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ABSTRACT

Full waveform inversion aims to find the high-resolution subsurface model parameters.
It is usually treaded as a nonlinear least square problem, and the minimum of the related
misfit function is found by updating the model parameters. Simple gradient methods could
mix different parameter types in the case of inversion with multi-parameter classes, which
could lead to a poor convergence and strong dependence on the scaling of the different
parameter types. Searching the step length in a subspace domain instead of treating the
gradients of different parameters as the same could help solving this problem. The subspace
used can be defined in a span of different sets of data or different parameter classes, which
is a small amount of vectors compared to the whole model space. Using the subspace
method, the basis vectors are needed to be defined first, and a local minimum is found in
the spanned space to invert the perturbations. We are investigating this method to get a
better update of density.

INTRODUCTION

In full waveform inversion (FWI) (Lailly, 1983; Tarantola, 1984; Virieux and Operto,
2009), subsurface model parameters are found through the inversion scheme, which could
be used to generate the predicted data closely resembling the recorded data under some
physical assumption of the forward modelling, e.g., from acoustic case to viscoelastic
anisotropic dynamics. Inversion of different classes of parameter (e.g., Fichtner, 2011;
Operto et al., 2013; Plessix et al., 2013; Alkhalifah and Plessix, 2014; Pan et al., 2016),
e.g., P-wave velocity, density, attenuation, shear-wave velocity and anisotropy, are required
as a trend in the study of FWI, which leads to the development of multiparameter inversion.
Similar to the monoparameter inversion under the acoustic assumption, which usually in-
verts only P-wave velocity, a misfit function is involved to describe the distance between
the recorded data and the predicted data, and FWI is treated as a nonlinear least squares
problem, which can be solved by gradient-based methods or Newton-type methods. Mul-
tiparameter inversion is much more complicated than monoparameter inversion, since the
additional parameter classes increases the ill-posedness and the nonlinearity of the inverse
problem. Different parameter classes can be more or less coupled, and it may be hard to
distinguish the contribution of each parameter class to the change in the data. Mitigating the
cross-talk between different parameter classes in the inversion becomes a very important
topic in multiparameter inversion. Studies have shown that the Hessian operator usually
contains some information of the coupling between different parameter classes. Differ-
ent ways of cooperating the inverse of Hessian operator, especially in the multiparameter
cases, are proposed to better uncouple different parameter classes in the inversion, such as
precondition the gradient using pseudo Hessian matrix, quasi-Newton method, truncated
Newton method and so on. Hierarchical strategies can be applied to successively invert
different parameter classes to mitigate the ill-posedness of FWI (Jeong et al., 2012), which
will require more computation.
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In both gradient-based methods and Newton-type methods (e.g., Virieux and Operto,
2009; Pratt et al., 1998; Métivier et al., 2013, 2014; Yang et al., 2016; Pan et al., 2017),
line searching is usually necessary to scale the descent direction so that the method can be
globally convergent. One scalar is the found for all parameter classes regardless their own
contributions to the data. Distinguish the contribution of each parameter class during the
updating could be helpful in multiparameter inversion. Application of subspace method
in large inverse problems was first discussed by (Kennett et al., 1988; Sambridge et al.,
1991), to adjust the descent direction according to different parameter classes’ contribu-
tion. Baumstein (2014) show that using an extended subspace method in multiparameter
inversion can help to mitigate the cross-talk as well. In subspace FWI, the basis vectors are
determined first, and the optimization problem is then solved in this spanned space to min-
imize the quadratic approximation of the misfit function, with only a few coefficients to be
determined compared to the traditional gradient-based or Newton-type methods. Although
projection of the full Hessian or Gauss-Newton Hessian onto the subspace is needed for
each iteration, the calculation is much cheaper compared to Newton-type methods. In this
study, we evaluate different basis vectors, constructed from the gradient of different param-
eter classes, and related Hessian-vectors, to construct a better multiparameter inversion.
Although we use acoustic wave equation with varying density for the forward modelling
and invert velocity and density, the application to inversion of other parameterizations and
elastic wave equation can be easily extended.

REVIEW OF SUBSPACE METHOD

In this study, we will use the frequency-space domain acoustic wave equation to de-
scribe the wave motion,

ω2

ρ(x)v2(x)
u(x,xs, ω) +∇ ·

(
1

ρ(x)
∇u(x,xs, ω)

)
= fs(ω)δ(x− xs), (1)

where ρ is the density and v is the velocity. Write the model parameters with different types
into one vector m, discretized wave equation can be written in matrix form as

F(m, ω)u(m,xs, ω) = f(xs, ω), (2)

The forward modeling (2) describes a nonlinear relationship between the wavefield and the
model. The inversion problem can be seen as an optimization problem, which is to find a
model m to minimize the misfit functional φ(m)

φ(m) =
1

2

∑
ns

∑
nω

‖dobs(xs, ω)− dsyn(m,xs, ω)‖2 =
1

2

∑
ns

∑
nω

‖δd(m,xs, ω)‖2 , (3)

where dobs(xs, ω) is the observed data for each source location x for one frequency ω, and
dsyn(m,xs, ω) = Ru(m,xs, ω) is the synthetic data generated using the forward modeling
(2) in the current model m and sampled with an operator R on the receiver locations.
δd(m,xs, ω) is the data residual, which is defined as the difference between the observed
data and the synthetic data.

Expanding the misfit functional (3) up to second order around the vicinity of the model
m,

φ(m+ δm) = φ(m)+ < g, δm > +
1

2
< Hδm, δm > +O

(
‖δm‖3

)
, (4)
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where g and H are the gradient and the Hessian operator of the misfit function, respectively.
Since the misfit function is usually non-quadratic, based on a local quadratic approximation
as shown in (4), the model can then be updated iteratively by a perturbation as

mn+1 = mn + αnδm. (5)

The perturbation can be determined by a descent direction, which can be the opposite of the
gradient in the gradient-based methods, or it can be the solution of the perturbation from
the linearized inversion in the Newton-type method

δm = −g, and

δm = −H−1g.
(6)

However, all different parameters are updated with the related descent direction scaled
by a step-length α as in (5). This can be treated as a 1D subspace scheme, in which,
the optimization of the misfit functional in the complete model space is replaced by a
1D optimization of φ down the descent direction. The step-length is a constant for each
parameter type, and the updates of each parameter is governed by the properties of the
overall descent direction at each iteration, instead of its own direction.

In the case of single parameter, subspace methods can also be used. Usually gradient
of current iteration and previous step information are combined to construct a subspace,
where a step length is found in a subspace of dimension M , which is small. However, it is
usually a trade-off between the increasing in computational cost per iteration and the pos-
sible decrease in number of iteration. Under this definition, conjugate gradient method can
be seen as a subspace method, which uses previous step and current gradient to construct a
2D subspace optimization, so as the limited memory quasi-Newton method. In these meth-
ods, the search directions are spanned in a lower dimensional space, which is at least 2,
compared to the steepest descent method, which searches a 1D step-length in the full space
(e.g., Yuan and Stoer, 1995; Yuan, 2009).

In the case of multi-parameter, either different datasets can be used to construct a sub-
space, model space can also be divided into subspace. In this study, we consider the par-
tition the gradient into contributions of each parameter to distinguish the contribution of
each gradient. We will study the inversion of acoustic case to invert both velocity and den-
sity (different parameterization can be applied also) in frequency domain. Suppose that the
perturbation can be written as a combination in a space spanned by n basis vectors {aj}

δm =
n∑
j=1

µjaj. (7)

Insert these perturbations (7) into the expansion of the misfit functional (4)

φ(m+ δm) = φ(m) +
n∑
j=1

µj < g, aj > +
1

2

n∑
j=1

n∑
i=1

µjµi < Haj, ai > + . . . . (8)

The coefficients can be found using

µj < g, aj > +
n∑
j=1

µj < Haj, ai >≈ 0. (9)
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Written in matrix form
ATg +ATHAµ ≈ 0. (10)

The coefficients can then be determined from the projection of the gradient and the Hessian
onto the subspace in the form

µ = −
(
ATHA

)−1
ATg. (11)

Since the subspace is only n dimension, ATHA is a n × n matrix and simple to invert.
When the second derivative term in the Hessian can be neglected, the approximate Hessian
can be used in the equation to evaluate the coefficient.

CHOICE OF SUBSPACE BASIS VECTORS

subspace basis vectors for linear updates

2D choice

It is straight forward to choose the descent direction (opposite of gradient) of the each
parameter as the basis vectors, in which case, the descent direction of each parameter needs
to be extended into the whole model space, e.g., in the case of two parameters v and ρ , the
basis vectors are the extension the gradient of each parameter in the whole model space,

a1 =

[
−gv
0

]
, a2 =

[
0

−gρ

]
. (12)

The Hessian matrix can be written as

H =

[
Hvv Hvρ

Hρv Hρρ

]
(13)

The coefficients are

µ =

[
gTvHvvgv gTvHvρgρ

gTρHρvgv gTρHρρgρ

]−1 [
gTv gv

gTρ gρ

]
(14)

which is easy to be calculated. The calculation is involving a calculation of a Hessian-
vector as in the Hessian-free Newton method. In this case, two Hessian-vectors are needed
for each calculation of the coefficient, and a 2 × 2 matrix is inverted. Compared to the
steepest descent method, which usually involving a line search scheme, and in a conjugate
gradient method for linear problem, e.g., with in the inner loop of the truncated Gauss-
Newton method, and the step-length is calculated

µ =
< g,g >

< Hg,g >
, (15)

The step length for update each parameter type is different, and the model is updated as

δv = µvgv, δρ = −µρgρ. (16)
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4D choice

These basis vectors can also be extended to a way to pretend the possible leakage be-
tween gradient components, e.g.,

a1 =

[
−gv
0

]
, a2 =

[
−gρ
0

]
.a3 =

[
0

−gv

]
, a4 =

[
0

−gρ

]
. (17)

In this case,

µ =


gTvHvvgv gTvHvvgρ gTvHvρgv gTvHvρgρ

gTρHvvgv gTρHvvgρ gTρHvρgv gTρHvρgρ

gTvHρvgv gTvHρvgρ gTvHρρgv gTvHρρgρ

gTρHρvgv gTρHρvgρ gTρHρρgv gTρHρρgρ


−1 

gTv gv

gTρ gv
gTv gρ

gTρ gρ

 (18)

In this case, four Hessian-vectors are needed to be calculated and an 4×4 matrix is inverted
to calculate the coefficients for four basis vectors.

6D choice

The rate of change of the ascent vectors can also be used to construct the basis vectors,
e.g.,

a1 =

[
−gv
0

]
, a2 =

[
0

−gρ

]
,

a3 =

[
Hvv Hvρ

0 0

][
gv

0

]
, a4 =

[
0 0

Hρv Hρρ

][
gv

0

]
,

a5 =

[
Hvv Hvρ

0 0

][
0

gρ

]
, a6 =

[
0 0

Hρv Hρρ

][
0

gρ

]
.

(19)

As pointed out in Baumstein’s study, when the misfit function is not locally quadratic, cur-
vature information obtained from the Hessian may be far away from the global minimum,
and the coefficients obtained may not lead to an improved search direction. Also, when
using the Hessian in the constructing of the basis vectors, computation cost may be much
higher, since more Hessian-vectors are needed.

Subspace basis vectors for nonlinear update

When considering the second-order scattering in the Hessian operator as correction in
the gradient, in the approximate Newton method, the higher-order perturbations can be used
as the basis vectors beside the gradient for each parameter type. In this case, the Hessian
can be written as summation of two parts

H = H1 +H2, (20)
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where H1 contains the second-order partial derivative of the data respect to the model
parameters, and H2 is the Gauss-Newton Hessian operator. Under this assumption, the
model perturbation can be modified from (5) to

δm = −H−1
2

(
g −H1H

−1
2 g
)
. (21)

To calculate this model perturbation, the inverse of the Gauss-Newton Hessian H−1
2 is

needed, to avoid the huge cost of calculation of this term directly, quasi-Newton method and
truncated Newton method can be used. Suppose that the δm1 = −H−1

2 g is the perturbation
obtained using a linearized inversion, e.g., truncated Gauss-Newton method. The basis
vectors can be a combination between the gradient vectors for each parameter class and
also its related nonlinear perturbations,

a1 =

[
−gv
0

]
, a2 =

[
(H1δm1)v

0

]
, a3 =

[
0

−gρ

]
, a4 =

[
0

(H1δm1)ρ

]
. (22)

Compared to the 4D subspace constructed from the gradient vectors (19) one more Hessian-
vector H1δm1 is needed during the calculation of the coefficients.

To find the update using subspace basis (22), a perturbation model δm1 is needed to
form the basis vectors a2 and a4. The calculation of this perturbation model could be
essential to the whole nonlinear update, since cross-talk artefacts should be removed by the
inverse of Gauss-Newton Hessian operator to avoid introducing new artefacts. Moreover,
the effect of inverse of the Gauss-Newton Hessian operator may not be ignored since cross-
talk artefacts still exist in the model updates founded within subspace basis vectors (22).
Therefore, directly using perturbation model δm1 to construct the basis vectors could be a
better choice

a1 =

[
(δm1)v

0

]
, a2 =

[
−H−1

2 (H1δm1)v

0

]
,

a3 =

[
0

(δm1)ρ

]
, a4 =

[
0

−H−1
2 (H1δm1)ρ

]
.

(23)

In this study, we use l-BFGS to approximate the inverse of the Gauss-Newton Hessian
as a precondition for the descent direction, and pseudo Hessian can also be used with the
assume that for the multiparameter case, each block in the Hessian for different parameter
classes is diagonal (Shin et al., 2001; Innanen, 2014; Métivier et al., 2015). In the cases
where the basis vectors may have cross-coupling with each other, e.g., using gradients of
different parameter classes (17), or using the Hessian to construct the basis vectors for each
parameter classes as in (19) and (22), orthogonalizing the basis vectors may be needed
to avoid linear dependence between the different basis vectors related with one parameter
class

â2 = a2 −
a1a2

a1a1

a1. (24)

6 CREWES Research Report — Volume 29 (2017)



Subspace method for multi-parameter FWI

APPLICATION OF SUBSPACE METHOD IN FWI

Using subspace methods in FWI instead of simple line searching method can help al-
tering the descent direction by emphasizing the contribution of each parameter classes.
Compared to the gradient based method, the Hessian operator is involved in the calcula-
tion of subspace vector coefficients. Compared to Newton-type method, subspace method
may be able to better cooperate the contribution of the multi-scattering related model per-
turbation into the descent direction for each parameter classes. Therefore, the usage of
subspace method in multiparameter FWI may help to mitigate the cross-talk between dif-
ferent parameter classes, since it can update different parameter classes with different step
length, and it can include the multi-scattering related perturbations as a correction to the
single-scattering related perturbations for different parameter classes.

Advantage of the subspace method

1. Gradients with different parameters are considered individually. A least-square in-
version is performed within the subspace, which is constructed from the dependence of all
different parameters.

2. Coefficients are calculated using the Hessian-vector, which is much cheaper than
Newton/truncated Newton/Gauss-Newton method, but could be compared with truncated
Gauss-Newton/Newton method.

3. May be useful for attenuation of crosstalk in multi-parameter FWI.

Disadvantage of the subspace method

1. The theory relies on the assumption that the Hessian correctly captures the behavior
of the misfit function. When the misfit function is not locally quadratic, it is not guaranteed
that the global minimum of the misfit can be found.

2. Approximate Hessian is usually used instead of the exact Hessian, which may make
the Hessian itself inaccurate.

3. It is possible that the model perturbation calculated from (11) is too large that the
misfit function is not quadratic anymore. In this case, another scaling factor may be needed
to modify the coefficients so that the updated model can still help the misfit function to
converge to the quadratic minimum.

EXAMPLES AND PRACTICAL ISSUES

We will test the application of subspace method in both gradient-type and Newton-type
FWI to invert velocity and density simultaneously in both transmission and reflection cases.
Steep descent method and truncated Newton method are used, where the line searching are
replaced with the subspace method as proposed in this paper.
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Transmission case: Two Gaussian balls

Using subspace method instead of line search

Figure 1 shows the true and initial models for both velocity and density. The sources are
at the top of the model, and the receivers are at the bottom of the model. 5 outer iterations
are used for both steep descent method and truncated Gauss-Newton method, where 10
CG iterations are used to solve the linearized inversion problem. Three data set for the
frequencies 8, 10 and 15 Hz are used for the inversion. We test both 2D and 4D subspace
method, and the inversion results are shown as in Figure 2. Gauss-Newton Hessian is used.
Figure 3 shows the profile of both velocity and density along z = 0.25 km. To compare the
convergence of the subspace FWI with the original FWI with line searching, we show both
the misfit and model errors vs. iterations as in Figure 4.
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FIG. 1. True velocity a) and density b). Initial velocity c) and density d).

From the inversion results, we can see that, applying subspace method to the steepest
descent method can provide a better update for the velocity with both 2D and 4D gradient
based basis vectors, however, the updating for density is getting worse due to the cross-talk
between velocity and density. It can be explained since the radiation pattern for velocity
is isotropic, but for density the radiation pattern is strong at small scattering angle, which
makes it hard to update density in the transmission case. Besides, recorded data is more
sensitive to velocity, and barely response to the density change, which could results a better
updates for velocity, but not for density. Cross talk between velocity and density is strong
and positively related to each other, so compared to 2D subspace, using the 4D subspace
method won’t provide much help to better update any parameter, and it could slow down
the convergence in certain point. The steepest descent subspace method can provide a bet-
ter convergence only for the first iteration when compared to the Gauss-Newton method,
instead, when combining subspace method with Gauss-Newton method, the cross-talk be-
tween velocity and density is reduced, and both 2D and 4D subspace method can provide a
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FIG. 2. Inverted velocity and density using different methods.
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subspace method.

10 CREWES Research Report — Volume 29 (2017)



Subspace method for multi-parameter FWI

better inversion results, especially for density.

Nonlinear update

We then use nonlinear term to construct the basis vectors. Maximum 10 inner itera-
tions and 20 outter iterations are used for the inversion. Figure 5 compare the results of
different methods. Figure 6 show the related profiles of velocity and density at z = 0.25
km. It can be observed that, 1), using full Hessian instead of the Gauss-Newton Hessian in
the truncated Newton method doesn’t provide a better update, epsecially for velocity; 2),
using model perturabtion obtained from a Gauss-Newton update and its related nonlinear
term with or without l-BFGS pre-conditioning, the inversion results converge faster in the
early stage for both velocity and density; 3), using gradient and the nonlinear term (model
perturbation approximated with l-BFGS update) to construct the subspace basis vector,
the inversion of velocity is better than the truncated Newton method, however, due to the
assumption that the inverse of Gauss-Newton Hessian is identity matrix, the cross-talk ar-
tifacts make the inversion of density worse and fail to converge to the true model.

Reflection case: Marmousi

It is more complex to apply the subspace method in the reflection case. We take only
a small area of the original Marmousi-II model as our true model, and the initial model is
obtained by smoothing the true model with a Gaussian smoothing window under the water
layer, as shown in Figure 8. The new model is in the size of 81× 161 grid nodes, with grid
intervals of 20 m at each direction. 4 frequencies (3, 5, 8, 12 Hz) are inverted simultane-
ously, and a maximum of 20 iterations are performed for all the methods, where 10 inner
iterations are used for the truncated Gauss-Newton type methods. Inversion results using
different methods (2D subspace method, 6D subspace method, Gauss-Newton method, and
Gauss-Newton method combined with 2D subspace method) are shown in Figure 9, and
Figure 10 shows the convergence profiles of these four methods. It can be seen that us-
ing subspace method can improve the updating of the velocity, but taking the price of a
overestimating of the density.

CONCLUSIONS

In this study, we are interested in the application of the subspace method on simulta-
neously updating the velocity and density. Subspace method can be used instead of line
searching in the traditional implementation of FWI to obtain step lengths for different pa-
rameter class. Gauss-Newton Hessian product with a vector is involved to find the local
minimum in the spanned space. We studied different basis vectors to construct the spanned
space, with nonlinear perturbations obtained from higher-order scattering involved. The
behavior of the subspace methods for both linear updates and nonlinear updates are com-
pared with traditional FWI methods. The subspace methods have better convergence rate,
as well as better reconstruction of the velocity model. The reconstruction of density model,
however, could still be effected by the cross-talk artifacts, when Hessian is not considered
in the inversion.
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FIG. 5. Inverted velocity and density using different methods.
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