTI and P

SIB
AE
VTI

are sensitive to changes in density and S-wave velocity and S-wave quality factor. Finally
the anisotropic viscoelastic part is sensitive to changes in both Thomsen parameters ε and
δ and their corresponding Q-dependent parameters εQ and δQ.
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The scattering potential for SI to SI waves

[SISI] = [SISI]IE + [SISI]AE + i [SISI]IV + i [SISI]AV , (46)

with elastic, anisotropic, viscoelastic and viscoelastic anisotropic components

[SISI]IE = −(cos 2θS + cos 4θS)
∆ρ

ρ
− 2 cos 4θS

∆VS
VS

[SISI]AE =
1

2
sin2 2θS(∆δ −∆ε)

[SISI]IV = cos 4θSQ
−1
S0

∆QS

QS

+Q−1S0 sin 2θS tan δS
∆ρ

ρ
+ 2Q−1S sin 4θS tan δS

(
∆ρ

ρ
+ 2

∆VS
VS

)
[SISI]AV =

1

4
sin2 2θSQ

−1
P0(∆δQ −∆εQ)− 1

2
Q−1S sin 4θS tan δS(∆ε−∆δ)

Here [SISI]IE is the scattering potential of scattering of SV-wave to the SV wave in an
isotropic elastic background where there are no attention and anisotropy present. This term
is sensitive to the changes in density and S-wave velocity only, on other words perturbation
in P-wave velocity can not scatter the incident SV-wave. ([SISI]IE + i [SISI]IV) terms refers
to the scattering of the homogeneous SI-wave in an isotropic viscoelastic background. We
can see that in the presence of the attenuation, incident SI-wave only influenced by the
change in the S-wave quality factor Q55. In total, in an viscoelastic anisotropic media
changes in seven parameters can cause the scattering, (ρ, VS,∆δ,∆ε,∆δQ,∆εQ).

Regarding to the reflectivity, we divide it into the real and imaginary parts

RVTI
SISI =

1

4 cos2 θS
[SISI] = <(RVTI

SISI) + i=(RVTI
SISI),

Where <(RVTI
SISI) is the approximate reflection coefficient for a weak contrast interface be-

tween two slightly different weakly anisotropic VTI media

<(RVTI
SISI) =− 1

2

[
∆ρ

ρ
+

∆VS
VS

]
+

[
7

2

∆VS
VS

+ 2
∆ρ

ρ
− 1

2
(∆δ −∆ε)

]
sin2 θS

−
[

1

2

∆VS
VS

]
sin2 θS tan2 θS

The first term is the normal incident reflection coefficients depends to the fractional changes
in density and S-wave velocity, anisotropy does not have any influence in this term. The
second term called gradient or the reflection coefficient for the small angle of incident.
Changes in anisotropic parameters only influence this term as there is no influence on the
third term called curvature from anisotropy. The imaginary part is related to the attenuation
in medium given by

=(RVTI
SISI) =

1

4
Q−1S0

∆QS

QS

− 1

4

[
7Q−1S0

∆QS

QS

+Q−1P0(∆δQ −∆εQ)

]
sin2 θS

+
1

4

[
Q−1S0

∆QS

QS

]
sin2 θS tan2 θS
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FIG. 8. Sensitivity of the elastic part of the SII-to-SII scattering potential to the changes in prop-
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IE, sensitivity to the density; [SIISII]

Vs
IE , sensitivity to the S-wave
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IE , sensitivity to the S-wave velocity; [SIISII]
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FIG. 9. Sensitivity of the viscoelastic part of the SII-to-SII scattering potential to the changes in
properties versus incident S-wave angle θS. Top plots are the sensitivity of the isotropic viscoelastic
components. From left to right, [SIISII]

ρ
IV, sensitivity to the density; [SIISII]
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IV, sensitivity to the S-
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AV sensitivity to the Thomsen parameter γQ. Quality factor of S-wave for

reference medium is 7. P-to-S velocity ratio, quality factor and attention angle same as figure 3.
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Finally the scattering potential for SII-to-SII scattering potential

[SIISII] = [SIISII]IE + [SIISII]AE + i [SIISII]IV + i [SIISII]AV , (47)

with elastic, anisotropic, viscoelastic and viscoelastic anisotropic components

[SIISII]IE =
∆ρ

ρ
+ cos 2θS

(
∆ρ

ρ
+ 2

∆VS
VS

)
[SIISII]AE = −2 sin2 θS∆γ

[SIISII]IV = −Q−1S0 sin 2θS tan δS

(
∆ρ

ρ
+ 2

∆VS
VS

)
−Q−1S0 cos 2θS

∆QS

QS

[SIISII]AV = −Q−1S0 sin2 θS∆γQ −Q−1S0 sin 2θS tan δS∆γ

In the absence of anisotropy the above expression reduces to the scattering potential for the
scattering of the inhomogeneous SII wave to the inhomogeneous SII wave. After multiply-
ing by −1/4 cos2 θS the reflectivity is

RVTI
SIISII = −1

2

(
∆ρ

ρ
+

∆VS
VS

)
+

1

2

(
∆VS
VS

+ ∆γ

)
tan2 θS

+
i

4
Q−1S0

∆QS

QS

− i

4
Q−1S0

[
2

∆QS

QS

−∆γQ

]
tan2 θS

ATTENUATIVE ORTHORHOMBIC MEDIA

A medium with orthorhombic symmetry has three mutually orthogonal mirror planes
of symmetry and described by nine independent elements (Tsvankin, 1997). In each sym-
metry plane the the medium exhibits the transverse isotropy. The stiffness tensor for or-
thorhombic media given by

Ĉorth =



Ĉ11 Ĉ12 Ĉ13 0 0 0

Ĉ12 Ĉ22 Ĉ23 0 0 0

Ĉ13 Ĉ23 Ĉ33 0 0 0

0 0 0 Ĉ44 0 0

0 0 0 0 Ĉ55 0
0 0 0 0 0 ĉ66


. (48)

The real part of the diagonal elements relate to the velocities along the coordinate axis. As
we will describe later, any component of the stiffness tensor is complex whose imaginary
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Model 1
C11 CI

11

C12 CI
12

C13 CI
13

C23 CI
23

C22 CI
22

C33 CI
33

C44 CI
44

C55 CI
55

C66 CI
66

Model 2
C11 Q11

C12 Q12

C13 Q13

C23 Q23

C22 Q22

C33 Q33

C44 Q44

C55 Q55

C66 Q66

Model 3
VP Q33

VS Q55

ε(1) ε
(1)
Q

ε(2) ε
(1)
Q

δ(1) δ
(1)
Q

δ(2) δ
(2)
Q

δ(3) δ
(3)
Q

γ(1) γ
(1)
Q

γ(2) γ
(2)
Q

Table 1. Three models of parametrization to describe the attenuative orthorhombic media.

part is related to the quality factor.

Ĉijkl = Ĉ23δijδkl + Ĉ66(δikδjl + δilδjk)

+ (Ĉ11 − Ĉ23 − 2Ĉ66)δi1δj1δk1δl1

+ (Ĉ22 − Ĉ23 − 2Ĉ66)δi2δj2δk2δl2

+ (Ĉ33 − Ĉ23 − 2Ĉ66)δi3δj3δk3δl3

+ (Ĉ12 − Ĉ23)(δi1δj1δk2δl2 + δi2δj2δk1δl1)

+ (Ĉ13 − Ĉ23)(δi1δj1δk3δl3 + δi3δj3δk1δl1)

+ (Ĉ44 − Ĉ66)(δi2δj3 + δi3δj2)(δk2δl3 + δk3δl2)

+ (Ĉ55 − Ĉ66)(δi1δj3 + δi3δj1)(δk1δl3 + δk3δl1).

(49)

Where we use the ’hat’ symbol to distinct the complex quantity from real. By introducing
the quality factor as a Qij = Cij/C

I
ij where Cij and CI

ij are real and imaginary parts of
the stiffness components. We can see corresponding to each independent components of
the stiffness tensor there is a component of quality factor. In what follows we will show an
another set of parameters characterized the attenuation in orthorhombic media. In fact in-
stead of above parameters we can have seven Q-dependent Thompson parameters plus two
S- and P-wave quality factors. Tsvankin defined the Thomsen parameters to characterize
the weak anisotropy in attenuative orthorhombic media by assuming the weak attenuation.
In table 1 illustrate the different types of parametrization that can be used to describe the
orthorhombic media. In model 1 medium described by real and imaginary parts of the stiff-
ness tensor, 18 parameters in total. In model 2 instead of imaginary parts of the stiffness
tensor, viscoelasticity describes by the components of the quality factor tensor. Model 3
which is the most useful parametrization is described by P- and S-wave velocities, seven
Thomsen parameters and for the viscoelastic part, by P- and S-wave quality factors and
seven Q-dependent anisotropic parameters. We suppose that the values of density and stiff-
ness tensor components change slightly from their corresponding reference values ρ(0) and
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C
(0)
ijkl

ρ = ρ0 + ∆ρ (50)

Cijkl = C
(0)
ijkl + ∆Cijkl (51)

Where superscript ’0’ indicates the value in reference medium. As we discussed before
these changes cause the scattering of incident wave. In fact the perturbed terms act as the
source term for the scattered wave satisfy in the wave equation. First we consider to the
case that the actual medium is elastic anisotropic orthorhombic, so that the changes in nine
elements of stiffness tensor C11,C22,C33,C44,C55,C66,C12,C13,C23 involve in scattering. We
showed in previous section that these components can be written in terms of density, P-
wave, S-wave velocity and Thompson parameters. Now the perturbation in stiffness tensor
is given by

∆Ĉort
ijkl = ∆Ĉ33Eijkl

+
1

2
∆Ĉ44

{
Fijkl + (Fijkl)[2,3] − (Fijkl)[1,3]

}
+

1

2
∆Ĉ55

{
Fijkl + (Fijkl)[1,3] − (Fijkl)[2,3]

}
+ Ĉ

(0)
33 ∆δ̂(1)(δi2δj2δk3δl3 + δi3δj3δk2δl2)

+ Ĉ
(0)
33 ∆δ̂(2)(δi1δj1δk3δl3 + δi3δj3δk1δl1)

+ Ĉ
(0)
33 ∆δ̂(3)(δi1δj1δk2δl2 + δi2δj2δk1δl1)

+ Ĉ
(0)
55 ∆γ̂(1) (Fijkl)[1,2]

+ Ĉ
(0)
44 ∆γ̂(2) (Fijkl)[1,2]

+ 2Ĉ
(0)
33 ∆ε̂(1)δi2δj2δk2δl2

+ 2Ĉ
(0)
33 ∆ε̂(2)

{
(Eijkl)[1,2] − δi2δj2δk2δl2

}
.

(52)

Where we defined the symmetric tensors Eijkl and Fijkl

Eijkl = δijδkl,

Fijkl = δikδjl + δilδjk − 2δijδkl.

The important feature of the above expression for perturbation in stiffness tensor is the
separation of the contributions of the anisotropy in scattering. for VTI media as Ĉ55 = Ĉ44

and δ(1) = δ(2) = δ and δ(3) = 0 ε(1) = ε(2) = ε γ(1) = γ(2) and C(0)
55 = C

(0)
44

∆Ĉvti
ijkl = ∆Ĉ33Eijkl + ∆Ĉ55Fijkl

+ Ĉ
(0)
33 ∆δ̂(δijδk3δl3 + δklδi3δj3 − 2δi3δj3δk3δl3)

+ 2Ĉ
(0)
55 ∆γ̂ (Fijkl)[1,2]

+ 2Ĉ
(0)
33 ∆ε̂(Eijkl)[1,2].

(53)

Where the first two terms are the perturbations from elastic parameters. We can summarize
what we have done so far. To apply the perturbation theory to extract the scattering poten-
tials due to the various types of inclusions in attenuative orthorhombic media, we start with
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the subscript notation of the stiffness tensor. Afterwards we introduced the anisotropic
Thompson parameters and corresponding Q-dependent parameters. To see the effects of
anisotropy on the scattering problem we derive a useful formula for the perturbation in
stiffness tensor including the changes in both elastic and anisotropic parameters. In fact
given the perturbed stiffness tensor we can construct the scattering potential components.
From the structure of the above expression can also be seen in an intuitive manner that
how changes in both elastic and anisotropic parameters affect the radiation patterns. The
scattering potential for orthorombic media is given by

S = (S · I)∆ρ−∆Ĉ33F

− 1

2
∆Ĉ44(E + E[2,3] − E[1,3])

− 1

2
∆Ĉ55(E + E[1,3] − E[2,3])

− Ĉ(0)
33 ∆δ̂(1)(S2kSc

2 I3kI
3 + S3kSc

3 I2kI
2)

− Ĉ(0)
33 ∆δ̂(2)(S1kSc

1 I3kI
3 + S3kSc

3 I1kI
1)

− Ĉ(0)
33 ∆δ̂(3)(S1kSc

1 I2kI
2 + S2kSc

2 I1kI
1)

−
(
Ĉ

(0)
55 ∆γ̂(1) + Ĉ

(0)
44 ∆γ̂(2)

)
E[1,2]

− 2Ĉ
(0)
33 ∆ε̂(1)(S2kSc

2 I2kI
2)

− 2Ĉ
(0)
33 ∆ε̂(2)

(
F[1,2] − S2kSc

2 I2kI
2

)
,

(54)

where we have defined

F = (S · kSc)(I · kIn)

E = (S · I)(kSc · kIn) + (S · kIn)(I · kSc)− 2(S · kSc)(I · kIn)

In addition the we define the subscript notation [1, 2] by means that the expression only
includes the 1 and 2 components, similar explanation for expressions with subscript [2, 3]
and [1, 3]. We consider to the incident homogeneous P-wave (with zero attenuation angle)
propagate in an isotropic viscoelastic reference medium interaction with the anisotropic-
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viscoelastic inclusions. From eq (54) the normalized scattering potential is given by

SPP = ρ−10 SPP =
∆ρ

ρ
(2 sin2 θP − 1)− ∆Ĉ33

Ĉ33

+ 4 sin2 θP cos2 θP (1− cos 2ϕP )V̂ 2
PS

∆Ĉ44

Ĉ44

+ 4 sin2 θP cos2 θP (1 + cos 2ϕP )V̂ 2
PS⊥

∆Ĉ55

Ĉ55

− 2∆δ̂(1) sin2 θP cos2 θP sin2 ϕP

− 2∆δ̂(2) sin2 θP cos2 θP cos2 ϕP

− 2∆δ̂(3) sin4 θP cos2 ϕP sin2 ϕP

− 2∆ε̂(1) sin4 θP sin4 ϕP

− 2∆ε̂(2)
(
1− sin4 ϕP

)
sin4 θP .

Where V̂PS = V̂S0
V̂P0

and V̂PS⊥ = V̂S⊥0

V̂P0
. For symmetry plane [x1, x3] (ϕP = 0) the above

expression reduce to
P
PSorth

xz = P
PLorth

xz +
(
P
PMorth

xz

)
sin2 θP +

(
P
PNorth

xz

)
sin4 θP , (55)

where the fisrt term called the intercept or normall incident term is given by

P
PLorth

xz = −2
∆VP
VP

+ iQ−1330

∆Q33

Q33

The second term which controls the sin2 θP term corresponds to the small angle scattering
potential

P
PMorth

xz = 2
∆ρ

ρ
+

8V 2
S⊥
V 2
P

[
∆ρ

ρ
+ 2

∆VS⊥
VS⊥

]
− 2∆δ(2)

+ i8

(
VS⊥
VP

)2 (
Q−1550 −Q−1330

) [∆ρ

ρ
+ 2

∆VS⊥
VS⊥

]
− i8Q−1550

(
VS⊥
VP

)2
∆Q55

Q55

− iQ−1330∆δ
(2)
Q

finally the third term would be more influential for large angles

P
PNorth

xz = −8V 2
S⊥
V 2
P

[
∆ρ

ρ
+ 2

∆VS⊥
VS⊥

]
+ 2∆δ(2) − 2∆ε(2)

− i8
(
VS⊥
VP

)2 (
Q−1550 −Q−1330

) [∆ρ

ρ
+ 2

∆VS⊥
VS⊥

]
+ i8Q−1550

(
VS⊥
VP

)2
∆Q55

Q55

+ iQ−1330(∆δ
(2)
Q −∆ε

(2)
Q )
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As the attenuation and anisotropy goes to zero the above equation reduces to the PP-
scattering potential for a P-wave traveling in an isotropic elastic media interacting with
the perturbations in density and P- and S-wave velocities. Removing the anisotropy and
keeping the anelasticity in (55) results the scattering potential for scattering of the P-wave
in an low-loss viscoelastic media with perturbations in five viscoelastic parameters. Now
let us analyse each term in equation (55). This equation illustrate the scattering of a ho-
mogeneous P-wave in an low-loss viscoelastic medium interacting with the perturbations
in anisotropic-viscoelastic perturbations. For normal angle of incident as θP = 0, PP ra-
diation pattern depends only to the changes in P-wave velocity and P-wave quality factor.
Anisotropic parameters do not influence the scattered P-wave for vertically incident P-
wave. The second term which related to the small angle of incident varies with the changes
in five anisotropic-viscoelastic parameters

(
ρ, VS⊥, Q55, δ

(2), δ
(2)
Q

)
.

CONCLUSION AND SUMMARY

Even for elastic medium exact reflection coefficients is a very complicated function of
medium properties. Nevertheless, under favorable conditions, if the changes in medium
properties across the boundary are small and for small angle of incident, it is possible to
find a reliable approximate solutions for reflection coefficients. Scattering potentials based
on the Born approximation describes the low contrast layered medium reflection coeffi-
cients for scattering of seismic waves from complex structures including the anisotropy
and attenuation. The scattering of the seismic waves from a viscoelastic VTI media is well
described by the scattering potential described by solutions by means of perturbation the-
ory. The advantages of this approach is that it does not need the exact solutions of the wave
equation. Our work is concerned with the scattering potential, relies on the perturbation
theory, for scattering of viscoelastic waves in an anisotropic viscoelastic media. Instead
of struggling with the mathematical difficulties of solutions of Zoeppritz equation and lin-
earization, we employ the geometry of the Born approximation which provides a useful and
simple language in which the amplitude variation with offset equations can be formulated
effectively and clearly.

When attenuation is included (to be specific let us say by adding the imaginary part
to the stiffness tensor) there arise additional terms associated with the quality factors and
anelastic Thomsen parameters. These extra terms can be seen as a deviation from the
anisotropic stiffness tensor. In our calculations we assumed that the medium is weak
anisotropic and attenuative, as a result inverse quality factors and Thomsen parameters
are much smaller than unity. Also the fractional changes in properties are such small that
higher orders can be neglected. In a first step using the Thomsen notation for definition of
anisotropic properties in medium, we extract the complex Thomsen parameters where the
real part characterized the anisotropy in medium and imaginary part refers to the anisotrpic-
viscoelastic properties in medium.

The detailed analysis has been performed how the scattering patterns depend to the
fractional changes in anisotropic and viscoelastic properties in medium. In particular we
decomposed the P- to P and P-to-SI scattering potentials into elastic, anisotropic, vis-
coelastic and anisotropic-viscoelastic components. Elastic components includes the frac-
tional changes in density, vertical P-wave velocity and vertical S-wave velocity; anisotropic
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component includes the changes in anisotropic Thomsen parameters; viscoelastic compo-
nents including the fractional changes in vertical P- and S-wave quality factors and frac-
tional changes in density, vertical P-wave velocity and vertical S-wave velocity; anisotropic
component including the changes in Q-dependent Thomsen parameters. The elastic and
anisotropic components are the real part of the scattering potential and viscoelastic and
viscoelastic-anisotropic components are the imaginary parts of the scattering potential.

HTI ANISOTROPIC MEDIA

Tensor form of the stiffness tensor for horizontally isotropic viscoelastic media can be
expressed as Ikelle and Amundsen (2005)

ĉHTI
ijkl = (ĉ33 − 2ĉ44)δijδkl + ĉ44(δikδjk + δilδjk)

+ (2ĉ44 − ĉ33 + ĉ13)(δijδk3δl3 + δklδi3δj3)

+ (ĉ66 − ĉ44)(δikδj3δl3 + δjkδi3δl3 + δilδj3δk3 + δjlδi3δk3)

+ (ĉ11 − 2ĉ13 + ĉ33 − 4ĉ66)δi3δj3δk3δl3

(56)

or in a matrix form

cHTI =


c11 c13 c13 0 0 0
c13 c33 c33 − 2c44 0 0 0
c13 c33 − 2c44 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c55

 . (57)

Here, similar to the VTI media, P-wave phase velocity along the vertical axis z is given by
VP =

√
c33/ρ, vertically S-wave velocity for shear wave polarized in z-direction is given

by V ⊥S =
√
c55/ρ and the velocity of the vertically propagating shear wave polarized in the

y direction is given by VS =
√
c44/ρ. Also the Thompsen parameters are defined as

ε(V ) =
c11 − c33

2c33
,

δ(V ) =
(c13 + c44)

2 − (c33 − c55)2

2c33(c33 − c55)
,

γ(V ) =
c55 − c44

2c44
.

We note that for weak anisotropy condition, V ⊥S = VS(1 − γ). In what follows we outline
the scattering potentials for the HTI. Most of the conclusions that we disscused for the VTI
media remain valid for the HTI case.
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Table 2. NotationSymbol Explanation Symbol Explanation
PIn

P Incident P-wave propagation vector AIn
P Incident P-wave attenuation vector

PIn
S Incident S-wave propagation vector AIn

S Incident S-wave attenuation vector
PSc

P Scattered P-wave propagation vector ASc
P Scattered P-wave attenuation vector

PSc
S Scattered S-wave propagation vector ASc

S Scattered S-wave attenuation vector
KIn

P Incident P-wave wavnumber vector KIn
S Incident S-wave wavnumber vector

KSc
P Scattered P-wave wavnumber vector KSc

S Scattered S-wave wavnumber vector
kIn
P Incident P-wave slowness vector kIn

S Incident S-wave slowness vector
kSc
P Scattered P-wave slowness vector kSc

S Scattered S-wave slowness vector
IP Incident P-wave polarization vector SP Scattered P-wave polarization vector
IS Incident S-wave polarization vector SS Scattered S-wave polarization vector
θP Incident/Scattered P-wave phase angle θS Incident/Scattered S-wave phase angle
δInP Incident P-wave attenuation angle δInS Incident S-wave attenuation angle
δScP Scattered P-wave attenuation angle δScS Scattered S-wave attenuation angle
VP P-wave velocity VS S-wave velocity
Q33 P-wave quality factor Q55 S-wave quality factor

COMPLEX POLARIZATION-SLOWNESS VECTORS ALGEBRA

Propagation and attenuation vectors for incident P-wave are

PIn
P =

ω

VP
(z cos θP + x sin θP), (58)

AIn
P =

ω

2VP
Q−1P0 sec δInP (z cos(θP − δInP ) + x sin(θP − δInP )), (59)

scattretd P-wave

PSc
P =

ω

VP
(x sin θP − z cos θP), (60)

ASc
P =

ω

2VP
Q−1P0 sec δScP (x sin(θP − δScP )− z cos(θP − δScP )), (61)

incident S-wave

PIn
S =

ω

VS
(z cos θS + x sin θS), (62)

AIn
S =

ω

2VS
Q−1S0 sec δInS (z cos(θS − δInS ) + x sin(θS − δInS )), (63)

scattered S-wave

PSc
S =

ω

VS
(x sin θS − z cos θS), (64)

ASc
S =

ω

2VS
Q−1S0 sec δScS (x sin(θS − δScS )− z cos(θS − δScS )). (65)
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Now the components of the wavenumber vector are given by

KIn
Px =PIn

Px − iAIn
Px =

ω

VP

[
sin θP

(
1− i

2
Q−1P0

)
+
i

2
cos θP tan δInP

]
, (66)

KIn
Pz =PIn

Pz − iAIn
Pz =

ω

VP

[
cos θP

(
1− i

2
Q−1P0

)
− i

2
sin θP tan δInP

]
, (67)

KIn
Sx =PIn

Sx − iAIn
Sx =

ω

VS

[
sin θS

(
1− i

2
Q−1S0

)
+
i

2
cos θS tan δInS

]
, (68)

KIn
Sz =PIn

Sz − iAIn
Sz =

ω

VS

[
cos θS

(
1− i

2
Q−1S0

)
− i

2
sin θS tan δInS

]
, (69)

KSc
Px =PSc

Px − iASc
Px =

ω

VP

[
sin θP

(
1− i

2
Q−1P0

)
+
i

2
cos θP tan δScP

]
, (70)

KSc
Pz =PSc

Pz − iASc
Pz = − ω

VP

[
cos θP

(
1− i

2
Q−1P0

)
− i

2
sin θP tan δScP

]
, (71)

KSc
Sx =PSc

Sx − iASc
Sx =

ω

VS

[
sin θS

(
1− i

2
Q−1S0

)
+
i

2
cos θS tan δScS

]
, (72)

KSc
Sz =PSc

Sz − iASc
Sz = − ω

VS

[
cos θS

(
1− i

2
Q−1S0

)
− i

2
sin θS tan δScS

]
. (73)

Inner product of incident and reflected propagation and attenuation vectors for P-waves

PIn
P ·PSc

P = −ω
2

V 2
P

cos 2θP,

PIn
P ·ASc

P = − ω2

2V 2
P

Q−1P0 sec δScP cos(2θP − δScP ),

PSc
P ·AIn

P = − ω2

2V 2
P

Q−1P0 sec δInP cos(2θP − δInP ),

(74)

Inner product of incident and reflected propagation and attenuation vectors for S-waves

PIn
S ·PSc

S = −ω
2

V 2
S

cos 2θS,

PIn
S ·ASc

S = − ω2

2V 2
S

Q−1S0 sec δScS cos(2θS − δScS ),

PSc
S ·AIn

S = − ω2

2V 2
S

Q−1S0 sec δInS cos(2θS − δInS ),

(75)

Inner product of incident and reflected propagation and attenuation vectors for P-waves and
S-waves

PIn
P ·PSc

S = − ω2

VPVS
cos(θP + θS),

PIn
P ·ASc

S = − ω2

VPVS
Q−1S sec δScS cos(θP + θS − δScS ),

PSc
P ·AIn

S = − ω2

VPVS
Q−1S sec δInS cos(θP + θS − δInS ),

(76)
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In low-loss case we have

KIn
P ·KSc

P = −ω
2

V 2
P

{
cos 2θP(1− iQ−1P0)− i

2
Q−1P0 sin 2θP

(
tan δScP + tan δInP

)}
,

KIn
S ·KSc

S = −ω
2

V 2
S

{
cos 2θS(1− iQ−1S0 )− i

2
Q−1S0 sin 2θS

(
tan δScS + tan δInS

)}
,

KIn
P ·KSc

S = − ω2

VPVS

{
cos(θP + θS)

(
1− i

2
Q−1S0 −

i

2
Q−1P0

)
− i

2
sin(θP + θS)

(
Q−1S0 tan δScS +Q−1P0 tan δInP

)}
.

(77)

Now consider to the cross product of the vectors

PSc
S ×PIn

P = −y ω2

VPVS
sin(θP + θS),

ASc
S ×PIn

P = −y ω2

2VSVP
Q−1S0 sec δScS sin(θP + θS − δScS ),

PSc
S ×AIn

P = −y ω2

2VSVP
Q−1P0 sec δInP sin(θP + θS − δInP ),

PSc
S ×PIn

S = −y ω
2

V 2
S

sin 2θS

ASc
S ×PIn

S = −y ω2

2V 2
S

Q−1S sec δScS sin(2θS − δScS ),

PSc
S ×AIn

S = −y ω2

2V 2
S

Q−1S sec δInP sin(2θS − δInS ),

(78)

we have

KSc
S ×KIn

P = −y ω2

VPVS

{
sin(θP + θS)

(
1− i

2
Q−1S0 −

i

2
Q−1P0

)
+
i

2
cos(θP + θS)

(
Q−1S0 tan δScS +Q−1P0 tan δInP

)}
,

KSc
S ×KIn

S = −y ω
2

V 2
S

{
sin 2θS

(
1− iQ−1S0

)
+
i

2
cos 2θSQ

−1
S0

(
tan δScS + tan δInS

)}
.

(79)

Consider to the P-to-P scattering potential. The incident and scattered P-wave is defined by

SP = V̂PK
Sc
P ,

IP = V̂PK
In
P .

(80)

Polarization for SI-wave

SS = V̂Sy ×KSc
S = y × (xkSc

Sx + zkSc
Sz) = −zV̂SkSc

Sx + xV̂SkSc
Sz

IS = V̂Sy ×KIn
S = y × (xkIn

Sx + zkIn
Sz) = −zV̂SkIn

Sx + xV̂SkIn
Sz

(81)

where incident and scattered slowness P-wave vectors are defined by kSc
P and kIn

P .
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SCATTERING POTENTIAL

P-to-P scattering potential: scattering potential is given by

[PP] = (SP · IP)
∆ρ

ρ
− ĉ

(0)
33

ρ0
(SP · kSc

P )(IP · kIn
P )

∆ĉ33

ĉ
(0)
33

−

(
ĉ
(0)
55

ĉ
(0)
33

)
ĉ
(0)
33

ρ0

[
(SP · IP)(kSc

P · kIn
P )− 2(SP · kSc

P )(IP · kIn
P ) + (SP · kIn

P )(IP · kSc
P )
] ∆ĉ55

ĉ
(0)
55

− 2ĉ
(0)
33 (SPxkSc

PxIPxkIn
Px)∆ε̂− ĉ

(0)
33 (SPxkSc

PxIPzkIn
Pz + SPzkSc

PzIPxkIn
Px)∆δ̂.

We consider to each term individually. In the first order approximation tan δScP ≈ tan δInP ≈
tan δP.

SP · IP =
V̂ 2
P

ω2
KIn

P ·KSc
P = − cos 2θP + iQ−1P0 sin 2θP tan δP,

ĉ
(0)
33

ρ0
(SP · kSc

P )(IP · kIn
P ) =

V̂ 4
P

ω4
(KIn

P ·KIn
P )(KSc

P ·KSc
P ) = 1,

ĉ
(0)
33

ρ0
(SP · IP)(kSc

P · kIn
P ) =

ĉ
(0)
33

ρ0
(SP · kIn

P )(IP · kSc
P ) =

V̂ 4
P

ω4

(
KSc

P ·KIn
P

)2
= cos2 2θP − iQ−1P0 sin 4θP tan δP

ĉ
(0)
33

ρ0
SPxkSc

PxIPxkIn
Px =

V̂ 4
P

ω4

(
KIn

PxK
Sc
Px

)2
= sin4 θP + iQ−1P0 sin 2θP sin2 θP tan δP,

ĉ
(0)
33

ρ0

(
SPxkSc

PxIPzkIn
Pz + SPzkSc

PzIPxkIn
Px

)
=

1

2

(
sin2 2θP + iQ−1P0 sin 4θP tan δP

)
.

(82)

As a result

[PP]IE = −(1 + cos 2θP − 2V 2
SP sin2 2θP)

∆ρ

ρ
− 2

∆VP
VP

+ 4V 2
SP sin2 2θP

∆VS
VS

[PP]AE = −2 sin4 θP∆ε− 1

2
sin2 2θP∆δ

[PP]IV = 2V 2
SP sin2 2θP

{
(Q−1S0 −Q

−1
P0)

(
∆ρ

ρ
+ 2

∆VS
VS

)
−Q−1S0

∆QS

QS

}
+Q−1P0

∆QP

QP

+Q−1P0 sin 2θP tan δP
∆ρ

ρ
+ 2Q−1P0V

2
SP sin 4θP tan δP

(
∆ρ

ρ
+ 2

∆VS
VS

)
[PP]AV = −Q−1P0 sin4 θP∆εQ −

1

4
Q−1P0 sin2 2θP∆δQ

− 2Q−1P0 sin 2θP sin2 θP tan δP∆ε− 1

2
Q−1P0 sin 4θP tan δP∆δ

Scattering of P-to-SI
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The scattering of P-to-SI wave is given by

[PSI] = (SS · IP)
∆ρ

ρ
− c

(0)
55

ρ0

[
(SS · IP)(kSc

S · kIn
P ) + (SS · kIn

P )(IP · kSc
S )
] ∆ĉ55

c
(0)
55

− 2
ĉ
(0)
33

ρ0
(SSxkSc

SxIPxkIn
Px)∆ε̂−

ĉ
(0)
33

ρ0
(SSxkSc

SxIPzkIn
Pz + SSzkSc

SzIPxkIn
Px)∆δ̂

We have

SS · IP =
V̂PV̂S
ω2

(
y ×KSc

S

)
·KIn

P =
V̂PV̂S
ω2

y · (KSc
S ×KIn

P )

SS · kIn
P =

V̂S
ω2

(
y ×KSc

S

)
·KIn

P =
V̂S
ω2

y · (KSc
S ×KIn

P )

IP · kSc
S =

V̂P
ω2

(KIn
P ·KSc

S )

ĉ
(0)
55

ρ0

[
(SS · IP)(kSc

S · kIn
P ) + (SS · kIn

P )(IP · kSc
S )
]

= 2
ĉ
(0)
55

ρ0

V̂PV̂S
ω4

y · (KSc
S ×KIn

P )(KIn
P ·KSc

S ) =

VS
VP

{
sin 2(θP + θS)

(
1 +

i

2
(Q−1S0 −Q

−1
P0)

)
+ i cos 2(θP + θS)

(
Q−1S0 tan δS +Q−1P0 tan δP

)}
(83)

2
ĉ
(0)
33

ρ0
SSxkSc

SxIPxkIn
Px = −2

V̂ 3
P V̂S
ω4

KSc
SxK

Sc
Sz

(
KIn

Px

)2
= −VP

VS

{
sin 2θS sin θP

(
1− i

2
(Q−1S0 −Q

−1
P0)

)
+ iQ−1S0 cos 2θS sin θP tan δS

+iQ−1P0 sin 2θS cos θP tan δP
}

sin θP

ĉ
(0)
33

ρ0

(
SSxkSc

SxIPzkIn
Pz + SSzkSc

SzIPxkIn
Px

)
= V̂ 2

P

(
SSxkSc

SxIPzkIn
Pz + SSzkSc

SzIPxkIn
Px

)
=

V̂ 3
P V̂S
ω4

{(
KIn

Pz

)2 − (KIn
Px

)2}
KSc

SzK
Sc
Sx =

− 1

2

VP
VS

{
cos 2θP sin 2θS

(
1− i

2
(Q−1S0 −Q

−1
P0)

)
+ iQ−1S0 cos 2θS cos 2θP tan δS

−iQ−1P0 sin 2θS sin 2θP tan δP
}

Finally
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[PSI]IE = −{sin(θP + θS) + VSP sin 2(θP + θS)} ∆ρ

ρ
− 2VSP sin 2(θP + θS)

∆VS
VS

[PSI]IV = −1

2
VSP sin 2(θP + θS)(Q−1S0 −Q

−1
P0)

∆ρ

ρ

− VSP sin 2(θP + θS)(Q−1S0 −Q
−1
P0)

∆VS
VS

+Q−1S0 VSP sin 2(θP + θS)
∆QS

QS

−
{

1

2
cos(θP + θS) + VSP cos 2(θP + θS)

}(
Q−1S0 tan δS +Q−1P0 tan δP

) ∆ρ

ρ

− 2VSP cos 2(θP + θS)
(
Q−1S0 tan δS +Q−1P0 tan δP

) ∆VS
VS

[PSI]AE = VPS sin 2θS sin2 θP∆ε+
1

2
VPS cos 2θP sin 2θS∆δ

[PSI]AV =
1

2
Q−1P0VPS sin 2θS sin θP∆εQ −

1

2
VPS sin 2θS sin2 θP

(
Q−1S −Q

−1
P0

)
∆ε

− 1

4
VPS cos 2θP sin 2θS

(
Q−1S −Q

−1
P0

)
∆δ +

1

4
Q−1P0VPS cos 2θP sin 2θS∆δQ

+ VPS
(
Q−1S0 cos 2θS sin θP tan δS +Q−1P0 sin 2θS cos θP tan δP

)
sin θP∆ε

+
1

2
VPS

(
Q−1S0 cos 2θS cos 2θP tan δS −Q−1P0 sin 2θS sin 2θP tan δP

)
∆δ

Scattering of SI-to-SI

[SISI] = (SS · IS)
∆ρ

ρ
− c

(0)
55

ρ

[
(SS · IS)(kSc

S · kIn
S ) + (SS · kIn

S )(IS · kSc
S )
] ∆ĉ55

c
(0)
55

− 2
ĉ
(0)
33

ρ0
(SSxkSc

SxISxkIn
Sx)∆ε̂−

ĉ
(0)
33

ρ0
(SSxkSc

SxISzkIn
Sz + SSzkSc

SzISxkIn
Sx)∆δ̂

we have

SS · IS =
V̂ 2
S

ω2
KSc

S ·KIn
S = − cos 2θS + iQ−1S0 sin 2θS tan δS

IS · kSc
S = V̂Sk

Sc
S · (y × kIn

S ) = V̂Sy · (kIn
S × kSc

S ) =
VS
ω2

y · (KIn
S ×KSc

S )

SS · kIn
S = V̂Sk

In
S · (y × kSc

S ) = V̂Sy · (kSc
S × kIn

S ) = −VS
ω2

y · (KIn
S ×KSc

S )

(84)
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as a result

c
(0)
S

ρ0

[
(SS · IS)(kSc

S · kIn
S ) + (SS · kIn

P )(IS · kSc
S )
]

=

V̂ 4
S

ω4

[
(KSc

S ·KIn
S )2 − (KIn

S ×KSc
S ) · (KIn

S ×KSc
S )
]

= cos 4θS − 2iQ−1S sin 4θS tan δS

− 2
ĉ
(0)
33

ρ0
(SSxkSc

SxISxkIn
Sx)∆ε̂−

ĉ
(0)
33

ρ0
(SSxkSc

SxISzkIn
Sz + SSzkSc

SzISxkIn
Sx)∆δ̂ =

− 2
V̂ 4
S

ω4
(KSc

SzK
Sc
SxK

In
SzK

In
Sx)(∆ε̂−∆δ̂) =

1

2

(
sin2 2θS − iQ−1S0 sin 4θS tan δS

)
and finally

[SISI]IE = −(cos 2θS + cos 4θS)
∆ρ

ρ
− 2 cos 4θS

∆VS
VS

[SISI]AE =
1

2
sin2 2θS(∆δ −∆ε)

[SISI]IV = cos 4θSQ
−1
S0

∆QS

QS

+Q−1S0 sin 2θS tan δS
∆ρ

ρ
+ 2Q−1S sin 4θS tan δS

(
∆ρ

ρ
+ 2

∆VS
VS

)
[SISI]AV =

1

4
sin2 2θSQ

−1
P0(∆δQ −∆εQ)− 1

2
Q−1S sin 4θS tan δS(∆ε−∆δ)
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