IBM and IEEE floating point

Everything you never wanted to know about IBM and IEEE
floating point numbers

Kevin W. Hall

ABSTRACT

The CREWES Matlab® toolbox SEG-Y I/O functions have long been able to read
IBM floating-point, but have not been able to differentiate between IBM and IEEE trace
data. This was left to the user. In addition, it was not possible to write IBM floating point
SEG-Y files using the CREWES tools. New functions have been written, tested, and are
now available in the toolbox for writing IBM floats. We include new recommendations
for handling both large and small numbers in IEEE format

INTRODUCTION

Other than integer formats, the SEG-Y revision 0 standard only allows seismic data to
be stored in big-endian four-byte IBM floating-point format (IBM) with the data sample
format code (format code) in the SEG-Y binary file header set to 1. Big-endian is defined
to mean that the most-significant byte is closest to the beginning of the tape or disk file
(Barry et al, 1975). In this report binary and hexadecimal numbers are shown as big-
endian, with the most significant byte to the left of the page or table. Note that all modern
computers that use Intel or AMD CPU chips are little-endian.

With the advent of computer hardware that used IEEE floating-point format (IEEE),
vendors began to write non-standard SEG-Y revision 0 files with four-byte IEEE seismic
trace data. The binary file header format code was still set to 1, meaning the trace data
was stored as floating point, but there was no way to tell from the binary file header
whether the trace data are IBM or IEEE. This ambiguity leads to the possibility of
reading SEG-Y trace data incorrectly, if software implicitly trusts the format code.
Figures 1 and Figure 2 show the results of reading correlated Vibroseis data using the
correct and incorrect floating-point formats. While it is clear from the amplitude spectra
which output trace is correct in this case, the differences can be more visually subtle for
uncorrelated data (not shown) and dynamite data (Figures 3 and 4).

SEG-Y revision 1 explicitly allows the use of IEEE with the format code set to 5, but
continues to require that the data be big-endian (Norris and Faichney, 2002). SEG-Y
revision 2 allows little-endian byte order as well as eight-byte IEEE floating-point with
the format code set to 6 (Hagelund and Stewart, 2017). Using IEEE and setting the
format code to 5 or 6 removes the ambiguity present in SEG-Y revision 0 files.

Some non-standard revision 0 and 1 files are little-endian (sometimes called PC byte-
order), which can also lead to reading the seismic data incorrectly. In this case, the binary
file header and trace header values are also read incorrectly, so this issue is easier to
detect than the floating-point format issue for the trace data.

Legacy SEG-Y data is most often in IBM format, so software that reads these files
must be able to convert from IBM to IEEE before the data can be processed or interpreted

CREWES Research Report — Volume 29 (2017) 1

Hall

on most modern computers. In addition, many people still prefer to write SEG-Y files
using IBM, possibly for historical reasons, and possibly because older software may not
support IEEE.

The CREWES Matlab® toolbox SEG-Y reading functions have been able to read IBM
for many years, but were never been able to write IBM correctly. Three new functions
have been introduced to the toolbox this year that enable reading and writing IBM
floating-point numbers, num2ibm(), ibm2num() and logl6(). These functions are
described in greater detail below.

FLOATING POINT FORMATS

The equation that is used to decompose decimal numbers to store them in a floating-
point format is

(_l)sign % fraction % baseexponent+bias’ (1)

where the sign, fraction and exponent+bias are stored as N-bit unsigned integers,
typically in either four-bytes (single-precision) or eight-bytes (double-precision). Table 1
summarizes the differences between IBM 360 (IBM, 1967) and IEEE 754 (IEEE, 2008),
floating point formats. Appendix A shows examples of bits, nibbles, bytes, bitshifts and
binary, hexadecimal and decimal numbers.

The fraction (Equation 1) turns out to be binary identical for IBM and IEEE formats,
but is normalized differently. The base 2 IEEE fraction is normalized by bitshifting one
bit to the left until bit24 is a 1, which is then not stored (implicit one). Each bit-shift
requires an update to the exponent. The 1EEE fraction is always stored with 24-bit
precision, but only uses 23-bits to store the fraction because of the implicit one.

The base 16 (hexadecimal) IBM fraction is bitshifted one nibble (four bits) to the left
until the most significant nibble (bits 20-24) is non-zero. Since this means the IBM
fraction can have up to three leading zero bits, the fraction winds up being stored with
anything from 21 to 24-bit precision, even though it is stored in 24-bits. This precision
‘wobble’ can cause computation issues (eg. Harding, 1966, Tomayko, 1995), and can
also affect the accuracy with which seismic data values are stored on disk or tape (see
below).

In practice, the above means that we could bitshift the fraction and update the
exponent+bias to convert between the 4-byte formats. However, this approach leads to
errors due to truncating rather than rounding the fraction, as well as overflows and
underflows that require additional code to handle. The author’s preference is to
mathematically convert a decimal number to a fraction and exponent and then encode
those results.

2 CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

IBM on disk read as IBM

IBM on disk read as IEEE

051

e

500 1000 1500 2000 500 1000 1500 2000

Normalized Amplitude
o

-1

IEEE on disk read as IBM IEEE on disk read as IEEE

3

S 05F 1 0.5

=

£

<

5 0 —M 0

(]

N

g

5 -0.5 0.5

=z

1 N . . 1 . ‘ .
500 1000 1500 2000 500 1000 1500 2000
Sample Sample

FIG. 1. Correlated Vibroseis data acquired with a 10-250 Hz sweep stored as IBM (top) and
IEEE (bottom) floating point, that has been read into memory as IBM (left) and IEEE (right). Trace
amplitudes have been normalized for comparison, but no other processing has been applied.
Correct answers are shown in green.

IBM on disk read as IBM IBM on disk read as IEEE

10° 102

101 L

Amplitude (dB)

. . n T 0
10
0 100 200 300 400 0 100 200 300 400

1F IEEE on disk read as IBM . IEEE on disk read as IEEE

=
o
N

Amplitude (dB)
>

0 L L L n
10
0 100 200 300 400 0 100 200 300 400

Frequency (Hz) Frequency (Hz)

FIG. 2. Amplitude spectra corresponding to the traces shown in FIG. 1.

CREWES Research Report — Volume 29 (2017) 3

Hall

IBM on disk read as IBM

IBM on disk read as IEEE

Normalized Amplitude

A
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

IEEE on disk read as IBM IEEE on disk read as IEEE

051

Normalized Amplitude
o

A
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Sample Sample

FIG. 3. Dynamite data stored as IBM (top) and IEEE (bottom) floating point, that has been read
into memory as IBM (left) and IEEE (right). Trace amplitudes have been normalized for
comparison, but no other processing has been applied. Correct answers are shown in green.

IBM on disk read as IBM IBM on disk read as IEEE

102 \ 102

10" 10"

Amplitude (dB)

10° : : . : 10 ‘ .
0 50 100 150 200 (1] 50 100 150 200
- IEEE on disk read as IBM . IEEE on disk read as IEEE
L 102
S
3 10’
5
1
< 10

0 L h L . n
10
0 50 100 150 200 0 50 100 150 200

Frequency (Hz) Frequency (Hz)

FIG. 4. Amplitude spectra corresponding to the traces shown in Figure 3.

4 CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

Table 1. Comparison of IBM and IEEE floating point formats.

IBM 32-bit
16
Bias
W -64
Max
Exponent 63
bit 32 (1-bit)

SRR pits 25-31 (7-bits)

Exponent =0

Fraction . .

bits 1-24 (24-bits)
fraction =
O+Fraction

Wy | 5.3976e-79

Value

\EVdntg | 7.2370e+75

Value

Fraction =0,

Zero and
Denormal N/A
numbers

+Inf, -Inf N/A

N/A

IEEE 32-bit

+127

-126

127

bit 32 (1-bit)

bits 24-31 (8-bits)

bits 1-23 (23-bits)

fraction =
1+Fraction

1.1755e-38

3.4028e+38

Fraction =0,
Exponent =0

IEEE exceptions

Exponent =-127
fraction =
O+Fraction

Exponent =128
Fraction=0.0

Exponent =128
Fraction > 0.0

IEEE 64-bit

+1023

-1022

1023

bit 64 (1-bit)

bits 53-63 (11-bits)

bits 1-52 (52-bits)

fraction =
1+Fraction

2.2251e-308

1.7977e+308

Fraction =0,
Exponent =0

Exponent =0 or -1023
fraction =
O+Fraction

Exponent =1024
Fraction > 0.0

Exponent =1024
Fraction > 0.0

CREWES Research Report — Volume 29 (2017) 5

Hall

Table 2. Examples.

00300000 0-18€-36¥SLT T~ [8€-36VSLT T~ 9T- (LT] T ¢ | T (00000808 100000007 | Z€393L [3[buLs juiwvas-
00300000 0-8€-36%S.T T~ |8€-36¥S.LT T~ T€- | ¥9 | €€ 9T | T | 00000¥TV 10000T0T| z€wqL | aLbuls |uiwjpai-
00t300000°0-8€-36%SLT'T |8€-36¥S.T'T 9T- LT 1 T | 0 (00000800 100000000 Z€393L [3[buLs |uiwas
00t300000°0-8€-36%SLT'T |8€-36¥S.T°T T€- | V9 | €€ 9T | 0 | 00000¥TC 10000100 z€wqL | abuls |uiwpal
00+300000°0 [8€+3Z870% "€~ |8€+37820% "¢~ LZT | LTT| ¥S¢ | T | 44444244 OTTIITTIT| Z€393L [3[BuLs |xowjoa-
00+300000°0 [8€+3Z820% "€~ |8€+37820% "€~ € [v9 | 96 9T | T | 44444403 00000TTT| ZEwqL | @LBuls |xowjvai-
00+300000°0 [8€+3Z820%"€ |8€+37820%° ¢ LIT | LTT| ¥ST T | 0 [4444424, OTTIITTI0f Z€29dL [o8|BuLs |xowjpai
00+300000°0 [8€+37820%" € |8€+37820%° ¢ € [v9 | 96 9T | 0 | 44444409 00000TTO| ZEwqL | @LBuls |xowjpal
00+300000°0 [00+36STYT € |00+36STHT € T |LTT] 81 T | 0 [90406¥0t 000000070 z€@ddL | dLbuLs |id

00+300000°0 [00+36STYT € |00+36STHT € T 9 <9 9T | 0 | ZdevieTd 10000010 zgwql | @Lbuts [id

NEN 00000570 82T |lzT| <S¢ ¢ | T |00000044 TTITIIIIE| Z€@9dL | dLbuLs |NoN
00t300000°0 |S/+3T0LET L |SL*ATOLET L €9 | $9 | LZT | 9T | O | 4444444, TITITTI0[zewqL | @Lbuls [Non

JUI- 00000070 82T |lzT| <S¢ ¢ | T (00000844 TTITIITIL| Z€@daL | a|buLs |fuf-
00+300000°0 |SZ+3TOLET L~ |SL*ATOLET .- €9 | b9 | LZT [9T | T | 4444444 TITIITIL| zewqL | @LbuLs |fuf-

JUI 00000070 82T |lzT| <S¢ ¢ | 0 (0000084, TTITITIT0| Z€dddL | abuLs |fy
00t300000°0 |S/+3T0LET L |SL*ATOLET L €9 | P9 | LZT | 9T | O | 4444444, TITIITI0[ZewqL | @LbuLs |fuf
00+300000°0 [6£-3T9L6€ "S- |6/-3T9L6€ "S- v9- | ¥9 0 9T | T | 00000TOS 0000000T| ZEWqL | @Lqnop |NIA NGl
00+300000°0 [6£-3T9L6€"S |6/-3T9L6€"S v9- | ¥9 0 9T [0 | 00000T00 00000000 ZEwqL | @Lqnop |NIA NGl
00+300000°0 |SZ+3TOLET L~ |SL*ATOLET L- €9 | b9 | LZT [9T | T | 4444444 TITITIIL[ZewqL | ®Lqnop [xyw g
00t300000°0 |S/+3TOLET L |SL*ATOLET L €9 | P9 | LZT [9T | O | 4444444, TITITTI0[ZewqL [8Lqnop [xyw gl
00+300000"0 [00+3000000- |00t300000°0 [000000°0| ZZT- | L2T 0 | T (00000008 00000000T| Z€39dL | 3LbuLs |pp-
00+3000000 {00+3000000- 0013000000 v9- | ¥9 0 9T [0 | 00000000 00000000 Zgwqt |[@[buts [p0-
00+3000000 [00+300000°0 |00t300000°0 [000000°0| ZZT- | L2T 0 | 0 (00000000 000000000| Z€333L | 3LbuLs |p7
00+3000000 {00+300000°0 |001300000'0 v9- | ¥9 0 9T [0 | 00000000 00000000 Zewqt [8[buts (oo
00+300000°0 [T0-305¢9S'T |T0-30529S'T €- |LTT] VT | 0 [0000023¢ 00TTTTI00| Z€d9dL | 3LBuLls |5z967°0
00+300000°0 [T0-305¢9S'T |T0-30529S'T 0 9| 9 9T [0 | 00008Z0%F 000000T0| ZewqL | ®[Buls [679ST0

UM (GVILYIN) ynsay ([39x3) ynsay (3@a) (2a) (22a) (93@) (22q) |ewrdapexay Aeuig adA) adA) nduj
dxy seig seig+dx3 aseg usis inding indu; qepen

CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

METHOD

A new function called /og/6() has been written that emulates the behavior of the
Matlab built-in log2() function:

[=logl6(d) and (a)

[t.e] = logl6(d), (b)

where logl6() returns the base 16 logarithm of d if it is called with a single output
argument, or the fraction (f) and integer exponent (e) required to encode d as IBM
floating-point. This function is called by

u = num2ibm(d,lims), (©)

where u is an IBM float stored in an unsigned 4-byte integer and d represents the decimal
value(s) to encode. d can be any real Matlab data type. /ims can be set to either ‘ibm’
(default) or ‘ieee’, and refers to the minimum and maximum values that can be stored in
IBM and IEEE four-byte formats. Table 1 and Figure 5 show the behaviour of num2ibm()
for the various limits. Values between the positive and negative minimum are set to 0.0.
Values greater than the positive and negative maximum are set to the maximum.

Table 2 shows examples for a selection of representative numbers. Column one shows
the Matlab command used to generate the number (eg. realmax(‘single’)), column 2
shows whether the number is double or single precision in Matlab, column 3 shows
whether the number was converted to IBM floating point ‘ibm32’ using num2ibm() or not
‘ieee32’, and columns 4 and 5 show the output from num2ibm() in binary (sign is
magenta, exponent is blue and fraction is green; see Equation 1) and hexadecimal. The
remaining columns show the values of the sign, exponent and fraction extracted from the
binary string in column 4 using Microsoft Excel, the decimal value from Equation 1, and
a final comparison to the Matlab number. Note that +/-Inf and NaN have become +/-IBM
maximum. Exponents in red correspond to IEEE exceptions (see Table 1).

Any IBM floating-point number stored as an unsigned four-byte integer (#) can be
converted to a decimal value (d) by calling

d = ibm2num(u). (d)
Example 1

>> fid = fopen(‘test.sgy’,’r”)

>> fseek(fid,3840,’bof) -
>> u=fread(fid, 500, 'uint32=>uint32")

>> fclose(fid)

>> d = ibm2num(u)

Example 2

>> fid = fopen(‘test.sgy’,’a’)
>> fwrite(fid, num2ibm(d), 'uint32")
>> fclose(fid)

CREWES Research Report — Volume 29 (2017) 7

Hall

x107°

0.5

ibm2num(num2ibm(x,'ibm’))
o

T IBM_MIN

Converted Number

2 B v -IBM_MAX
R4
’/
S
-1 ‘ ; ; -10 “ ; ; ;
-1 -0.5 0 0.5 1 -10 -8 -6 -4 -2
x1078 x107® x107®
x10°%8 x10%8 x10%8
2 7
—_ 4
= 35 IEEE_MAX /
o
2, |
5 IEEE_LMIN 5
£ 3
T o
2 -3
g 215]
=
£
S -3.5 /,/ -IEEE_MAX
£ v 2
-2 -1 0 1 2 -4 -3.5 -3 -2.5 -2 2 215} 3 3:5 4
Number (x) «10738 Number (x) %1038 Number (x) %1038

FIG. 5. Behaviour of num2ibm() at the maximum and minimum values that can be stored in IBM
and IEEE floating point formats for lims="ibm’ (top) and lims="ieee’ (bottom). The red dashed line
shows the data to be stored (Matlab double) and the solid blue line shows what is actually stored
after converting to IBM floating-point. Values between the positive and negative minimum are set
to 0.0. Values greater than the positive and negative maximum are set to the maximum.

SYNTHETIC EXAMPLES

A sinusoid with amplitudes varying between minus one and plus one was created,
replicated, and multiplied by powers of 10 so the resulting amplitudes cover both the
IBM and the IEEE maximum and minimum numbers that can be stored. This synthetic
dataset was written to disk using writesegy() as IBM floating point using both
num2ibm(d, ibm’) and numZ2ibm(d, ieee’). The results when read back using readsegy()
are shown in Figure 6 and Figure 7. See Hall and Margrave (2017) for descriptions of
readsegy() and writesegy(). These figures show the expected results.

Figures 8, 9, and 10 show the results of reading the SEG-Y file shown in Figure 6 into
three different seismic processing software packages. Clearly, while it is possible to store
larger and smaller numbers in a four-byte IBM float than in a four-byte IEEE float, it will
not be possible to read them back for processing. If you need to store very small or very
large numbers, it would be better to use eight-byte IEEE floats and SEG-Y revision 2.

ARE MY TRACE DATA IBM OR IEEE?

Figure 11 shows a 3C source gather stored as IEEE on disk that has been read
incorrectly as IBM and converted to IEEE by readsegy(). If the data are converted to
IBM, back to IEEE, and subtracted from the data shown in Figure 11 we get the results
shown in Figure 12. The inset graph shows cumulative amplitude differences per trace.
The largest amplitude differences are associated with the source location (bigger

8 CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38
| | A
r \lJ \l 1
0

<@ \

Q.

£

©

m '
Matlab;32-bit IBM
converted to double \

2000 i l

T T T T T T T T T T T T T T T
-80-79-78-77-76-75 75 76 77 78 79 80-40-39-38-37-36-35 37 38 39 40 41 42
Sinusoids Scaled by Power of 10

FIG. 6. Sinusoids written to SEG-Y file as IBM floats with IBM limits with writesegy(), then read
back into Matlab with readsegy() and displayed using plotseis(). Red ovals highlight artifacts at
values less than IBM minimum, and red rectangles highlight artifacts at values greater than IBM

maximum.

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

A A A A

Sample

Matlab; 32-bit IBM
converted to single

]]] ‘ I‘ ‘]]]] L]]]] I‘]]]]
-80-79-78-77-76-75 75 76 77 78 79 80-40-39-38-37-36-35 37 38 39 40 41 42
Sinusoids Scaled by Power of 10

2000

FIG. 7. Sinusoids written to SEG-Y file as IBM floats with IEEE limits with writesegy(), then read
back into Matlab with readsegy() and displayed using plotseis(). Red ovals highlight artifacts at
values less than IBM minimum, and red rectangles highlight artifacts at values greater than IBM

maximum.

CREWES Research Report — Volume 29 (2017) 9

Hall
IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

I\

IBM_MIN=5.4e-79 IBM_MAX=7.2e75

. p | \ 1 [
VAL
[\a
(79 had
Pl
o LA
% \
/ /
Seismic software — |1 [| | |
’T | | - :

2000]
-80-79-78-77-76-75 75 76 77 78 79 80-40-39-38-37-36-35 37 38 39 40 41 42
Sinusoids Scaled by Power of 10

FIG. 8. Sinusoids written to SEG-Y file as IBM floats with IBM limits with writesegy(), then read
back into Seismic Software A and displayed. Red ovals highlight artifacts at values less than IBM
minimum, and red rectangles highlight artifacts at values greater than IBM maximum.

IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38

IBM_MIN=5.4e-79 IBM_MAX=7.2e75
1

0 r L _H \Ni
L
|
\ ud
[[]
([
o [
o
g \
]
// []
Seismic software 1
B \
2000 T T T T T T T T T
-80-79-78-77-76-75 75 76 77 78 79 80-40-39-38-37-36-35 37 38 39 40 41 42

Sinusoids Scaled by Power of 10

FIG. 9. Sinusoids written to SEG-Y file as IBM floats with IBM limits with writesegy(), then read
back into Seismic Software B and displayed. Red ovals highlight artifacts at values less than IBM
minimum, and red rectangles highlight artifacts at values greater than IBM maximum.

10 CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

IBM_MIN=5.4e-79 IBM_MAX=7.2e75 IEEE_MIN=1.2e-38 IEEE_MAX=3.4e38
0 r . 1 . \Ni . \Ni . 1
] (/
ol \
[\ L[\
WA
=1 A |
@ = \ A I
g \ N
‘" — /
(
— \
—= [/// [[]
(Seismic software U1 (]
— \ ¢ UV
7000 \ L1]

]]]]]]]]]]]]]]]]]
-80-79-78-77-76-75 75 76 77 78 79 80-40-39-38-37-36-35 37 38 39 40 41 42
Sinusoids Scaled by Power of 10

FIG. 10. Sinusoids written to SEG-Y file as IBM floats with IBM limits with writesegy(), then read
back into Seismic Software C and displayed. Red ovals highlight artifacts at values less than IBM
minimum, and red rectangles highlight artifacts at values greater than IBM maximum.

amplitudes?) and the auxiliary traces (right-hand side). While most of the cumulative
differences per trace are near zero, none of them are exactly zero. If we start with IBM
data on disk, read it correctly as IBM and go through the same process, the cumulative
differences are all exactly zero (not shown; blank graphs are boring).

Figure 13 shows the IBM precision wobble that results if the actual IEEE trace
amplitudes are converted to IBM. Dark blue represents IBM fractions that are stored with
24-bit precision (no leading zero bits) and yellow represents fractions that are stored with
21-bit precision (three leading zero bits). Interestingly, IBM fractions with 21, 22, 23
and 24-bit precision are evenly distributed throughout the source gather (Figure 13, and
histogram inset Figure 14). As you would expect, the largest amplitude differences
correlate to the worst precision (ie. 21-bit precision, or 3 leading zero bits; Figure 14).

The CREWES Matlab toolbox SEG-Y reading functions now take advantage of this to
guess whether the trace data in a disk file are IBM or IEEE if the format code is 1 using
the following algorithm:

1) Read single traces from input file as IBM in a loop until we find a trace that is not
all-zeros (takes care of trace padding) and allow readsegy() to convert to IEEE.

2) Convert to IBM and back using and ibm2num(numZ2ibm()).

3) Subtract (2) from (1) and sum the differences.

4) TIF (3) is non-zero guess IEEE format, display a warning, and carry on after
updating the format code to 5 ELSE guess IBM and carry on.

CREWES Research Report — Volume 29 (2017) 11

Hall

IEEE data read as IBM: -2.530944e-01 <-> 9.397100e-01
— T e

1400 [=
1600 [=

1800 =

2000

FIG. 11. Real data stored as little-endian IEEE floating point and read incorrectly into Matlab as
IBM floating point with readsegy() and displayed using plotimage().

200

400

600

800

o
o
£ 1000 |~
©
»

1200

8

® 6

'_

5 4 :
2 L]

52 .]
5 . ‘ :

o O — At

= . .

Tt . by
> .

§_4 . | | | | | | |

o 50 100 150 200 250 300 350 400

Trace

FIG. 12. Data shown in Figure 11 after conversion to IBM and back, subtracting from the data
shown in Figure 11 and displayed using plotimage(). The cumulative error (sum of amplitude
differences) per trace is displayed across the bottom.

12 CREWES Research Report — Volume 29 (2017)

IBM and IEEE floating point

200

400

600

800

1400

1600

2000

Trace

FIG. 13. Number of leading zeros in the most significant 4-bits (nibble) of the IBM floating-point
fraction. Zero leading zeros means the fraction is stored with 24-bit precision. Three leading zeros
means the fraction is stored with 21-bit precision.

Amplitude Error

-2

-3

%1077 IEEE to IBM floating point conversion error
T T
(]
[]
|- . i
[]
5
02
i
L : i
. ogI.S
5
61
B i i
£
3
Z05
B n |
3 2 1
‘ Number of leading zeros in [BM fraction
2 1

Number of leading zeros in IBM fraction

FIG. 14. Sum of amplitude differences plotted against the number of leading zeros in the most
significant 4-bits (nibble) of the IBM floating-point fraction.

CREWES Research Report — Volume 29 (2017)

13

Hall

CONCLUSIONS

The CREWES Matlab® toolbox has long been able to read IBM floating-point, but
has not been able to write IBM to disk. New functions have been written, tested, and
released in the toolbox that allow IBM floating-point format to be written to disk.
However, doing this results in a loss of precision due to the IBM fraction being stored
with between 21 and 24-bit precision, meaning that trace amplitudes written to disk as
IBM will not be identical to the original IEEE amplitudes.

While IBM can store both larger and smaller numbers in four-bytes than IEEE, these
values could not be read successfully by three seismic software packages that were tested.
One of the software packages returned numbers that were correct, but constrained by
IEEE limits on size. Two of the software packages were not able to do this. If you need to
store very large or very small numbers you should use IEEE eight-byte (double precision)
floating-point and SEG-Y revision 2, or scale your numbers so they can be stored in a
four-byte IEEE float. Software that can read SEG-Y revision 2 should become more
prevalent as time goes on.

SEG-Y files with the data sample format code set to one (IBM floating point) can be
ambiguous, since sometimes the trace data are actually stored as IEEE floating-point. If
IEEE data are read incorrectly as IBM, and then converted to IEEE and back to IBM and
subtracted from the original data, the sum of the differences is non-zero. If IBM data are
read as IBM, and then converted to IEEE and back to IBM and subtracted from the
original data, the sum of the differences is zero. This can be used to distinguish between
IBM and IEEE floating-point data on disk.

It is faster to write SEG-Y to disk using the byte-order and floating-point format
native to the computer upon which the data resides, rather than having to swap bytes and
convert floating point formats. For example, the author would recommend little-endian
byte order and IEEE floating-point on a modern PC, which is allowed by the SEG-Y
revision 2 standard, rather than converting to big-endian as required by revisions 0 and 1,
and IBM floating point as required by revision 0.

REFERENCES

Barry, K. M., Cavers, D. A. and Kneale, C. W., 1975, Report on recommended standards for digital tape
formats: Geophysics, 40, no. 02, 344-352.

Hagelund, R., and Stewart, A.L., Eds., SEG Technical Standards Committee, 2017, SEG-Y _r2.0: SEG-Y
revision 2.0 Data Exchange Format: SEG, Tulsa, OK, www.seg.org.

Hall, Douglas V., 1980, Microprocessors and Digital Systems, McGraw-Hill.

Hall, K.W. and Margrave, G.F., Updates to SEG-Y I/O in the CREWES Matlab Toolbox, this volume.

Harding, L. J. (1966), "Idiosyncrasies of System/360 Floating-Point", Proceedings of SHARE 27, Aug. 8-
12 1966, Presented at SHARE XXVII, Toronto, Canada

IBM, 1967, IBM System/360 Principles of Operation, IBM Publication A22-6821-6, Seventh Edition.

IEEE Computer Society, 2008, I[EEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008.

Norris, M.W. and Faichney, A.K., Eds., SEG Technical Standards Committee, 2002, SEG-Y rev 1 Data
Exchange Format: SEG, Tulsa, OK, www.seg.org.

Tomayko, J.,1995, System 360 Floating-Point Problems, IEEE Annals of the History of Computing, 17,
62-63.

14 CREWES Research Report — Volume 29 (2017)

http://www.seg.org/
https://en.wikipedia.org/wiki/McGraw-Hill
http://discover.lib.umn.edu/cgi/f/findaid/findaid-idx?c=umfa;cc=umfa;rgn=main;view=text;didno=cbi00021
http://discover.lib.umn.edu/cgi/f/findaid/findaid-idx?c=umfa;cc=umfa;rgn=main;view=text;didno=cbi00021
http://www.seg.org/

IBM and IEEE floating point

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for continued support. This work was funded by
CREWES industrial sponsors and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 461179-13.

CREWES Research Report — Volume 29 (2017) 15

Hall

APPENDIX A

The smallest piece of information that can be stored by a computer is called a bit. A
bit can have a value of zero or one (Table A.1). The smallest number of bits that can be
easily accessed is called a byte, where one byte is eight bits in size. Half of one byte (four
bits) is called a nibble, and conveniently, one nibble is big enough to store a hexadecimal
number. Two hexadecimal numbers can be used to describe the contents of all the bits in
one byte. For example, ‘FF’ means that all the bits in one byte are set to one (Table A.2).

While IEEE is base 2, IBM is base 16 (Table A.1). On a little-endian computer (bit 32 is
visualized to be on the left), multiplying the significand by a power of 2! moves the
decimal point to the left one bit and by 2! moves the decimal point to the right one bit.
Similarly, multiplying by 16" moves the decimal point 4-bits (one nibble) to the left and
16" moves the decimal point 4-bits to the right.

Table A.3 shows how bits are converted to integer values by interpreting the location
of a bit within a byte as representing a power of 2, then summing.

Table A.1. Bits, nibbles, bytes and bitshifts.

Nibble (4-bits)
Byte (8-bits) 0000 0001 01 1

Bitshift N bits towards most 0000 0001 << 4 =
significant bit == x*2AN 0001 0000 10 1*274 =16

Bitshift N bits towards least 0001 0000 >> 2 =
significant bit == x*2/-N 0000 0100 04 16*27A-2=4

Table A.2. Nibbles Table A.3. Unsigned integer value of a byte

Nibble MM Nibble MM 8-bit unsigned integer
(Bin) (Bin) Bit # 5 7 [6 [Ja [[[

e - i = BitValue= 128 64 32 16 8 4 2 1
0010 2 2 1010 A 10 2A(Bit#-1)

0100 4 4 1100 ¢ 12 Bit 1 0 0 0 0 1 1 0
0101 5 5 1100 D 13 BitValuek 128 0 0 0 0 4 2 0
0110 6 6 1110 14 Sum (Dec) 134

o111 7 7 111 F 15

1000 8 8

16 CREWES Research Report — Volume 29 (2017)

	Everything you never wanted to know about IBM and IEEE floating point numbers
	abstract
	introduction
	Floating point FORMATs
	Method
	Example 1
	Example 2

	synthetic examples
	are my trace data IBM or IEEE?
	conclusions
	references
	Acknowledgements
	Appendix A

