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ABSTRACT

Uncertainty analysis is a key element in reservoir properties prediction, and many tech-
niques have been developed, such as simulation, which is usually performed by least square
method. Least square estimation is a classic and well known approach as a best fit solver,
which is equivalent to simple kriging or cokriging system in case of geostatistics filed. In-
spired by the distinction of simple and ordinary system in geostatistics and benefited from
the extended cokriging system, for reservoir properties prediction, we propose an approach
to implement sequential simulation with multiple priori information using the extended
cokriging system. As it implies, the conditional mean and variance in the posterior distri-
bution are obtained by performing the extended cokriging system. Comparison between
this approach and traditional sequential simulation using least square method are discussed
in sense of semivariogram. The advantage are further analyzed through the estimated error
map, which indicates that simulation using the extended geostatistics method can produce
an more an accurate map, especially dealing with the data has the dramatical changes.

INTRODUCTION

Geostatistical inversion methods can reduce uncertainty in the reservoir properties pre-
diction away from the control points, by integrating well log data (sampled sparsely but
accurate) as primary data and seismic data (sampled well but band limited) as secondary
data. Number of discussions have been presented. One of the classic methods is determinis-
tic inversion, such as kriging, cokriging. To use variate secondary data, Russell et al. (2002)
combined cokriging and multiattribute transforms. As Russell et al. (2002) illustrated, the
improved secondary input of cokriging can be generated by multi-attribute analysis. Babak
and Deutsch (2009) improved the cokriging model by merging all secondary data into a
single super secondary data and then implementing the cokriging system with this single
merged secondary data. Two or more than two secondary variables were employed in the
estimation system without knowing stationary mean was presented by (Xu et al., 2015,
2016). However, a limitation is that deterministic methods provide the result that has trou-
ble capturing the natural variability and heterogeneity of reservoirs due to the smoothing
effect.

The sequential simulation technique provides a series of equal valid and possible real-
izations that indirectly reflect the distribution of reservoir properties. Deutsch and Journel
(1992) calculated the kriging mean and variance at unmeasured locations and simulated the
value at those points by using Sequential Gaussian Simulation (SGS). A posterior Gaus-
sian distribution can be also described by a simple kriging system, therefore it is possible
to draw samples of a posteriori probability density function by using sequential simula-
tion(Hansen et al., 2006). Ligas and Kulczycki (2010) observed least squares prediction
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and geostatistical method of simple kriging are equivalent.

In this paper, we re-investigate the relation between least square method and geostatis-
tics methods which shows that both least square and simple geostatistics methods are equiv-
alent to conditional expectation in the posterior distribution. It indicates that the advantage
of ordinary approach, compared to the simple system, are also superior to least square
method. Furthermore, to take the benefit from the extended corkiging system, we imple-
ment the sequential simulation with the posterior mean and covariance calculated from the
extended cokriging system. Finally, this approach is applied to Black foot data for porosity
simulation.

METHOD

Any estimation, interpolation, projection or transformation problem, based on a given
data d, can be treated as the inversion of model parameters that generates the data under
action of the operator G (Claerbout, 1992):

d = Gm (1)

Therefore, the problem becomes to find the best fit model m with the projection opera-
tor G using the observed data d. Here, the projection operator is relatively unconventional
which leads to G does not needs to be dependent on any physical law. The classical princi-
ple to solve Eq. 1 is the estimated model has to satisfy the unbiased minimum error variance
criteria, which turns the above problem into the well-known least-square prediction.

To further understand least-square prediction, the simplest case with one single esti-
mate, instead of a set, is discussed in the following context. It’s known that the least-square
method gives an unique, best fit estimate if three criteria are met: linearity, unbiasedness,
and minimum error variance. Based on these assumptions, an estimate φ can be described
as the weighted (λ) combination of a realization Ψ, which can be considered as a second
order stationary random function with zero mean (Heiskanen and Moritz, 1967; Dermanis,
1984). In matrix notation, the predictor can be written as

φ = λTΨ (2)

If the mean of the second order stationary random realization Ψ is not zero, which
means the second criteria, unbiasedness, does not hold, one has to transfer the observed
data into a new zero-mean random function by subtracting its true (or estimated) mean
(Dermanis, 1984; Ligas and Kulczycki, 2010). The optimal set for coefficient vector λ
can be calculated by minimizing the mean square error (prediction error variance), and the
solution can be expressed as

λ = C−1c (3)

where, C is the covariance matrix of an observed dataset (i.e., Ψ), c is the vector of covari-
ances between the estimate point (φ) and the observed data (Ψ).

The least square estimation can be obtained by substituting the coefficient vector λ into
the predictor Eq. (2), written as

φ = cTC−1Ψ (4)
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and, in case of non-zero mean realization, it can be expressed as

φ = µφ + cTC−1(Ψ− µΨ) (5)

with the prediction error variance calculated by

Var(R) = Cφ0 − cTC−1c (6)

where, Cφ0 is the variance of φ, or the sill of the φ semivariogram.

The above derivation indicates that the least square prediction is equivalent to a simple
kriging (SK) system when the prediction becomes to the interpolation problem (Ψ → Φ).
The unbiased condition is satisfied in an automatic manner regardless of choice of weights.
Beyond that, (Tarantola, 2005) demonstrated that least square problem (Eq.1) can also be
described as the posterior Gaussian probability density in the model space

P(m|d) = const.exp
[
−1

2
(m− µm|d)

TΣ−1
m|d(m− µm|d)

]
(7)

with the conditional mean as

µm|d = µm + (GCm)
T (GCmGT + Cd)

−1(d− µd) (8)

and the conditional covariance matrix

Σm|d = Cm − CmGT (GCmGT + Cd)
−1(d− µd) (9)

where, µm and µd are the mean vector for model and given data respectively, Cm and Cd

are the model and data covariance matrices. Here, as mentioned before, the conditional
mean and covariance are identical to the simple kriging (SK) mean and covariance.

Following the demonstration prensented by Tarantola (2005), Hansen et al. (2006) ex-
pand the Gaussian linear inverse problem involving two types of dataset. The projection
between model parameter and two given datasets is given by

d0 = Gm (10)

where,

d0 =

[
a0

b0

]
,Cd =

[
Caa Cab

CT
ab Cbb

]
,µ0 =

[
µa0

µb0

]
(11)

Again, it can be described as the posterior Gaussian probability density in the model
space based on two datasets

P(m|a0,b0) = const.exp
[
−1

2
(m− µm|a0,b0)

TΣ−1
m|a0,b0(m− µm|a0,b0)

]
(12)

Here, the conditional mean µm|a0,b0 and covariance Σm|a0,b0 have the same matrix no-
tation as the previous illustrated in Eq. (8) and Eq. (9), except the data covariance matrix
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is replaced by Eq. (11). Therefore, the conditional mean µm|a0,b0 and covariance Σm|a0,b0
coincide with the mean and covariance solved by a traditional simple cokriging (SCK)
system.

Analogously, the inverse problem can be expanded and be described as the posterior
Gaussian probability distribution based on given N-datasets (d =

[
dT1 ,d

T
2 , . . . ,d

T
n

]T
),

P(m|d1, . . . ,dn) = const.exp
[
−1

2
(m− µm|(d1,...,dn))

TΣ−1
m|(d1,...,dn)(m− µm|(d1,...,dn))

]
(13)

where the conditional mean µm|(d1,...,dn) and covariance Σm|(d1,...,dn) are equivalent to the
mean and prediction error covariance calculated from an extended simple cokriging (SCK)
system involving N-datasets demonstrated by Xu et al. (2015, 2016).

By implementing one of the above three methods in a random sequence, a sequential
conditional (co)simulation can be achieved (Goovaerts, 1997; Gloaguen et al., 2005b,a;
Gomez-Hernandez et al., 2005; Hansen and Mosegaard, 2008; Journel and Huijbregts,
1978). As we know, sequential simulation is a technique to generate a series of inde-
pendent realizations based on the known model parameters and given data. The posterior
probability density function based on known model parameters and given data, at any lo-
cation xi, needs to be calculated and then be moved to the next location depending on
the random sequence. Assume we have known model parameters Φ0(xi) at m locations
(xi ∈ {x1, x2, . . . , xm}) and two given data A and I, one estimated realization at other lo-
cations (xj ∈ {x1, x2, . . . , xn}) using sequential conditional simulation based on known
model parameters Φ(xi) and given data A and I can be performed as following steps,

(1) Sorting the estimated locations into a random sequence {x1, x2, . . . , xn}.

(2) Visit the grid point xj according to the path generated in step (1).

(3) Calculating the conditional mean and covariance at visited location xj based on
known Φ0 and pre-simulated model parameters Φ(x1, ..., xj−1) and two given datasets (A
and I), by performing one of three methods mentioned above, i.e., least-square prediction,
simple geostatistical methods, or conditional expectation approach.

(4) Build the posterior probability distribution P {Φ(xj)|Φ0,A, I,Φ(x1, ..., xj−1)}, and
draw a random value.

(5) Add the simulated value at location xj into the known dataset.

(6) Move to the next location xj+1 in the sequence, and repeat step 2-5 until the last
grid point in the sequence is encountered.

Note that the conditional mean and covariance are calculated by least square (LS) or
simple geostatistical methods (SK, SCK, or extended SCK), and both of them are equiva-
lent to conditional expectation in the sense of Gaussian random field (Ligas and Kulczycki,
2010). In other words, one shares the strengths as others do, as well as the drawbacks. One
of the defects is that, either least-square and conditional expectation or the simple geosta-
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tistical methods, requires a zero-mean second order stationary random realization as the
observed data. Again, the known mean needs to be utilized to transfer the data into a zero-
mean random function if the unbiasedness does not hold. However, in practice, the mean
is usually unknown and is replaced by an estimated mean which can be calculated, for ex-
ample, by the trend removal technique (Dermanis, 1984). Beyond that, the automatic-meet
unbiased condition implies that no constraint is applied to the coefficient (weight) vector
during the process. This may generate singular value occurring in the estimation when the
significant changes of magnitude between the objective and observed data occur.

The procedure we propose for sequential conditional Gaussian simulation (SCGS) is
inspired by the ongoing development into the extend corkging system (Xu et al., 2015).
Detailed comparisons between simple, ordinary, and rescaled ordinary methods for kriging
and cokriging were discussed by Goovaerts (1998). It concluded that, instead of a sta-
tionary mean in simple (co)kriging system, the (rescaled) ordinary cokriging (OCK and
ROCK) utilizing the estimated local mean. Further more, compared to two constraints of
the ordinary cokriging (OK), only one unbiasedness constraint applied for the weight vec-
tor in the rescaled cokriging (ROCK) system lessens the risk of producing unacceptable
estimates, such as negative values (Goovaerts, 1998; Xu et al., 2016).

Also the extended (rescaled) ordinary cokriging equation allows for more than two sec-
ondary variables participating in the estimation system without requiring stationary mean
of model parameters to be known (Xu et al., 2015, 2016). Therefore, in this paper, we
perform the sequential conditional Gaussian simulation (SCGS) by replacing the 3rd step
illustrated above with the extend (rescaled) ordinary cokriging (OCK and ROCK) system
to obtain the conditional mean and covariance. Investigation of differences between sim-
ulation using least square method, simulation with extend ordinary cokriging (OCK), and
simulation with extended rescaled ordinary cokriging (ROCK) system are analyzed.

IMPLEMENTATION

Neighborhood search and pre-calcuated covariance

Before performing the simulation process, the computation efficiency will be discussed
by considering extend ordinary cokriging system. Based on the previous research (Xu et al.,
2015), the extend ordinary cokriging (OCK) system involving two secondary variables can
be written in matrix notation, as

CΦΦ CΦA CΦI 1 0 0
CAΦ CAA CAI 0 1 0
CIΦ CIA CII 0 0 1
1T 0 0 0 0 0
0 1T 0 0 0 0
0 0 1T 0 0 0




λ1

λ2

λ3

α1

α2

α3

 =


Cφ0Φ

Cφ0A

Cφ0I

1
0
0

 (14)

In the implementation of sequential conditional Gaussian simulation (SCGS), the co-
variance matrix becomes larger and larger as the iteration number of simulation increases,
which makes the approach considerably time consuming, or possibly even being incalcu-
lable. However, in the view of geostatistics (Deutsch et al., 1998), data far beyond the
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range of semivariogram has little contribution in the conditioning mean and covariance of
posterior probability distribution. Therefore, the covariance matrix in extended ordinary
cokriging (OCK) system can be limited into an acceptable subset with the range in grid
point.

Even though the covariance matrix is restricted in a small set, the calculation of covari-
ance in each iteration is still a computational burden. To make the utmost of calculated
covariance in previous iterations, and to avoid the repetitive computation of covariance at
the same location, the pre-calculated covariance table is utilized. This ensures the covari-
ance between two identical locations is only calculated once. In addition, for an isotropic
model, the covariance function does not depend on absolute locations, but rather on the
distance between two locations. Therefore, the pre-calculated covariance table is very com-
putational efficient. Another advantage is, the covariance between two specified locations
is identified with an unique label, which can be easily referenced during the iteration.

Initial input of LS, extend OCK and ROCK method

The survey data was recorded from the Blackfoot field located in southern Alberta in
1995 for Canadian Petroleum. There were twelve wells involved in this study case, all
of which contained the calculated porosity logs. An average porosity value between the
picked top and base of the zone of interest in each well, is considered as the sampled
known “model parameters” (Ψ0). Figure 1 shows that the well distribution on the survey
area and the porosity value at each well location.

FIG. 1: Well distribution and average porosity value in the zone of interest.

Representative secondary inputs are attribute key elements for geostatistical methods.
Instead of directly using acquired seismic data, two slices extracted from different 3-D
volumes, the acoustic impedance inversion and the stacked P-wave seismic data, are used.
The inversion volume was obtained using Hampson-Russell Software (Russell et al., 2002).
First, build an initial model from the well logs and pick horizon on the seismic section.
Second, stop perturbing this model when the synthetic seismogram has a best match with
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(a) The final CDP stack and interested zone

(b) P-wave impedance section and interested zone

FIG. 2: Crossline 18 from the 3-D seismic volume.

the original data. Crossline 18 extracted from the seismic volume is illustrated in Figure 2
showing a seismic input line (Figure 2a) and an inverted impedance line (Figure 2b).

An inversion slice was trimmed by picking 10ms average window below the channel
top from 3D inverted volume. Similarly, we extracted three data slices, seismic amplitude,
amplitude envelope, and instantaneous phase, by applying a 10ms window of RMS average
on the zone of interest. To choose appropriate inputs for simulation, correlation coefficients
were calculated between the porosity and all four created data slices. The best two corre-
lation coefficients were observed from inversion slice and seismic amplitude slice, which
were -0.65 and 0.41, respectively. Thus, in this case, seismic amplitude slice (indicated as
A) shown in Figure 3 and inversion slice (indicated as I) shown in Figure 4 are considered
as the two conditioning datasets for the sequential simulation study.

As discussed previously, to make the approach computationally efficient, the distance
and covariance table are calculated before the iteration, delineated in Figure 5 and Fig-
ure 6, respectively. Figure 6 shows the covariance tables among porosity, RMS amplitude,
and acoustic P-impedance, are diagonal symmetric due to the isotropic nature of relations.
The limited covariance matrices in Eq. 14 can be readily indexed from the pre-calculated
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FIG. 3: The average RMS amplitude slice at the interested zone.

FIG. 4: The average acoustic P-impedance slice at the interested zone.

covariance tables, respectively.

Simulated realizations using SCGS with extend LS, OCK, and ROCK

The sequential conditional Gaussian simulation is performed by implementing the pro-
cedure 1-6 already demonstrated, except that the least-square (or simple geostatistics) con-
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FIG. 5: Precalculated distance table on the entire area.

FIG. 6: Precalculated covariance table on the entire area among the porosity, P-impedance,
and RMS amplitude. (a) CΦΦ, (b) CAA, (c) CII , (d) CΦA, (e) CΦI , (f) CAI

ditional mean and variance calculation is replaced by an extend ordinary cokriging, or by
an extended rescaled ordinary cokriging system, respectively. 1000 independent realiza-
tions are generated by performing the sequential simulation process with 1000 random
paths, conditioned to known porosity (Figure 1), inverted P-impedance data (Figure 4), and
RMS amplitude slice (Figure 3). Figure 7 and Figure 9 shows 9 of all 1000 realizations
by performing sequential conditional simulation using extend OCK and ROCK systems,
respectively.

Note that all realizations shown in Figure 7 and in Figure 9 delineate the correct trends
of porosity variation, i.e., high porosity values around well 08-08, 09-08, 29-08, 16-08 and
around the right bottom corner with well 13-16, which can be identified using the prior
information of known “model parameters” shown in Figure 1. However, the SCGS with
extend OCK method generated negative values in all realizations (see in Figure 7) which
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didn’t occurred in simulation with extend ROCK approach (shown in Figure 9) due to
only one constraint applied for the weight vector. Therefore, the extend rescaled ordinary
cokriging with one unbiasedness condition advocates a much more reasonable and stable
version of sequential conditional Gaussian simulation.

FIG. 7: All 9 of 1000 realizations using sequential conditional Gaussian simulation with
extend ordinary cokriging (OCK) system.

FIG. 8: Porosity mean value map of all 1000 realizations using SCGS with extend OCK.

10 CREWES Research Report — Volume 28 (2016)



SGS-MultiCorkrig

FIG. 9: All 9 of 1000 realizations using sequential conditional Gaussian simulation with
extend rescaled ordinary cokriging (ROCK) system.

FIG. 10: Porosity mean value map of all 1000 realizations using SCGS with ROCK.

The mean porosity maps obtained by SCGS with extend OCK and ROCK based on
1000 realizations are shown in Figure 8 and Figure 10. A similar trend of porosity vari-
ation on mean maps are achieved by SCGS, either with extended OCK system or using
extended ROCK approach. Both are analogous to the estimated map we illustrated pre-
viously (Xu et al., 2015), which reinforces the validity and feasibility of the sequential
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conditional simulation using an extend cokriging system presented in this paper. Also note
the difference between SCGS with extend OCK and with ROCK, porosity values estimated
by ROCK are higher than those estimated using OCK, and negative values are avoided.

FIG. 11: Comparisons of semi-variograms. (a) semi-variograms of 100 realizations and
its mean using unconditional simulation, (b) semi-variograms of 100 realizations and its
mean using SCGS with least-square method, (c) semi-variograms of 100 realizations and
its mean using SCGS with extend OCK system, (d) semi-variograms of 100 realizations
and its mean using SCGS with extend ROCK system.

FIG. 12: Probability map, using SCGS with extend ROCK, where porosity value is higher
than 12%.

To analyze the difference of SCGS with LS approach and with extend geostatistical
methods, the unconditional simulation and SCGS with least square method are also per-
formed. Figure 11a shows the semi-variogram calculated from each of 100 realizations
using unconditional simulation. In Figure 11b, the semi-variogram are obtained from each
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of 100 realizations using SCGS with least square method. Figure 11c illustrates the semi-
variogram obtained from each of 100 realizations using SCGS with extend OCK system.
And comparisons of semi-variograms of each of 100 realizations using SCGS with ex-
tend ROCK approach are delineated in Figure 11d. The ergodic fluctuations of condi-
tional simulation (Figure 11b,c,d) are noticeable smaller as compared to those observed
for unconditional simulation (Figure 11a). Further analysis are discussed by comparing
the semi-variogram of their mean map, shown in Figure 12. The sill of semi-variogram
obtained from unconditional simulation is much higher than conditional simulations with
other three approaches.

FIG. 13: The error of mean map from 100 realizations between SCGS with least square
and with extend ROCK.

The difference of SCGS with least square compared to the extended ROCK system can
also be ivestigated by calculating the error of mean map between two different approachs,
shown in Figure 13. Figure 13 also verifies the demonstration made by Goovaerts (1998)
that, the departures of estimated primary and all secondary local means from stationary
means result in the difference between simple cokriging and (rescaled) ordinary cokriging.
The related error difference between extend simple cokriging (SCK) and extend rescaled
ordinary cokriging (ROCK) at a particular location x, can be written as

ZROCK(x)− ZSCK(x) =
[
λSCK1 + λSCK2 + λSCK3

]
[mROCK(x)−m1] (15)

where, ZROCK(x) and ZSCK(x) denote estimations calculated from extend ROCK and SCK
systems, respectively. m1 represent the stationary mean, and mROCK(x) are the estimated
local mean at each x location using both primary and all secondary data in the neigh-
bourhoods. Therefore, Eq. (15) indicates that extended ROCK estimates are higher than
extended SCK estimates where the local mean is higher than the global mean, and vice
versa. To observe the porosity distribution when it is higher than a particular value over
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the entire area institutive, we present the probability map,using SCGS with extend ROCK,
in percentage with porosity value higher than 12% (Figure 14), which also conforms to the
porosity variation on the mean map shown in Figure 10.

FIG. 14: Probability map, using SCGS with extend ROCK, where porosity value is higher
than 12%.

CONCLUSIONS

Sequential conditional simulation is an effective tool to generate independent realiza-
tions for a second order stationary random field. In the case of geostatistics, the extend
ordinary cokriging system allows more than one secondary variables to participate in the
estimation process, and also prevents unacceptable (singular, or negative values) values to
be produced in the final result by adding the unbiasedness constraint for the coefficient
vector. In this paper, inspired by study of the extended cokriging system, we presented
the sequential conditional Gaussian simulation with the extend ordinary cokriging method.
By pre-calculating the covariance tables among known and conditioning datasets, and re-
stricting the neighbourhood search strategy to be limited to the covariance matrix size, the
sequential conditional simulation with an extend cokriging approach can be made compu-
tationally efficient. Furthermore, the constraint applied to the weights leads to an more
adaptable and feasible version of sequential simulation.
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