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ABSTRACT

IMMI stands for iterative modelling, migration and inversion. It proposes to incorporate
standard processing techniques into the process of full waveform inversion (FWI). Follow-
ing IMMI’s philosophy, we use a phase shift plus interpolation (PSPI) migration with a
deconvolution imaging condition to obtain the gradient, and well velocity to scale the gra-
dient into a velocity perturbation. The above contrasts with the use of a two-way wave
migration method (such as reverse time migration RTM), and the use of an approximation
of the inverse Hessian matrix or a line search to find the scale, as is done in standard FWI.
We show the suitability of estimating the subsurface velocity model by applying IMMI’s
approach using a synthetic example. The results confirms that the gradient obtained with
PSPI provides an adequate direction to minimize the objective function, and that well cali-
bration produces an efficient scale to convert the gradient into a velocity perturbation. We
evaluated the performance of the inversion when the maximum offset and the source inter-
val are changed with and without the presence of random noise. Generally speaking, larger
offsets and higher shot density generate better results, specially in the presence of noise.
Higher folds, produced by large offsets and small source interval, improve the inversion
result because the gradient is obtained by stacking the migrated data residuals.

INTRODUCTION

The objective of full waveform inversion is to estimate properties of the subsurface
based on the solution of the inverse problem for seismic data (Tarantola, 1984). Margrave
et al. (2010) described the process as an iterative cycle that involves four main steps:

The four steps of the FWI’s cycle are:

1) Generating synthetic seismic data (predicted data Ψr,k) from a very smoothed initial
model vo, and calculating the data residual δΨr,k = Ψr −Ψr,k.

2) Pre-stack depth migration using the current velocity model (vk−1 = vo, for iteration
1) of the data residual and stack M(δΨr,k). This provides the gradient or update direction.

3) Scaling or "calibrating" the gradient that produces the velocity perturbation δvk .

4) Updating the current velocity model vk = vk−1 + δvk, which will be used in the next
iteration.

Lailly (1983) and Tarantola (1984) showed that the depth migration of the data residual
produces the gradient of the objective function, which is defined in Equation 1.
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φk(x, z, w) =
∑
s,r

(Ψ−Ψk)2 (1)

The gradient is the element in the minimization scheme that provides the direction of
the velocity update. The other element modifies the length of the gradient and can be found
as the inverse Hessian or an approximation. If the inverse Hessian is replaced by a scalar
λ, the mathematical effort is reduced to the gradient or steepest-descent method.

Equation 2 represents the velocity model update in terms of the scalar λ and the gra-
dient of the objective function. The gradient is the result of crosscorrelating the incident
wave field emitted from the source Ψ̂s(x, z, ω) with the back-propagated residual wavefield
Ψ̂∗

r(s),k(x, z, ω) over a frequency range. This is a two-way wave migration. The scale λ is
commonly estimated by a line-search method which requires an extra forward problem per
shot (Virieux and Operto, 2009).

δv(x, z) = λ∇vφk(x, z, w) = λ

∫ ∑
s,r

ω2Ψ̂s(x, z, ω)δΨ̂∗
r(s),k(x, z, ω)dω (2)

IMMI was introduced by Margrave et al. (2012), it was thought as an alternative to
accomplish FWI by using tools already available and widely used in seismic processing.
Examples of the IMMI’s philosophy are the application of any depth migration method and
the incorporation of well information for scaling the gradient. Furthermore; the authors ar-
gue that using a deconvolution imaging condition, instead of the correlation used in RTM,
achieve something very similar to the application of the main diagonal elements of the in-
verse Hessian, that can be seen as a gain correction, as was shown by Shin et al. (2001). Pan
et al. (2014) applied IMMI and compared the crosscorrelation and deconvolution imaging
conditions. The showed that using a deconvolution based gradient compensates the geo-
metrical spreading.

Following IMMI’s approach, we use the phase shift plus interpolation (PSPI) migration
method (one-way wave migration) with a deconvolution imaging condition to obtain the
gradient. PSPI, introduced by Gazdag and Sguazzero (1984), allows using a range of fre-
quencies of interest which is very convenient to explore frequency employment strategies
in FWI. Pratt (1999) suggested that starting the inversion using low frequencies and then
move to higher ones may help to avoid local minima. We followed this strategy.

We estimated the scale λ in the form of a match filter by using well velocity information.
We will show this process in the following section

We will present the process of FWI within the perspective of IMMI with a synthetic
example. Then we will modify the maximum offset and the source interval in order to see
how the inversion result is affected. Finally, we will add random noise and compare the
results.
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IMMI’S PROCESS

True velocity model and observed shots

The true velocity model corresponds to a shallow synclinal that constitutes a reservoir
trap. The reservoir is characterized by a low P-wave velocity surrounded by a high velocity
medium (figure 1). Synthetics shots were generated by solving the acoustic wave equation
by finite differences. The wavelet is minimum phase with a dominant frequency of 20 Hz.
These shots will be considered the observed ones. The acquisition parameters for this case
are: source interval = 100 m, receiver interval = 10 m, maximum offset = 2000 m, fold =
20, number of shots = 81. The first, middle and last shots are shown in figure 2.

FIG. 1. True velocity model

FIG. 2. Observed shots.

The design of the seismic survey contemplated fold taper and migration apron to define
a zone where the performance of the inversion will be evaluated. The error in the model
will be measured in the zone of migration with full fold and no border effects (figure 3).
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FIG. 3. The inversion performance will be evaluated in the zone with full seismic coverage.

First iteration

The first iteration was done with an initial velocity model that was constructed by ap-
plying a Gaussian smoother to the true velocity model with a half-width of 290 m (figure 4).
We compared the reflectivity amplitude spectra of the initial and true model to the seismic
amplitude spectrum in the location of well B. The initial model provides low frequencies
between zero and 2 Hz. The seismic data contain information above 5 Hz. There is a gap
between 3 and 4 Hz where neither the initial model nor the seismic data contribute. The
true velocity model and the seismic have a frequency pick around 12 Hz, which is related
to the average period of 0.08 seconds in the model. Well C was used in the process of
gradient calibration.

An observed shot, a shot modelled with the initial model, and the data residual, are
displayed in figure 5. The direct arrival is virtually the only event in the modelled shot
because the smoothed initial model does not contain any significant velocity contrasts.
Therefore, the data residual is mainly the observed shot with an attenuated direct arrival.
Figure 6 shows the depth migration of data residual by using a PSPI method. We applied a
mute and stacked all the migrated differences to build the gradient. Note that the order of
magnitude of the gradient is minus 5. We are using a frequency range from 1 to 6 Hz for
the first iteration.

The next step is to scale the gradient. Well calibration reduces the computational cost
because we don’t need an extra forward modeling as it is done in the line search method.
The calibration process was described by Margrave et al. (2010). Firstly, the difference
between the well and the initial model velocities δvel is calculated . Then, an amplitude
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FIG. 4. A) True velocity model. B) Initial velocity model. C) Initial and true velocity curves in well B.
D) Amplitude spectra of seismic, true and initial velocity models.

FIG. 5. The data residual is the difference between observed and modeled shots.

scalar a and phase rotation φ, that make the gradient trace g in the well location more like
δvel, are estimated. The scalar a is found such that δvel−ag is minimized by least squares.
Finally, a convolutional match filter is estimated with a and φ, which is applied to all the
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FIG. 6. Depth migration of the data residual. The gradient is the result of stacking all the 
migrated data residuals. A mute before stacking is helps to avoid artifacts in the gradient.

gradient traces to obtain the velocity update. The gradient after scaling has a magnitude
order of 2. Figure 7 shows this process.

The final step of the cycle is to add the velocity update to the current velocity model
(figure 8). These new model is the one that will be used in the next iteration.

More iterations

The frequency band regularly increased 1 Hz in each iteration, as shown in Table 1. We
measured the error in the blind and calibration wells, and the error in the model. These
indicators will be analyzed to evaluate the performance of the inversion.

Table 1. Frequency range used in each iteration.

Iteration Frequency band (Hz)
1 1-6
2 2-7
3 3-8
. .

15 15-20

Figure 9 shows the behavior of the inverted velocity in the blind and calibration well,
as well as the error for both cases. The error was calculated as max(sum(abs(Vw − Vi))),
where Vw is the well velocity and Vi is the inverted velocity. The normalized error was
obtained by taking the error for the first iteration as reference. The inverted velocity highly
resembles the true velocity in the calibration well location. Its error sharply decreases in
the first iteration, it is very similar for iterations 2 and 3; then, it is steadily reduced from
iteration 4 to 9, when we cover frequencies from 5 to 15 Hz. When the maximum frequency
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FIG. 7. The gradient trace is scaled to be like the difference between the well and the initial model
velocities at the well location.

FIG. 8. The sum of initial velocity model and the velocity update results in a new velocity model that
will be used in the next iteration. Note the color bar of the update is from -300 to 300 m/s.

is greater than 15 Hz, the inversion does not longer improve. The error in the blind well has
a similar behavior than in the calibration well, it reaches its minimum in iteration 9. When
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we go to higher frequencies it starts to increase. The inverted velocity curve develops a pick
below 500 m after iteration 13. In general, the inversion tends to be better in the vicinity of
the calibration well. It is remarkable that the error always decreases in the calibration well,
even if we go to higher frequencies.

FIG. 9. Inversion performance in the calibration and blind well locations.

The error in the shots was calculated as the L2-norm of the difference between the
observed and the modelled shots. Figure 10 shows an observed and a modelled shots and
its difference for iteration 15. The modelled shot mimics the main seismic events of the
observed shot; however, the data residual shows details that couldn’t be reconstructed by
the inverted model. The L2-norm of the data residual steadily decreases in each iteration.

Figure 11 shows the comparison among the initial, final-inverted and true velocity mod-
els. With this synthetic example, we showed that IMMI is able to obtain the subsurface ve-
locity from the seismic shots by using a one-way wave migration method and well calibra-
tion. The 500-m depth reservoir has been well discriminated from the rocks that surround
it.

The location of the calibration and blind well are displayed in the models and their
error curves are compared to the error in the whole model. The error curves are very
similar, being slightly better the inversion at the calibration well location.
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FIG. 10. The shot error is calculated applying the L2 norm to the difference between the observed
and modeled shots.

FIG. 11. Initial, inverted and true velocity models at iteration 13. The error curves are very similar,
being slightly better the inversion at the calibration well location.

INVERSION PERFORMANCE WHEN VARYING MAXIMUM OFFSET AND
SOURCE INTERVAL WITH AND WITHOUT RANDOM NOISE

We will compare the performance of the inversion with different acquisition parameters
and when random noise is present. We will vary the maximum offset in the first test. When
we change this parameter, we also vary the total fold as shown in Table 2. We add some
random noise and vary the maximum offset in the second experiment. The third experiment
consists in varying the source interval, which also modifies the total fold and the number
of shots (Table 3). We add random noise and vary the source interval in the last test.

Table 2. Varying maximum offset
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Table 3. Varying source interval

Inversion performance when varying maximum offset

The maximum offset is a critical parameter in the acquisition of seismic data. The rule
of thumb says that we need at least offsets as large as the deeper target (Cordsen et al.,
2000). We compare the inversion result with four different maximum offsets: 500, 1000,
1500 and 2000 m. The reservoir is located at a depth of 500 m; however, we want to obtain
an inverted velocity model up to 1000 m. A qualitative comparison of the inversion is
shown in figure 12. The results correspond to the 13th iteration and the four maximum-
offset scenarios. The observed shot, modelled shot and the data residual are plotted at the
left side. The inverted and true velocities for the blind and calibration well are shown in the
middle. The inverted velocity model is displayed in the right side. The maximum time is
0.9 seconds, which is enough to record the maximum offset of 2000 m. Offsets larger than
2000 m do not contribute to the maximum depth model of 1000 m. The reservoir is located
at a time of 0.37 seconds, and the deeper reflector time is at 0.6 seconds. If we observe
the blind and calibration wells, we see that the four cases are able to resolve the reservoir;
however, the shallow part is better inverted when we use offsets of 1000 m or larger. Events
deeper than the reservoir are better inverted with offsets of 1500 m or larger. The velocity
in the reservoir is slightly overestimated when we use offsets of 1500 or 2000 m.

A quantitative assessment is shown in figure 13. The L2-norm of the data residual be-
haves very similar in the four scenarios. It dramatically decreases after the 7th iteration
when we use frequencies above 12 Hz. When we reach the frequency of 15 Hz (10th iter-
ation), it continues decreasing in a smaller rate. The maximum offset of 2000 m provides
the smallest error as we add more iterations. The error in the blind well shows that the
inversion is poor when we use offsets of 500 m. As we increase the maximum offset, the
error tends to be smaller. We note that the error starts to increase around the iteration 10,
which does not occur in the calibration well. In general, the inversion is better in the cal-
ibration well. This means that the gradient is been optimally scaled in the well location
where produces the best result.

This experiment has shown that offsets, even twice as larger than the target depth, fa-
vorably contribute to the inversion.

Inversion performance when varying maximum offset in the presence of noise

When we increase the maximum offset, we also augment the total fold, which con-
tributes to improve the signal to noise ratio. We want to know the effect of increasing the
maximum offset in the presence of random noise. The level of noise used in this exercise
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FIG. 12. Maximum offset of 500, 1000, 1500 and 2000 m were used to evaluate the inversion’s
performance. The inversion outcome is shown for the 13th iteration.

corresponds to a signal to noise ratio (S/N ) of 6.

The comparison of the inverted velocity models with and without noise for the 2000-m
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FIG. 13. Normalized error when varying maximum offset with no noise.

offset case is shown in figure 14. The damaging effect of random noise in the inversion is
evident.

FIG. 14. Inverted velocity model with and without noise using a maximum offset of 2000 m.

We contrasted the error for the four maximum-offset scenarios with and without noise
in figure 15. Larger offsets provide better results, as we expected. We found interesting
differences when comparing small vs large offsets. The error curves are very similar with
and without noise for the 500-m offset case, meaning that any inversion with small-offset
traces may not be improved, even if we rise the S/N with processing techniques. On the
other hand, when we have large offsets, there is still room to obtain better results if we in-
crease the S/N by applying attenuation noise techniques in the shot domain. It is interesting
that the error always decreases even with noise for a 2000-m offset in the calibration well.

Inversion performance when varying source interval

We used three different source intervals (SI) for this experiment: 250, 100 and 50 m.
The total fold varies as 8, 20 and 40, respectively. The maximum offset was kept at 2000 m
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FIG. 15. Normalized error when varying maximum offset with and without noise.

and no noise was added. Figure 16 shows how the inverted velocity model is affected with
different SI. We observe a strong foot print when the source interval is 250 m, the inversion
cannot recover the detail of the anticline’s top below the reservoir, and the layers above
appear discontinuous. All these issues are mitigated when the source interval is equal to
100 m. A SI=50 m produces a similar result as a SI=100 m. The plots of the errors (figure
17) confirm the qualitative assessment. The error is consistently higher for a SI=250 m,
while the error curves for 100 and 50 m are practically the same. The fact that we are not
considering noise, does not allow seeing the advantage of increasing the number of shots
and the fold. This case will be shown in the next experiment.

FIG. 16. Effect of varying the source interval in the inversion result. No noise was added. The
inverted velocity models for SI = 50 m and SI = 100 m are practically the same.

Inversion performance when varying source interval in the presence of noise

The fact that the gradient is obtained by stacking the migrated data residuals, suggests
that as the fold increases, the S/N should also increase, which may result in better inverted
models. We evaluate this hypothesis in this experiment.

Figure 18 shows the inverted velocity models for four different source intervals: 250,
100, 50 and 20 m. The corresponding folds are 8, 20, 40 and 100. We are keeping the
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FIG. 17. Error when varying the source interval with no noise.

maximum offset constant in 2000 m. Random noise related to a S/N=6 was added. Qual-
itatively, we can identify the reservoir in the four cases; however, it is better defined with
a source interval smaller than 100 m. The layers are more continuous and the top of the
anticline is better defined with source intervals of 50 and 20 m. The benefit of decreasing
the source interval can be better seen in the error plots (figure 19). The tendency is that the
inversion is enhanced as the number of shots increases.

FIG. 18. Inverted velocity model with and without noise using different source intervals.

FIG. 19. Normalized error when varying source interval with and without noise.
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CONCLUSION

We showed that IMMI’s approach for FWI is able to find the P-wave velocity model of
the subsurface in an acoustic context and with synthetic data. Within IMMI’s philosophy,
we proved that other depth migration techniques, such as PSPI, are suitable for obtaining
the gradient in the minimization scheme of FWI. We also showed that well calibration
provides an optimal scaling of the gradient in the vicinity of the well, and it still acceptably
works as we go away from the well location.

The result of the inversion is strongly influenced by random noise and acquisition pa-
rameters of the seismic survey. If we consider the rule of thumb of maximum offset equals
deeper target, the inversion of the model may be compromised. We observed that offsets as
large as twice the maximum target depth, favorably contribute to the inversion.

The gradient is obtained by stacking the migrated data residuals. The increment of
fold, produced by smaller shot intervals and larger offsets, plays an important role for the
improvement of the inversion. Generally speaking, larger offsets and higher shot density
increase the fold, which improves the performance of the inversion in the presence of noise.
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