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Instantaneous frequency estimation using weighted least 
squares Tikhonov regularization with box constraints 

Ahmed H. Sigiuk1 , Matthew J. Yedlin2 

ABSTRACT 
In this report, we begin with a brief introduction into the concept of instantaneous 
frequency, where we use the complex analytical signal to obtain the time dependent 
signal phase, and differentiate the phase with respect to time to obtain the instantaneous 
frequency. We reformulate our problem into a weighted least squares Tikhonov 
regularization with box constraints, and explain the advantages of the added terms in 
helping to smooth and stabilize our results. We conclude with some synthetic and real 
data simulation results and compare the proposed algorithm results with a well-
established time-frequency distribution method. 

INTRODUCTION 
The importance of instantaneous frequency (IF) in spectral signal analysis stems from 

the need to analyze signals that are both nonlinear and nonstationary. In many 
applications such as seismic, sonar and biomedical engineering, the instantaneous 
frequency is a time-varying parameter, which defines the location of the signal spectral 
peak as a function of time. This only gives physical meaning if the signal is a 
monocomponent signal with only one frequency or a narrow band of frequencies at each 
time instant. For multicomponent signals, the single value instantaneous frequency gives 
only an average frequency value over time, which has very little physical meaning. 
Hence, a decomposition of the signal is required to extract the different monocomponent 
modes present in the signal, prior to calculating the instantaneous frequency of each 
mode. 

In this report we start with the classical instantaneous frequency definition introduced 
by Gabor (Gabor,1946), which we will expand on by reformulating the problem into a 
weighted least squares Tikhonov regularization with box constraints inverse problem and 
compare our results with an alternative time-frequency energy distribution method based 
on the first frequency moment of the squares modulus of the STFT using a Gaussian 
window. 

This report is an extension of previous work (Yedlin et al. 2015) using Tikhonov 
regularization for instantaneous frequency estimation. 
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THEORY 
Classical Instantaneous Frequency Definition 

 Gabor proposed a method for generating a unique complex signal “Analytical signal 
(AS)” from a real one by using Hilbert transform. His method for obtaining the AS was 
achieved by first finding the FFT of the real signal, then by suppressing the negative 
frequency amplitude and multiplying the positive frequency amplitudes by two, which he 
then showed was equivalent to the following time domain representation. 

  𝑧𝑧(𝑡𝑡) =  𝑓𝑓(𝑡𝑡) +  𝑖𝑖 ℋ[𝑓𝑓(𝑡𝑡)], (1) 

  𝑧𝑧(𝑡𝑡) =  𝑓𝑓(𝑡𝑡) +  𝑖𝑖𝑖𝑖(𝑡𝑡). (2) 

   

where 𝑧𝑧(𝑡𝑡) is the analytical signal (AS), 𝑓𝑓(𝑡𝑡) is the real signal, and ℋ is the Hilbert 
transform (HT) defined as 

 
 ℋ[𝑓𝑓(𝑡𝑡)] =  �

𝑓𝑓(𝜏𝜏)
𝜋𝜋(𝑡𝑡 − 𝜏𝜏)

+∞

−∞
 𝑑𝑑𝑑𝑑. 

(3) 

 The analytical signal can also be written in polar form with 𝑎𝑎(𝑡𝑡) representing the 
magnitude with respect to time, and 𝜙𝜙(𝑡𝑡) representing the phase with respect to time. We 
note that the Hilbert transform ℋ[𝑓𝑓(𝑡𝑡)] is not a 90° phase shift of the original signal 𝑓𝑓(𝑡𝑡) 
unless the frequency spectrum of the amplitude 𝑎𝑎(𝑡𝑡) is less than the frequency spectrum 
of the phase signal 𝜙𝜙(𝑡𝑡) with no overlap (Boashash, 1992a,b). Under these conditions the 
AS using the Hilbert transform and the quadrature representation (7) and (8) are 
equivalent. 

  𝑧𝑧(𝑡𝑡) =   𝑎𝑎(𝑡𝑡) 𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) +  𝑖𝑖𝑖𝑖(𝑡𝑡), (4) 

 
𝑎𝑎(𝑡𝑡) =   ��𝑓𝑓(𝑡𝑡)�

2
+ �𝑔𝑔(𝑡𝑡)�

2
, 

(5) 

 
 𝜙𝜙(𝑡𝑡) =  tan−1 �

𝑔𝑔(𝑡𝑡)
𝑓𝑓(𝑡𝑡)

� . 
(6) 

These can be written in quadrature form as follows  

  𝑓𝑓(𝑡𝑡) =   𝑎𝑎(𝑡𝑡) cos[𝜙𝜙(𝑡𝑡)], (7) 

  𝑓𝑓(𝑡𝑡) =   𝑎𝑎(𝑡𝑡) sin[𝜙𝜙(𝑡𝑡)]. (8) 

where 𝜙𝜙(𝑡𝑡) is the instantaneous phase of the signal with respect to time, and by 
differentiating the (6), we obtain the instantaneous angular frequency (IAF) as follows  

 
 𝜔𝜔(𝑡𝑡) =

𝑑𝑑 𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  
𝑓𝑓(𝑡𝑡) 𝑔𝑔′(𝑡𝑡) + 𝑔𝑔(𝑡𝑡) 𝑓𝑓′(𝑡𝑡)

(𝑓𝑓(𝑡𝑡))2 + (𝑔𝑔(𝑡𝑡))2  
(9) 

 
 𝜔𝜔(𝑡𝑡) =

𝑓𝑓(𝑡𝑡) 𝑔𝑔′(𝑡𝑡) + 𝑔𝑔(𝑡𝑡) 𝑓𝑓′(𝑡𝑡)
(𝑎𝑎(𝑡𝑡))2 .  

(10) 

We can also find the instantaneous frequency by dividing the (IAF) by 2𝜋𝜋. 
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 𝐼𝐼𝐼𝐼 =  

𝜔𝜔(𝑡𝑡)
2𝜋𝜋

. 
(11) 

IF Estimation Using Weighted Least squares with Tikhonov regularization and box 
constraints    

By reformulating (10) into matrix format, we obtain the following linear equations. 

 𝐴𝐴𝐴𝐴 = 𝑏𝑏, (12) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝐴𝐴 =∥ f ∥2+∥ g ∥2  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, (13) 

 
𝑏𝑏 = 𝑓𝑓 ∘ �

Δ𝑔𝑔
Δ𝑡𝑡
� − 𝑔𝑔 ∘ �

Δ𝑓𝑓
Δ𝑡𝑡
�. 

(14) 

 

where 𝐴𝐴 is a diagonal matrix with squared envelope value, and the vector 𝑏𝑏 is computed 
from the first order derivative of the signal and its Hilbert transform. It is apparent that 
for most real signals the matrix 𝐴𝐴 is ill-conditioned (high ratio between smallest and 
highest eigenvalue), and the measurement vector 𝑏𝑏 is highly contaminated with noise. 

Weighted Least Squares Approach 
Let’s first start by reformulating the problem into a weighted least squares 

minimization problem with the following general solution  

 
𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐶𝐶𝑏𝑏

1
2 (𝐴𝐴𝐴𝐴 − 𝑏𝑏) ∥2 

2  
(15) 

 𝐴𝐴𝑇𝑇𝐶𝐶𝑏𝑏𝐴𝐴𝜔𝜔� = 𝐴𝐴𝑇𝑇𝐶𝐶𝑏𝑏𝑏𝑏 (16) 

From (16) we can show that to minimize the expected error in the estimated 𝜔𝜔� value, 
we select the matrix 𝐶𝐶𝑏𝑏 to be the covariance matrix to our error vector 𝑒𝑒 (𝑒𝑒 = 𝜔𝜔 − 𝜔𝜔�). In 
the simplest case of WGN, 𝐶𝐶𝑏𝑏 is a constant diagonal variance matrix (Strang, 2007). 

Least Squares Tikhonov Regularization Approach  
First, we introduce the general minimization of the sum of two squares. 

 𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∥2 
2 +  𝛼𝛼 ∥ 𝐵𝐵𝐵𝐵 − 𝑑𝑑 ∥2 

2  (17) 

with the following solution, 

 (𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛼𝛼𝛼𝛼𝑇𝑇𝐵𝐵)𝜔𝜔� = 𝐴𝐴𝑇𝑇𝑏𝑏 + 𝛼𝛼𝐵𝐵𝑇𝑇𝑑𝑑 (18) 

The general solution for 𝜔𝜔� depends on the value of the weight 𝛼𝛼. Our original problem 
(12) can be very “ill-posed.” Which often arises in inverse problems (Mead and Renaut, 
2010). Our solution in (16) is unreliable either because 𝐴𝐴𝑇𝑇𝐴𝐴 has a high ratio between 
smallest and largest eigenvalues (worse case 𝐴𝐴𝑇𝑇𝐴𝐴 might be singular), or because 𝑏𝑏 is very 
noisy which is amplified through differentiation, giving a wrong value for 𝜔𝜔�. 

A simpler form of least squares regularization is Tikhonov regularization, which takes 
the following form, 
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 𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∥ 
2+  𝛼𝛼 ∥ 𝜔𝜔 ∥2 (19) 

 (𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛼𝛼𝛼𝛼)𝜔𝜔�𝛼𝛼𝑒𝑒 = 𝐴𝐴𝑇𝑇𝑏𝑏 (20) 

If we set 𝛼𝛼 = 0, the error 𝑒𝑒 will be greatly amplified at the output 𝜔𝜔�0𝑒𝑒 of the least 
squares. The role of 𝛼𝛼𝛼𝛼 is to stabilize the least squares solution 𝜔𝜔�𝛼𝛼𝑒𝑒 , which uses the noisy 
data 𝑏𝑏 − 𝑒𝑒. We compensate for 𝑒𝑒 by a good choice of 𝛼𝛼. 

Using an upper and lower bound on the error of our estimated output value can be 
calculated (21) and (22) that is dependent on the value of 𝛼𝛼 (Strang, 2007) . 

 ∥ 𝜔𝜔�00 − 𝜔𝜔�𝛼𝛼0 ∥≤ 𝐶𝐶𝛼𝛼 ∥ b ∥ (21) 

 ∥ 𝜔𝜔�𝛼𝛼0 − 𝜔𝜔�𝛼𝛼𝑒𝑒 ∥≤
∥ e ∥
2√𝛼𝛼

 (22) 

A possible choice for 𝛼𝛼 would be to equalize both parts of the overall error, yielding.  

 
𝛼𝛼 = �

∥ e ∥
2𝐶𝐶 ∥ b ∥

�
2
3
≈ (∥ e ∥2)

1
3 (23) 

The matrix 𝐶𝐶 depends on 𝐴𝐴−1 and the value of 𝛼𝛼 is dependent on the variance of the error 
vector e (or noise). 

Box constraints to quadratic inequality constraints  
In finding the solution for (12), we most likely know the range of frequencies of the 

target solution. This can be added as a quadratic inequality constraint to our minimization 
problem as follows.  

 𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∥2 
2  𝑠𝑠. 𝑡𝑡 (𝜔𝜔𝑖𝑖 − 𝜔𝜔�𝑖𝑖)2 ≤ 𝜎𝜎2 (24) 

 
𝛾𝛾 < 𝜔𝜔 < 𝛽𝛽, 𝜎𝜎2 =

(𝛽𝛽 − 𝛾𝛾)2

4
,𝜔𝜔� =

(𝛽𝛽 + 𝛾𝛾)
2

 
(25) 

By finding the Lagrange dual function for (24), and applying a penalty 𝐶𝐶𝜖𝜖 (where 𝐶𝐶𝜖𝜖 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎2)). We solve the following equation as follows. 

 
𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐴𝐴𝐴𝐴 − 𝑏𝑏 ∥ 

2+ ∥ 𝐶𝐶𝜖𝜖
1
2 (𝜔𝜔 − 𝜔𝜔�) ∥2, 

(26) 

 (𝐴𝐴𝑇𝑇𝐴𝐴 + 𝐶𝐶𝜖𝜖)𝜔𝜔� = 𝐴𝐴𝑇𝑇𝑏𝑏 + 𝐶𝐶𝜖𝜖𝜔𝜔�. (27) 

In practice to find the optimal value for the penalty matrix 𝐶𝐶𝜖𝜖, we run the solution 
through a loop until the constraints are satisfied. 

Weighted least squares Tikhonov regularization with box constraints  
By combining (15), (19) and (26) we obtain the following equation with the optimal 

solution as follows,  
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𝑚𝑚𝑚𝑚𝑚𝑚 ∥ 𝐶𝐶𝑏𝑏

1
2 (𝐴𝐴𝐴𝐴 − 𝑏𝑏) ∥ 

2+ 𝛼𝛼 ∥ 𝑊𝑊𝑊𝑊 ∥2+ ∥ 𝐶𝐶𝜖𝜖
1
2 (𝜔𝜔 − 𝜔𝜔�) ∥2, 

(28) 

With the general solution, 

 (𝐴𝐴𝑇𝑇𝐶𝐶𝑏𝑏𝐴𝐴 + 𝛼𝛼𝑊𝑊𝑇𝑇𝑊𝑊 + 𝐶𝐶𝜖𝜖)𝜔𝜔� = 𝐴𝐴𝑇𝑇𝐶𝐶𝑏𝑏𝑏𝑏 + 𝐶𝐶𝜖𝜖𝜔𝜔�. (29) 

The Tikhonov regularization term in (28) was modified, by taking the first order 
derivative of the output parameter 𝜔𝜔 we assumes that our instantaneous frequency 
function is smooth with time and no sudden frequency jumps occur. We use the value 𝛼𝛼 
that equalize both parts of the overall error in \(30). 

 
𝛼𝛼 ≈ �

𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑒𝑒2

(Δ𝑡𝑡)2
�

1
3

. (30) 

NUMERICAL EVALUATION  
We present a series of representative results from two datasets. 

1. First, a synthetic data that is corrupted by zero-mean Gaussian noise.  

2. Second, seismic data from a quarry blast in Jordan.  

We will compare the results from two different algorithms.  

A. Time-frequency energy distribution method based on the first frequency 
moment of the squares modulus of the STFT using a Gaussian window. The 
algorithm uses a 40-sample window size with a 20-sample overlap .We will 
refer to this method throughout the report as Algorithm 1. 

B. Weighted least squares Tikhonov regularized with box constraints, using 
Equation 29. The algorithm uses the upper and lower frequency band of our 
input signal to calculate 𝐶𝐶𝜖𝜖. We will refer to this method as Algorithm 2 
throughout the rest of the report. 

We also note that for both datasets the sampling frequency 𝑓𝑓𝑠𝑠 is 40 𝐻𝐻𝐻𝐻, and the first 
25 𝑠𝑠𝑠𝑠𝑠𝑠 of the signal will only contain noise with no signal data; the algorithm uses this to 
evaluate the noise characteristics of the signal. As for the multicomponent signal, we 
empirical mode decomposition (EMD) (Huang et al. 2009) to obtain the monocomponent 
intrinsic mode function (IMF) prior running the IF algorithm on each IMF. 

Synthetic signal 
A. A signal with constant frequency modulation, a fixed frequency sinusoidal 

signal corrupted by zero-mean AWGN. Where 𝑓𝑓1 = 10 𝐻𝐻𝐻𝐻 and the 𝑆𝑆𝑆𝑆𝑆𝑆 =
15𝑑𝑑𝑑𝑑. 

 𝑓𝑓1(𝑡𝑡) = sin(2𝜋𝜋𝑓𝑓1𝑡𝑡) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (31) 
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B. A signal with hyperbolic frequency modulation, the frequency-time plot 
follows the quadratic equation Eq 33. The signal is also corrupted by the same 
level of noise as in A, with 𝑓𝑓1 = 2 𝐻𝐻𝐻𝐻, 𝑓𝑓2 = 12 𝐻𝐻𝐻𝐻 and 𝑡𝑡1 = 30 𝑠𝑠𝑠𝑠𝑠𝑠 

 𝑓𝑓2(𝑡𝑡) = 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓1,𝑓𝑓2, 𝑡𝑡1, 𝑡𝑡) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (32) 

 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑓𝑓1 +

(𝑓𝑓2 − 𝑓𝑓1)
(𝑡𝑡1)2 𝑡𝑡2  (33) 

C. A multicomponent signal, consisting of a constant frequency signal and a chirp 
signal. The signal is also corrupted by the same level of noise as in A, with 
 𝑓𝑓1 = 2 𝐻𝐻𝐻𝐻, 𝑓𝑓2 = 7 𝐻𝐻𝐻𝐻, 𝑓𝑓3 = 15 𝐻𝐻𝐻𝐻 and 𝑡𝑡1 = 30 𝑠𝑠𝑠𝑠𝑠𝑠. 

 𝑓𝑓3(𝑡𝑡) = sin(2𝜋𝜋𝑓𝑓1𝑡𝑡) + 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓2,𝑓𝑓3, 𝑡𝑡1, 𝑡𝑡) + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (34) 

 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼 =  𝑓𝑓1 +

(𝑓𝑓2 − 𝑓𝑓1)
𝑡𝑡1

𝑡𝑡  (35) 

 

 

FIG. 1. (a) 𝑓𝑓1(𝑡𝑡) signal time-amplitude plot. (b) 𝑓𝑓1(𝑡𝑡) Spectrogram.  
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FIG. 2. (a) 𝑓𝑓1(𝑡𝑡) IF estimation using Algorithm 2. (b) 𝑓𝑓1(𝑡𝑡) IF estimation using Algorithm 1. 

 

FIG. 3. (a) 𝑓𝑓2(𝑡𝑡) signal time-amplitude plot. Panel (b) 𝑓𝑓2(𝑡𝑡) Spectrogram. 
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FIG. 4. (a) 𝑓𝑓2(𝑡𝑡) IF estimation using Algorithm 2. (b) 𝑓𝑓2(𝑡𝑡) IF estimation using Algorithm 1. 

We note that both Algorithm 1 and Algorithm 2 provide good frequency estimation for 
the constant frequency modulation signal 𝑓𝑓1(𝑡𝑡), and the hyperbolic frequency modulation 
signal 𝑓𝑓2(𝑡𝑡). The average frequency variance for Algorithm 2 was 0.0118 from the ideal 
IF compared with a frequency variance of 0.0031 from ideal IF for Algorithm 1. 
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FIG. 5. (a) Synthetic 𝑓𝑓3(𝑡𝑡) signal time-amplitude plot. (b) Spectrogram plot of 𝑓𝑓3(𝑡𝑡) signal. 

Before we can compute the instantaneous frequency for 𝑓𝑓3(𝑡𝑡), first we must 
decompose the signal into two IMF signals, and then each IMF signal is processed 
separately, using both Algorithms 1 and 2. Fig. 6 panel (a) shows the IF plot for both IMF 
signals using Algorithm 2, and panel (b) shows the IF plot results from Algorithm 1. Both 
algorithms track the frequency fairly well at low frequency with some separation 
apparent at higher frequencies, Algorithm 2 having average frequency variance of 0.063 
and Algorithm 1 doing slightly worse with an average frequency variance of 0.2.  
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FIG. 6. (a) 𝑓𝑓3(𝑡𝑡) IF estimation using Algorithm 2. (b) 𝑓𝑓3(𝑡𝑡) IF estimation using Algorithm 1. 

Seismic data from quarry blast in Jordan 
The seismic data we present here was recorded from the HRFI station; located in 

southern Israel, latitude 30:04◦ N and longitude 35:04◦ E. The station recorded a three-
component sequence of 1805 quarry blasts shot from by the Jordan Phosphate Mines 
Company, from March 2002 to January 2015. 

We present here one seismic trace as an example, and evaluate the performance of the 
algorithm. Since the seismic data is also considered a multicomponent signal we first 
decompose the signal into three IMF signals (IMF 1, IMF 2 and IMF 3) before analysis 
the signal.  

In Fig. 7 and Fig. 8 panel (a) is the z-component full signal recording and panels (b), 
(c) and (d) are the three major signal component or IMF after decomposition algorithm is 
applied to the full signal. We note that in addition to the three IMF presented here there 
are seven more IMF components which have negligible power contribution to the full 
signal.  
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FIG. 7. Empirical mode decomposition (EMD) of the seismic signal. (a) z-component of the full 
seismic trace. (b) First IMF of the signal. (b) Second IMF of the signal. (c) Third IMF of the signal.  

 

FIG. 8.  Spectrogram. (a) z-component full signal spectrogram. (b) First IMF spectrogram. (c) 
Second IMF spectrogram. (c) Third IMF spectrogram. 
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FIG. 9. Panel (a) Algorithm 2 Instantaneous frequency plot for each IMF mode. (b) Algorithm 2 
Instantaneous frequency plot after applying minimum power threshold cutoff.  

The instantaneous frequency output from Algorithm 2 is shown in Fig.9, where all 
three of the IMF are plotted. From the IMF 1 curve, we can clearly identify the P-wave 
and S-wave arrivals as well as the maximum frequency content. Also as shown in panel 
(b) we can apply a power threshold cutoff to the signal to filter out some of the noise. 
Application of this threshold allows us to measure the P and S wave arrivals from each 
IMF signal, and by taking the average time measurements from all three IMF 
components, we find that the P-wave onset is at 29.9 sec. and the S-wave onset is at 45 
sec.  

CONCLUSIONS 
In this report, we toke a simple least squares minimization problem and enhanced it by 

adding three additional terms 

1. Weighted least squares, 

2. Tikhonov regularization, 

3. Box constrain. 

We generated three synthetic signals that have well-defined frequency properties and 
compared the results we obtained from the proposed algorithm to the central time-
frequency distribution algorithm. The results obtained from both algorithms were very 
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close to each other as well as to the ideal frequency in the synthetic cases. In the quarry 
data example, we were able to use the Algorithm 2 , to pick S-wave onset in very noisy 
data. 

Further work will focus on performing windowed decomposition prior to solving the 
least squares Tikhonov regularized problem, this will help speed up the algorithm 
execution time as well as improve the frequency smoothing output. 
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