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ABSTRACT

Inverse scattering series has been revealed in extremely powerful capabilities of seis-
mic data processing and inversion, such as full waveform inversion (FWI), direct nonlinear
AVO inversion, and surface-related or internal multiples attenuation, due to its property
of model independence. Significant benefits have been achieved by performing internal
multiple prediction using inverse scattering series in several different domains. Neverthe-
less, elastic internal multiples remain a significant hazard as multi-component acquisition
technology has been widely applied. Unfortunately, for an elastic media, the off-the-shelf
internal multiple attenuation is either inadequate or non-existent. By considering an elastic,
isotropic and homogeneous media as background, this paper presents a theoretical frame-
work of elastic internal multiple prediction using inverse scattering series.

INTRODUCTION

The requirement of increasing sensitivity in primary amplitude quantitative interpreta-
tion is highlight as the mining environment becomes to be more complex, which enhances
the role and significance of multiple prediction and removal. However, one might speaks
the importance of accurate and robust prediction of multiples may now be on the verge of
an even greater upward jump, as full waveform inversion puts forward. However, having
detailed information of what event type occurs in the data at specified time will be incentive
and critical technology, no matter how full waveform processing becomes in the future, be-
cause the residual changes could depend critically on the nature of event (Sun and Innanen,
2016a).

Former research indicate that multiple attenuation is high correlated to its classified
type. Take into account the influence of free-surface, multiples can be identified as two
major classes, surface-related multiple and interbed multiple. Due to its periodic character-
istic in τ - p domain, surface-related multiples can be eliminated in a comfortable manner
and many innovative technologies have been developed in different domains, such as pre-
dictive deconvolution (Taner, 1980), inverse approach using feedback model (Verschuur,
1991), embedding technique (Liu et al., 2000), inverse data processing (Berkhout and Ver-
schuur, 2005; Berkhout, 2006; Ma et al., 2009). However, the attenuation of the other
classical multiple, internal multiple, still remains to be a big challenge, especially on land
data, even though much considerable progresses have been made recently.

Kelamis et al. (2002a,b) introduced a boundary-related/layer-related approach to re-
move internal multiples in the post-stack data (CMP domain). Berkhout and Verschuur
(2005) extended the inverse data processing to attenuate internal multiples by consider-
ing them as the suppositional surface-related multiples through the boundary-related/layer-
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related approach in common-focus-point (CFP) domain. The same algorithm was applied
by Luo et al. (2007) through re-datuming the top of the multiple generators and transform-
ing internal multiples to be ‘surface-related’. The common ground of those algorithms is
that, as it were, extensive knowledge of subsurface is required;thus if the possibility exists
that multiple removal will have to take place with incomplete knowledge of the velocity
structure and generators, the ISS approach will be optimal.

By analysing the philosophy of forward scattering series, Araujo et al. (1994) and We-
glein et al. (1997, 2003) demonstrated that all possible internal multiples can be recon-
structed, in an automatic way, as the combination of those sub-events satisfying a certain
criterion, and the processing can be achieved by implementing the inverse scattering series
in an appropriate manner. Many incentive research and discussions of inverse scattering
series on internal multiple attenuation have been made depending on the variant purposes,
(1) correcting predicted amplitude of internal multiples (Zou and Weglein, 2015), and (2)
refining the algorithm for certain high priority acquisition styles and environments (Her-
nandez and Innanen, 2014; Pan et al., 2014; Pan and Innanen, 2015; Pan, 2015; Innanen,
2016b,a; Sun and Innanen, 2014, 2015, 2016a,b), since it was developed by Weglein and
collaborators in 1990s.

However, all those research and discussions were on account of one assumption, earth
is acoustic, which is unrealistic. As we know, the more realistic the geological model we
build is, the more accurate the prediction algorithm becomes to be. In this paper, based
on the previous work discussed by Matson (1997), we derive the elastic internal multiple
prediction using inverse scattering series from multi-component seismic data, by consider-
ing an elastic, isotropic and homogeneous media as background. Even earth is not elastic
isotropic medium, this paper could still be a pioneer to the internal multiple prediction on
land data. Start with the stress-strain relation for an isotropic elastic medium,

σij = λDδij + 2µeij, i, j = 1, 2, 3 (1)

where, λ and µ are knowns as Lamé constants, D =
∑3

k=1 ekk = ∇ · u is the dilatation.

Euler’s equation of motion will reduce to Cauchy’s equation of motion if the infinitesi-
mal theory of elasticity is considered,

∂~σ

∂~r
+F + ρω2u = 0 (2)

Considering stress-strain relation, the first term in the equation of motion can be ex-
panded as, in vector notation,

∂~σ

∂~r
= (λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ) (3)

Reword the Cauchy’s equation of motion by substituting the expansion (Eq.3) and leav-
ing out the body forces,

(λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ) + ρω2u = 0 (4)
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Based on Eq. (4), the wave equation in frequency domain for an elastic isotropic medium
can be derived and expressed in terms of propagating operator (see Appendix A),

L(r, ω)u(r, ω) = 0 (5)

where,
Lii = ∂i[(λ+ µ)∂i] +

∑
k

∂k(µ∂k) + ρω2,

Lij = ∂i(λ∂j) + ∂j(µ∂i), i, j, k = x, y, z and j 6= i.

u = [ux, uy, uz]
T .

(6)

ELASTIC SCATTERING POTENTIAL, DIAGONALIZATION AND ROTATION

By adding a delta function as source term, Green’s function obeys a similar form, in
frequency domain, it can be expressed as,

L(r, ω)G(r, rs, ω) = −δ(r− rs) (7)

Consider an elastic isotropic homogeneous medium as the background medium (which
means, λ and µ do not vary with space locations), therefore, wave equation (Eq. 7) can be
simplified as,

L0(r, ω)G0(r, rs, ω) = −δ(r− rs) (8)

where,
L0ii = (λ0 + µ0)∂i∂i + µ0

∑
k

∂k∂k + ρ0ω
2,

L0ij = λ0∂i∂j + µ0∂j∂i, i, j, k = x, y, z and j 6= i.

(9)

with γ = λ + 2µ = ρα2 and µ = ρβ2 (α and β denote the P- and S-wave velocities in
background medium), perturbations can be defined as,

aρ =
ρ− ρ0
ρ

=
ρ

ρ0
− 1 ≈ 4ρ

ρ

aγ =
γ − γ0
ρ

=
γ

γ0
− 1 ≈ 4γ

γ

aµ =
µ− µ0

µ
=

µ

µ0

− 1 ≈ 4µ
µ

(10)

An elastic isotropic scattering potential is the difference of wave operator in real and
reference mediums, which can be expressed as,

V = L− L0 =

Vxx Vxy VxzVyx Vyy Vyz
Vzx Vzy Vzz

 (11)
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where,
Vii = ρ0

[
ω2aρ + α2

0∂i(aγ∂i) + β2
0

∑
j 6=i

∂j(aµ∂j)
]
, i, j = x, y, z;

Vij = ρ0
[
α2
0∂i(aγ∂j)− 2β2

0∂i(aµ∂j) + β2
0∂j(aµ∂i)

]
, j 6= i.

(12)

In background (elastic, isotropic, and homogeneous) medium, with body force F in-
cluded, Eq.(4) can be simplified as,

(λ+ µ)∇(∇ · ~u) + µ∇2~u +F + ρω2u = 0 (13)

Helmholtz’s theorem states that any well-defined vector can be decomposed as the sum
of a curl-free component and a divergence-free component. Therefore, we can rewrite the
particle displacement u and the body force F as,

u = ∇φ+∇×ψ
F = ∇Φ+∇×Ψ

(14)

where, φ and Φ are scalar potentials, ψ and Ψ are vector potentials.

Substitute decompositions of displacement and body force into Eq.(13) and do the math,
we have,

∇[(λ+ 2µ)∇2φ+Φ+ ρω2φ] +∇× [µ∇2ψ +Ψ+ ρω2ψ] = 0 (15)

P- or S-wave equation can be obtained, by taking a divergence or a curl of Eq.(15),
respectively. Therefore, if we define a partial derivatives matrix Π (following the notation
demonstrated by Stolt and Weglein (2012)), including a divergence and a curl, which is
expressed as,

Π =

(
∇·
∇×

)
=


∂x ∂y ∂z
0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

 (16)

Then P- and S-wave components can also be separated by acting the derivatives matrix
on the particle displacement,

(
ϕP
ϕS

)
= Πu =

(
∇ · u
∇× u

)
=


∂xux + ∂yuy + ∂zuz

∂yuz − ∂zuy
∂zux − ∂xuz
∂xuy − ∂yux

 =


∇ · u

(∇× u)x
(∇× u)y
(∇× u)z

 (17)

Beyond that, the inverse of diagonal matrix can be calculated by its transpose by pre-
multiplied an inverse Laplacian operator (See Appendix B). In equation, it’s shown as,

Π−1 = ∇−2ΠT (18)
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Stolt and Weglein (2012) also indicated that the wave operator can be diagonalized
into P- and S-wave operators by pre-multiplying the partial derivatives matrix and post-
multiplying its inverse. Formally,

L0D =


L0P 0 0 0
0 L0S 0 0
0 0 L0S 0
0 0 0 L0S

 = ΠL0Π
−1 (19)

where, LP and LS are P- and S-wave operators, written as,

L0P = (λ+ 2µ)∇2 + ρω2

L0S = µ∇2 + ρω2
(20)

With the diagonalized wave operator L0D, the wave equation for an isotropic elastic
medium becomes,

L0DΠu =

(
LPϕP
LSϕS

)
= 0 (21)

Similar equations included diagonalized Green’s function for real and reference medium
can be expressed as,

LD(r, ω)GD(r, rs, ω) = −δ(r− rs) (22a)
L0D(r, ω)G0D(r, rs, ω) = −δ(r− rs) (22b)

where,

GD = ΠGΠ−1 =


GPP GPSx GPSy GPSz

GSxP GSxSx GSxSy GSxSz

GSyP GSySx GSySy GSySz

GSzP GSzSx GSzSy GSzSz

 (23a)

G0D = ΠG0Π
−1 =


G0P 0 0 0
0 G0Sx 0 0
0 0 G0Sy 0
0 0 0 G0Sz

 (23b)

Eq.(22) indicates that,the Green’s function can be rewritten into 4 × 4 matrix with
respect to P- and S-wave components, by applying the transformation ΠGΠ−1, which
also works for the propagating operator (Eq. 19). For inhomogeneous isotropic elastic
(real) medium, the diagonal elements of GD correspond to Green’s functions of PP and
x−, y−, z− components of SS waves, and off-diagonal terms relate to Green’s functions
of converted waves from one to another. For homogeneous isotropic elastic (reference)
medium, the upper left diagonal term of G0D is the Green’s function for PP-wave, and
other diagonal terms correspond to x−, y−, z− components of Green’s function for SS
wave, and off-diagonal terms are zeros.
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One of the disadvantage of the diagonal matrix Π is that it maps a 3D vector into a 4D
space with only three independent dimensions present. It does separate P-wave success-
fully from S-wave components, but it does not work for SV- and SH-waves. To decompose
the elastic scattering potential into P-, SH-, SV-modes, Stolt and Weglein (2012) introduced
rotation matrices by rotating S-wave components to a local system in which the third (lon-
gitudinal) S-wave component is zero. Before the rotation, we have to rewrite the diagonal
matrix in terms of P- and S-wave wavenumbers, which is expressed as,

Π→ Πr = i


kPrx kPry kPrz
0 −kSrz kSry
kSrz 0 −kSrx
−kSry kSrx 0

 = i

(
kPr·T
kSr×

)
(24)

and

Π−1 → (Π−1)i =
−i
ω2

α2
0kPix 0 β2

0kSiz −β2
0kSiy

α2
0kPiy −β2

0kSiz 0 β2
0kSix

α2
0kPiz β2

0kSiy −β2
0kSix 0


=
−i
ω2

[
α2
0kPi· β2

0(kSi×)T
] (25)

where,
kPr = kPi =

ω

α0

kSr = kSi =
ω

β0

(26)

Correspondingly, 4×4 rotation matrices can be defined for incident and reflected waves,

Ei =

1 0 0 0
0 eSV ix eSV iy eSV iz
0 −eSHx −eSHy −eSHz

 =

1 0T

0 êTSV i
0 −êTSH

 (27)

and

Er =

1 0 0 0
0 eSV rx eSV ry eSV rz
0 −eSHx −eSHy −eSHz

 =

1 0T

0 êTSV r
0 −êTSH

 (28)

also, we have,

EET =

1 0 0
0 1 0
0 0 1

 (29)

and
ETEΠ = Π (30)

which states that the inverse of E equals to its transpose.

After applied the rotation matrix, the x−, y−, z− components of S-wave are decom-
posed into SH- and SV-modes. Involving the orthogonality relations, the combined diago-
nal and rotation matrices for incident wave,

(Π−1)iE−1i = −i
[
α2
0

ω2
kPi

β0
ω

êSH
β0
ω

êSV i

]
(31)
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for reflected wave,

ErΠr = i


kTPr
ω

β0
êTSH

ω

β0
êTSV r

 (32)

Therefore, we have,
ErΠr(Π

−1)iE−1i = I (33)

where, I is an identity matrix.

In conclusion, the wave equation containing Green’s function in P-, SH-, SV-modes can
be expressed as,

L(r, ω)G(r, rs, ω) = −δ(r− rs) (34a)
L0(r, ω)G0(r, rs, ω) = −δ(r− rs) (34b)

where,

L = ErLDE−1i = ErΠrL(Π−1)iE−1i (35a)

L0 = ErL0DE−1i = ErΠrL0(Π
−1)iE−1i (35b)

and

G = ErGDE−1i = ErΠrG(Π−1)iE−1i =

 GPP GPSH GPSV

GSHP GSHSH GSHSV

GSV P GSV SH GSV SV

 (36a)

G0 = ErG0DE−1i = ErΠrG0(Π
−1)iE−1i =

G0P 0 0
0 G0S 0
0 0 G0S

 (36b)

Also, for the scattering potential, a similar form can be achieved,

V = ErΠrV(Π−1)iE−1i =

 VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV

 (37)

INVERSE SCATTERING SERIES FOR ELASTIC MEDIUM

For an isotropic elastic medium, the wave field can be expressed as a background field
adding perturbations. Considering the homogeneous isotropic elastic medium as the back-
ground, the Born series for an isotropic elastic medium can be written as,

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ... (38)

As discussed above, the Green’s Function can be devised into a 3 × 3 matrix corre-
sponded to P-, SV-, and SH-wave modes with pre- or post-multiplied diagonal matrix Π
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and rotation matrix E. Therefore, replacing the Green’s function G and G0 in Eq. (38),
Born series can be rewritten into P-, SH-, and SV-modes,

(Π−1)iE−1i GErΠr = (Π−1)iE−1i G0ErΠr + (Π−1)iE−1i G0ErΠrV(Π−1)iE−1i G0ErΠr

+ (Π−1)iE−1i G0ErΠrV(Π−1)iE−1i G0ErΠrV(Π−1)iE−1i G0ErΠr

+ ...
(39)

Combining the relationship between diagonal matrix Π and rotation matrix E (Eq. 33),
pre-multiplying ErΠr and post-multiplied by (Π−1)iE−1i , applying Eq.(37) to transform
the elastic scattering potential into P-, SH-, SV-wave modes, Eq.(39) can be simplified as,

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ... (40)

Recall the wave equation for inhomogeneous isotropic elastic medium, containing source
term, which can be expressed as,

L(r, ω)u(r, ω) = f (41)

The displacement field will be decomposed into P-, SH-, SV-wave modes by pre-
multiplying ErΠr,  ϕPϕSH

ϕSV

 = ErΠru = ErΠrGf = GErΠrf = GF (42)

where, F = ErΠrf = [1, 0, 0]T if the incidence is a spike of P-wave only.

Incorporating Eq.(42) and Eq.(40), the separated scattering wavefield can be rewritten
as, in terms of background and perturbations,

DF = (G−G0)F = G0VG0F + G0VG0VG0F + G0VG0VG0VG0F + ... (43)

with its matrix form, DPP DPSH DPSV

DSHP DSHSH DSHSV

DSV P DSV SH DSV SV

F

=

G0P 0 0
0 G0S 0
0 0 G0S

 VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV

G0P 0 0
0 G0S 0
0 0 G0S

F

+

G0P 0 0
0 G0S 0
0 0 G0S

 VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV

G0P 0 0
0 G0S 0
0 0 G0S


 VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV

G0P 0 0
0 G0S 0
0 0 G0S

F + ...

(44)
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In an effort to avoid confusion and awkward phrasing, we rewrite the Eq.(44) using
subscripts,

Dij = G0iVijG0j + G0iVikG0kVkjG0j + G0iVikG0kVklG0lVljG0j + ... (45)

where, the subscripts denote P-, SH-, SV- components for wave propagation or scattering.
Dij is an specified element of decomposed measured data related to i, j. And i is the wave
mode for reflected wave or on receiver coordinate. j is the mode for incident wave, which
means j = P if the incidence is P-wave only. The wave propagation through perturbation
mode for an elastic medium is shown in Figure. 1.

FIG. 1. Wave propagation in perturbation mode. The subscripts (i, j, k, l,m, n) denote the wave
mode, ∈ {P, SH, SV }.

Similar with acoustic inverse scattering, the scattering potential can be expanded into
series by orders,

V = V(1) + V(2) + V(3) + ... (46)

Substitute this expansion (Eq. 46) into subscripted Born series (Eq. 45), and equate like
orders, we have,

Dij = G0iV
(1)
ij G0j, (47a)

0 = G0iV
(2)
ij G0j + G0iV

(1)
ik G0kV(1)

kj G0j, (47b)

0 = G0iV
(3)
ij G0j + G0iV

(2)
ik G0kV(1)

kj G0j + G0iV
(1)
ik G0kV

(2)
kj G0j + G0iV

(1)
ik G0kV(1)

kl G0lV
(1)
lj G0j,

(47c)
...

ISS - ELASTIC INTERNAL MULTIPLE PREDICTION ALGORITHM

Based on Eq. (47a), the first-order of elastic scattering potential can be delineated by
the decomposed measured data Dij and Green’s function for pure P- or S-waves. Recall

CREWES Research Report — Volume 28 (2016) 9
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3D Green’s function for pure P- or S-wave,

G0i(kx1 , ky1 , z1, x2, y2, z2, ω) =
e−i(kix1x2+kiy1y2)eiνi1|z1−z2|

i2νi1
(48a)

G0i(x1, y1, z1, kx2 , ky2 , z2, ω) =
ei(kix2x1+kiy2y1)eiνi2|z2−z1|

i2νi2
(48b)

with

νi1 =

√
ω2

c2i0
− k2ix1 − k

2
iy1

(48c)

where, kix1 and kiy1 are x and y components of wavenumber, νi1 is the vertical component
of wavenumber. The subscript 1 means the side of location, i.e., kix1 is the x component
of wavenumber corresponding to location (x1, y1, z1). ci0 is the velocity depending on the
wave mode i, and i ∈ {P, SH, SV }.

Therefore, take an inverse Fourier transform over kx and ky, the space-frequency do-
main 3D Green’s function from one location (x2, y2, z2) to another (x1, y1, z1) can be writ-
ten as,

G0i(x1, y1, z1, x2, y2, z2, ω) =
1

(2π)2

∫∫ +∞

−∞

eikix2 (x1−x2)eikiy2 (y1−y2)eiνi2|z1−z2|

i2νi2
dkix2dkiy2

(49)

Further analysis of Eq. (49) indicates that Green’s function can be considered as a
superposition of weighted plane wave solution, as follow,

G0i(xg, yg, zg, xs, ys, zs, ω)

=
1

(2π)2

∫∫ +∞

−∞

e−i(kixsxs+kiysys)

i2νis
φ0i(xg, yg, zg, kixs , kiys , zs, ω)dkixsdkiys

(50)

where,
φ0i(xg, yg, zg, kixs , kiys .zs, ω) = ei(kixsxg+kiysyg+νis|zg−zs|) (51)

Then we have, φ0i(xg, yg, zg, kixs , kiys .zs, ω) = i2νisG0i(xg, zg, kixs , kiys , zs, ω). Sub-
stitute this change into the inverse scattering series using reversion (Eq.47),

b1ij = G0iV
(1)
ij φ0j, (52a)

0 = G0iV
(2)
ij φ0j + G0iV

(1)
ik G0kV(1)

kj φ0j, (52b)

0 = G0iV
(3)
ij φ0j + G0iV

(2)
ik G0kV(1)

kj φ0j + G0iV
(1)
ik G0kV

(2)
kj φ0j + G0iV

(1)
ik G0kV(1)

kl G0lV
(1)
lj φ0j,

(52c)
...

where, b1ij is the weighted decomposed measured data, and can be calculated by
b1ij(kixg , kiyg , kjxs , kjys , ω) = i2νjsDij(kixg , kiyg , kjxs , kjys , ω) and νjs depends on the mode
of wave which is determined by j, and j ∈ {P, SH, SV }.
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Substitute Green’s function into Eq.(52a), the first-order of elastic scattering potential
Vij can be expressed in terms of the weighted decomposed measured data b1ij . Expand
Eq.(52a), we have,

b1ij(kixg , kiyg , zg, kjxs , kjys , zs, ω)

=

∫∫∫ +∞

−∞
dx1dy1dz1G0i(kixg , kiyg , zg, x1, y1, z1, ω)V

(1)
ij (x1, y1, z1)

× φ0j(x1, y1, z1, kjxs , kjys , zs, ω)

=

∫∫∫ +∞

−∞
dx1dy1dz1

e−i(kixgx1+kiygy1)eiνig |zg−z1|

i2νig
V(1)
ij (x1, y1, z1)e

i(kjxsx1+kjysy1)eiνsj |z1−zs|

=
e−iνigzge−iνjszs

i2νig

∫∫∫ +∞

−∞
dx1dy1dz1e

i(kjxs−kixg )x1ei(kjys−kiyg )y1ei(νjs+νig)z1V(1)
ij (x1, y1, z1)

=
e−iνigzge−iνjszs

i2νig
V̂
(1)

ij (kjxs − kixg , kjys − kiyg , νjs + νig|z1)

(53)
Therefore,

V̂
(1)

ij (kjxs − kixg , kjys − kiyg , νjs + νig|z1)
= i2νige

i(νigzg+νjszs)b1ij(kixg , kiyg , zg, kjxs , kjys , zs, ω)
(54)

FIG. 2. Contributions of G0iV
(33)
ij φ0j depending on variant depth (z1, z2, z3) relations between per-

turbations. (a) case of z1 < z2 < z3, (b) case of z1 < z3 < z2, (c) case of z3 < z1 < z2, (d) case of
z2 < z1 and z2 < z3, (e) case of z3 < z2 < z1.

The 1st-order internal multiple can be generated at least 3 perturbations which satisfy
lower-higher-lower relationship in pseudo-depth (depth in reference medium). By analyz-
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ing 3rd order in inverse scattering series (Eq.52c), we have,

G0iV
(3)
ij φ0j = −(G0iV

(2)
ik G0kV

(1)
kj φ0j + G0iV

(1)
ik G0kV(2)

kj φ0j + G0iV
(1)
ik G0kV(1)

kl G0lV
(1)
lj φ0j)

= G0iV
(31)
ij φ0j + G0iV

(32)
ij φ0j + G0iV

(33)
ij φ0j

(55)

The first two terms in 3rd-order have no contribution to internal multiple (they only
contribute to primary energy, see analysis discussed by Araujo et al. (1994)). The 3rd
term G0iV

(33)
ij φ0j represents several different wave propagations through three perturbations

depending on the variant depth relations between perturbations (Figure 2).

Consider all possible wave propagations involved by G0iV
(1)
ik G0kV

(1)
kl G0lV

(1)
lj φ0j , only

one certain wave path, with perturbations satisfying lower-higher-lower relationship in
pseudo-depth, has contribution to 1st-order internal multiples, shown in Figure 2d, can
be expressed as,

W33ij(kixg , kiyg , zg, kjxs , kjys , zs, ω)

= −
∫∫∫ +∞

−∞
dx1dy1dz1G0i(kixg , kiyg , zg, x1, y1, z1, ω)V

(1)
ik (x1, y1, z1)

×
∫∫∫ z1

−∞
dx2dy2dz2G0k(x1, y1, z1, x2, y2, z2, ω)V

(1)
kl (x2, y2, z2)

×
∫∫∫ +∞

z2

dx3dy3dz3G0l(x2, y2, z2, x3, y3, z3, ω)

× V(1)
lj (x3, y3, z3)φ0j(x3, y3, z3, kjxs , kjys , zs, ω)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dkkx1dkky1dklx2dkly2

e−i(νjszs+νigzg)

(i2νig)(i2νk1)(i2νl2)

×
∫∫∫ +∞

−∞
dx1dy1dz1e

i(kkx1−kixg )x1ei(kky1−kiyg )y1ei(νk1+νig)z1V(1)
ik (x1, y1, z1)

×
∫∫∫ z1

−∞
dx2dy2dz2e

i(klx2−kkx1 )x2ei(kly2−kky1 )y2e−i(νl2+νk1)z2V(1)
kl (x2, y2, z2)

×
∫∫∫ +∞

z2

dx3dy3dz3e
i(kjxs−klx2 )x3ei(kjys−kly2 )y3ei(νjs+νl2)z3V(1)

lj (x3, y3, z3)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dkkx1dkky1dklx2dkly2

e−i(νjszs+νigzg)

(i2νig)(i2νk1)(i2νl2)

× V̂
(1)

ik (kkx1 − kixg , kky1 − kiyg , νk1 + νig|z1)

× V̂
(1)

kl (klx2 − kkx1 , kly2 − kky1 ,−νl2 − νk1|z2 < z1)

× V̂
(1)

lj (kjxs − klx2 , kjys − kly2 , νjs + νl2|z3 > z2)

(56)

Replacing the elastic scattering potential by the weighted decomposed measured data
based on their relations discussed above in Eq.(54), the contributed calculation of elastic
internal multiple with three perturbations (Eq.56) can be reword as a function of weighted
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data, shown as,

W33ij(kixg , kiyg , zg, kjxs , kjys , zs, ω)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dkkx1dkky1dklx2dkly2e

iνk1(zs−zg)e−iνl2(zs−zg)

× b1ik(kixg , kiyg , kkx1 , kky1 , νk1 + νig|z1)
× b1kl(kkx1 , kky1 , klx2 , kly2 ,−νl2 − νk1|z2 < z1)

× b1lj(klx2 , kly2 , kjxs , kjys , νjs + νl2|z3 > z2)

(57)

An inverse Fourier transform is performed to transfer the weighted data b1ij into pseudo-
depth domain. Then, the 1st-leading-order elastic internal multiples prediction algorithm
can be obtained, and is written as,

b3ij(kixg , kiyg , kjxs , kjys , ω)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dkkx1dkky1dklx2dkly2e

iνk1(zs−zg)e−iνl2(zs−zg)

×
∫ +∞

−∞
dz1e

i(νk1+νig)z1b1ik(kixg , kiyg , kkx1 , kky1 , z1)

×
∫ z1

−∞
dz2e

−i(νl2+νk1)z2b1kl(kkx1 , kky1 , klx2 , kly2 , z2)

×
∫ +∞

z2

dz3e
i(νjs+νl2)z2b1lj(klx2 , kly2 , kjxs , kjys , z3)

(58)

To reconstruct 2nd-order internal multiples, at least five perturbations have to be in-
volved to calculate the contributions for 2nd-order internal multiples. Simply expand
Eq.(57) into five perturbation mode, 2nd-order internal multiples prediction can be ex-
pressed as, in vertical wavenumber domain,

b5ij(kixg , kiyg , kjxs , kjys , ω)

= − 1

(2π)8

∫∫∫∫ +∞

−∞
dkkx1dkky1dklx2dkly2e

iνk1(zs−zg)e−iνl2(zs−zg)

×
∫∫∫∫ +∞

−∞
dkmx3dkmy3dknx4dkny4e

iνm3(zs−zg)e−iνn4(zs−zg)

× b1ik(kixg , kiyg , kkx1 , kky1 , νk1 + νig|z1)
× b1kl(kkx1 , kky1 , klx2 , kly2 ,−νl2 − νk1|z2 < z1)

× b1lm(klx2 , kly2 , kmx3 , kmy3 , νm3 + νl2|z3 > z2)

× b1mn(kmx3 , kmy3 , knx4 , kny4 ,−νn4 − νm3|z4 < z3)

× b1nj(knx4 , kny4 , kjxs , kjys , νjs + νn4|z5 > z4)

(59)
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Rewrite Eq.(57) and Eq.(59) as,

b3ij(kixg , kiyg , kjxs , kjys , ω)

= − 1

(2π)4

∫∫ +∞

−∞
dkkx1dkky1e

iνk1(zs−zg)b1ik(kixg , kiyg , kkx1 , kky1 , νk1 + νig|z1) (60a)

× A3kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)
b5ij(kixg , kiyg , kjxs , kjys , ω)

= − 1

(2π)8

∫∫ +∞

−∞
dkkx1dkky1e

iνk1(zs−zg)b1ik(kixg , kiyg , kkx1 , kky1 , νk1 + νig|z1) (60b)

× A5kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)

where,

A3kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)

=

∫∫ +∞

−∞
dklx2dkly2e

−iνl2(zs−zg)b1kl(kkx1 , kky1 , klx2 , kly2 ,−νl2 − νk1|z2 < z1) (61a)

× b1lj(klx2 , kly2 , kjxs , kjys , νjs + νl2|z3 > z2)

A5kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)

=

∫∫ +∞

−∞
dklx2dkly2e

−iνl2(zs−zg)b1kl(k1k, k2l,−ν2l − ν1k|z2 < z1)

×
∫∫ +∞

−∞
dkmx3dkmy3e

iνm3(zs−zg)b1lm(klx2 , kly2 , kmx3 , kmy3 , νm3 + νl2|z3 > z2) (61b)

×
∫∫ +∞

−∞
dknx4dkny4e

−iνn4(zs−zg)b1mn(kmx3 , kmy3 , knx4 , kny4 , νn4 + νm3|z4 < z3)

× b1nj(knx4 , kny4 , kjxs , kjys , νjs + νn4|z5 > z4)

Analogously, nth-leading-order elastic internal multiples prediction algorithm can be
expressed as, in vertical wavenumber domain,

b(2n+1)ij(kixg , kiyg , kjxs , kjys , ω)

= − 1

(2π)2n

∫∫ +∞

−∞
dkkx1dkky1e

iνk1(zs−zg)b1ik(kixg , kiyg , kkx1 , kky1 , νk1 + νig|z1)

× A(2n+1)kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)

(62)

where,

A(2n+1)kj(kkx1 , kky1 , kjxs , kjys , νk1 + νjs|z1)

=

∫∫ +∞

−∞
dklx2dkly2e

−iνl2(zs−zg)b1kl(kkx1 , kky1 , klx2 , kly2 ,−νl2 − νk1|z2 < z1)

×
∫∫ +∞

−∞
dkmx3dkmy3e

iνm3(zs−zg)b1lm(klx2 , kly2 , kmx3 , kmy3 , νm3 + νl2|z3 > z2)

× A(2n−1)mj(kmx3 , kmy3 , kjxs , kjys , νm3 + νjs|z3)

(63)
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Again, take an inverse Fourier transform to perform the input data into pseudo-depth
domain, nth-leading-order elastic internal multiples prediction algorithm can be written as,
in pseudo-depth domain,

b(2n+1)ij(kixg , kiyg , kjxs , kjys , ω) = −
1

(2π)2n

∫∫ +∞

−∞
dkkx1dkky1e

iνk1(zs−zg)

×
∫ +∞

−∞
dz1e

i(νk1+νig)z1b1ik(kixg , kiyg , kkx1 , kky1 , z1)

× A(2n+1)kj(kkx1 , kky1 , kjxs , kjys , z1)
(64)

where,

A3kj(kkx1 , kky1 , kjxs , kjys , z1) =

∫∫ +∞

−∞
dklx2dkly2e

−iνl2(zs−zg) (65a)

×
∫ z1

−∞
dz2e

−i(νl2+νk1)z2b1kl(kkx1 , kky1 , klx2 , kly2 , z2)

×
∫ +∞

z2

dz3e
i(νsj+ν2l)z2b1lj(klx2 , kly2 , kjxs , kjys , z3)

A(2n+1)kj(kkx1 , kky1 , kjxs , kjys , z1) =

∫∫ +∞

−∞
dklx2dkly2e

−iνl2(zs−zg) (65b)

×
∫ z1

−∞
dz2e

−i(νl2+νk1)z2b1kl(kkx1 , kky1 , klx2 , kly2 , z2)

×
∫ +∞

−∞
dkmx3dkmy3e

iνm3(zs−zg)

×
∫ +∞

z2

dz3e
i(νm3+νl2)z3b1lm(klx2 , kly2 , kmx3 , kmy3 , z3)

× A(2n−1)mj(kmx3 , kmy3 , kjxs , kjys , z3)

Here, the letter subscripts denote the modes of wave {P, SH, SV }, and the number sub-
scripts describe the locations.

CONCLUSIONS

Elastic internal multiples attenuation becomes to be a high priority problem to be solved
in seismic data processing as the special significance of unconventional plays increasing
rapidly, where the sophisticated quantitative interpretation is required. However, the ex-
isted internal multiple prediction algorithm, either needs extensive knowledge of subsur-
face or is not appropriate for an elastic medium. Begin with stress-strain relations in an
elastic isotropic medium, by considering a homogeneous isotropic elastic medium as the
reference, the wave equation can be written in terms of separated P- and S-wave mode in
background with elastic perturbations, based on forward scattering series. Beyond that,
the elastic internal multiples can be reconstructed by weighted decomposed data depend-
ing on inverse scattering series as it does in an acoustic medium. Finally, we describe
the theoretical framework of the inverse scattering series leading order internal multiples
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prediction algorithm for elastic isotropic media. The equivalent prediction algorithm can
also be achieved in other different domains, only if the ordering of sub-events in domain
parameter is the same as ordering in actual (or pseudo-) depth.
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APPENDIX A: ISOTROPIC ELASTIC WAVE EQUATION

For an isotropic elastic medium, stress-strain relation can be written as, for i, j = 1, 2, 3,

σij = λDδij + 2µeij, (A.1)

And recall equation of motion,

3∑
j=1

∂σij
∂rj

+ fi = ρ
∂2ui
∂t2

(A.2)

Based on stress-strain relation (Eq.A.1), expand the first term of equation of motion
(Eq.A.2), we have,

3∑
j=1

∂σij
∂rj

= λ
3∑
j=1

∂D
∂rj

δij +D
3∑
j=1

∂λ

∂rj
δij + 2µ

3∑
j=1

∂eij
∂rj

+ 2
3∑
j=1

∂µ

∂rj
eij

= λ
∂D
∂ri

+D ∂λ
∂ri

+ µ
3∑
j=1

∂2ui
∂r2j

+ µ
1

∂ri

3∑
j=1

∂uj
rj

+
3∑
j=1

(
∂ui
∂rj

+
∂uj
∂ri

)
∂µ

∂rj

(A.3)

Rewrite Eq.(A.3) into vector form,

∂~σ

∂~r
= λ∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + µ∇(∇ · ~u) + (∇µ)T · (∇~u + ~u∇)

= (λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ)
= (λ+ µ)grad div~u + (gradλ)(div~u) + µ∇2~u + (∇~u + ~u∇) · ∇µ

(A.4)

Substitute Eq.(A.4) into the equation of motion, assume the body forces are negligible
and take the Fourier transform,

(λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ) + ρω2u = 0 (A.5)

Here,

∇λ =

[
∂λ

∂x

∂λ

∂y

∂λ

∂z

]T
∇µ =

[
∂µ

∂x

∂µ

∂y

∂µ

∂z

]T (A.6)
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∇ · ~u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

=
[
∂x ∂y ∂z

] uxuy
uz

 (A.7)

∇× ~u =


∂uz
∂y
− ∂uy

∂z
∂ux
∂z
− ∂uz

∂x
∂uy
∂x
− ∂ux

∂y

 =

 0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

uxuy
uz

 (A.8)

∇(∇ · ~u) =

 ∂2x ∂x∂y ∂x∂z
∂y∂x ∂2y ∂y∂z
∂z∂x ∂z∂y ∂2z

uxuy
uz

 (A.9)

∇× (∇× ~u) =

−∂2y − ∂2z ∂y∂x ∂z∂x
∂x∂y −∂2x − ∂2z ∂z∂y
∂x∂z ∂y∂z −∂2x − ∂2y

uxuy
uz

 (A.10)

∇2~u = ∇(∇ · ~u)−∇× (∇× ~u)

=

∂2x + ∂2y + ∂2z ∂x∂y − ∂y∂x ∂x∂z − ∂z∂x
∂y∂x − ∂x∂y ∂2x + ∂2y + ∂2z ∂y∂z − ∂z∂y
∂z∂x − ∂x∂z ∂z∂y − ∂y∂z ∂2x + ∂2y + ∂2z

uxuy
uz

 (A.11)

∇~u + ~u∇ =

 2∂xux ∂yux + ∂xuy ∂zux + ∂xuz
∂xuy + ∂yux 2∂yuy ∂yuz + ∂zuy
∂xuz + ∂zux ∂zuy + ∂yuz 2∂zuz

 (A.12)

(∇~u + ~u∇) · ∇µ =

 2∂xux ∂yux + ∂xuy ∂zux + ∂xuz
∂xuy + ∂yux 2∂yuy ∂yuz + ∂zuy
∂xuz + ∂zux ∂zuy + ∂yuz 2∂zuz

∂xµ∂yµ
∂zµ


=

(∂xµ)∂x +∑k(∂kµ)∂k (∂yµ)∂x (∂zµ)∂x
(∂xµ)∂y (∂yµ)∂y +

∑
k(∂kµ)∂k (∂zµ)∂y

(∂xµ)∂z (∂yµ)∂z (∂zµ)∂z +
∑

k(∂kµ)∂k

uxuy
uz


(A.13)

Substitute those expression (from Eq.A.6 to Eq.A.13) into Eq.(A.5), then the equation
of motion can be rewritten into wave operator form,

L(r, ω)u(r, ω) = 0 (A.14)

where,
Lii = ∂i[(λ+ 2µ)∂i] +

∑
j 6=i

∂j(µ∂j) + ρω2, i, j = x, y, z;

Lij = ∂i(λ∂j) + ∂j(µ∂i), j 6= i;

u = [ux, uy, uz]
T .

(A.15)

with γ = λ+ 2µ = ρα2, µ = ρβ2.
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APPENDIX B: DIAGONALIZATION OPERATORS

Define a partial derivative matrix,

Π =

(
∇·
∇×

)
=


∂x ∂y ∂z
0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

 (B.1)

By pre-multiplying its transpose, produces the Laplacian∇2 times a 3D unit operator,

ΠTΠ =
(
∇T · −∇×

)( ∇·
∇×

)
= [∇(∇·)−∇× (∇×)]I =

∇2 0 0
0 ∇2 0
0 0 ∇2

 (B.2)

If Π is post-multiplied by its transpose,

ΠΠT =

(
∇·
∇×

)(
∇T · −∇×

)
=

(
∇2 0
0 −∇× (∇×)

)

=


∇2 0 0 0
0 ∂2y + ∂2z −∂y∂x −∂z∂x
0 −∂x∂y ∂2x + ∂2z −∂z∂y
0 −∂x∂z −∂y∂z ∂2x + ∂2y

 (B.3)

Operating on the P- and S-wave components vector, we have,

ΠΠT

(
ϕP
ϕS

)
=

(
∇2 0
0 −∇× (∇×)

)(
ϕP
ϕS

)
=

(
∇2ϕP

∇2ϕS −∇(∇ ·ϕS)

) (B.4)

Here, ϕS = ∇× u, which means ∇(∇ · ϕS) = 0. Therefore, under this condition, the
Eq.(B.4) can be written as,

ΠΠT

(
ϕP
ϕS

)
= ∇2

(
ϕP
ϕS

)
(B.5)

This implies that, under some assumptions, the inverse of partial derivative matrix can
be written as the multiplication of its transpose with the inverse of the Laplacian,

Π−1 = ∇−2ΠT (B.6)

Define P- and S-wave operators, LP and LS satisfy,

L0P = (λ+ 2µ)∇2 + ρω2

L0S = µ∇2 + ρω2
(B.7)
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Using P- and S-wave operators, the wave operator for a homogeneous isotropic elastic
medium L0(x, ω), which means derivatives of λ and µ can be neglected, can be rewritten
as,

L0 =

(λ+ µ)∂2x +L0S (λ+ µ)∂y∂x (λ+ µ)∂z∂x
(λ+ µ)∂x∂y (λ+ µ)∂2y +L0S (λ+ µ)∂z∂y
(λ+ µ)∂x∂z (λ+ µ)∂y∂z (λ+ µ)∂2z +L0S

 (B.8)

Therefore, we have,

ΠL0 =


∂xL0P ∂yL0P ∂zL0P

0 −∂zL0S ∂yL0P

∂zL0S 0 −∂zL0S

−∂yL0S ∂xL0S 0

 (B.9)

It is worth to note that, the right hand side of Eq.(B.9) can be considered as the multi-
plication of the diagonalized matrix and the operator Π as follow,

∂xL0P ∂yL0P ∂zL0P

0 −∂zL0S ∂yL0P

∂zL0S 0 −∂zL0S

−∂yL0S ∂xL0S 0

 = L0DΠ (B.10)

where,

L0D =


L0P 0 0 0
0 L0S 0 0
0 0 L0S 0
0 0 0 L0S

 (B.11)

Combine Eq.(B.9) and Eq.(B.10), which indicates the wave operator L0 can be diago-
nalizable into P- and S-wave operators,

L0D = ΠL0Π
−1 (B.12)

Therefore, by pre-multiplying a partial derivative matrix, wave equation for an elastic
isotropic homogeneous medium (Eq. A.14) is rewritten as,

ΠL0(Π
−1Π)u = 0 (B.13)

Replacing the displacement into the P- and S-wave components, the above equation can
be expressed as,

L0D

(
ϕP
ϕS

)
= 0 (B.14)

where, Πu =

(
ϕP
ϕS

)
.

One should note that the above transformation does not diagonalize the wave equation
Stolt and Weglein (2012). However, the interpretation of the elements in separated P- and
S- wave components is still reasonable, where off-diagonal terms in L0D denote wave mode
conversion from one to another.
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