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ABSTRACT

It has been pointed out that if a homogeneous medium that is supporting a propagat-
ing wave were to suddenly undergo a change in medium properties, the propagating wave
would immediately partition into reflected and transmitted components—exactly as if it had
impinged on a spatial boundary. Bacot ef al. in 2016 in Nature Physics published labo-
ratory examples of this, referring to the change causing the reflection as a “time mirror”.
Here we model this phenomenon numerically, speculate on a practical usage of it in mon-
itoring reservoirs undergoing rapid pressure changes, and offer a modest extension of the
theoretical description. In the extension we point out that the time-mirror reflections are
essentially non-oblique, and then, motivated by the explorationists’ tendency to think about
obliquely incident waves, we ask the question of how we could force a wave to impinge on
a time-boundary at an angle. The answer requires the introduction of boundaries with both
space- and time features. Upon setting up such a problem basic rules for reflection angles
and transmission angles are derivable by appeal to Huygens’ principle.

INTRODUCTION

Suppose a one-way wave is propagating along in a homogeneous medium. Suppose
further that we could arrange circumstances such that at some instant ¢, during its propa-
gation, the entire medium has its elastic properties changed. That is, after ¢;, the medium
remains homogeneous, with no spatial variation in its properties, but those properties are
everywhere different from the ones prior to ¢,. What would happen?

Because the roles played by space and time in the wave equation are very similar, there
is a fascinating answer to this question. The wave described above can be thought of
as impinging on a discontinuity in medium properties, but a discontinuity along the time
axis rather than along a space axis. Waves impinging on discontinuities reflect from those
discontinuities, so, the answer is that after the homogeneous medium changes, the wave
partitions into components going forwards and backwards. The backscattered part of this
new waveform is said to be a reflection, but a reflection from a time-boundary rather than a
space-boundary. As strange as it sounds, this phenomenon is real, and it works in real life.

The key papers describing this phenomenon are those of Mendonca and Shukla (2002)
followed by Bacot et al. (2016) and Fink and Fort (2017). In the latter papers, an ex-
periment involving a wave (created by simulating the splash of a souvenir statue of the
Eiffel tower) on the surface of a suspended container of water is described. After the wave
has propagated for a period of time, the container is dropped, allowing the water to enter a
state of free-fall, which instantaneously alters the velocity of the water wave. A backwards-
propagating waveform is induced which, after the same amount of time, produces an image
of the Eiffel tower at the instant it hit the water.

The purpose of this report is to review and numerically reproduce the main features
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of this phenomenon, and add some new elements. We zoom in on the special case of the
reflections of plane waves from time boundaries. One finds that, no matter what angle
a plane wave may be propagating in space, after the medium properties change (or, one
learns to say, after the wave has hit the time-boundary), the reflection propagates directly
backwards. In other words, all time-boundary reflections occur at the equivalent of normal
incidence. This allows us to ask whether or not there exists a meaningful extension in
the sphere of time-boundary reflections of the concept of oblique-incidence. Finally some
speculation on applications of this idea — and the type of information about it available to a
geophysicist who is sensing it remotely — in the area of seismic monitoring and exploration
technology.

What is a time boundary?

To introduce the idea of reflections from a time-boundary, which requires no special
equations to model, let us simulate one synthetically. Consider a 1D scalar acoustic wave
equation solved with finite differences. Let a disturbance of amplitude 1.091 (for reasons
to be made clear shortly) be injected into a homogeneous 1D computational domain at the
left boundary, such that it propagates to the right at a velocity of cy=2.0km/s. In Figure 1
snapshots of this waveform as it propagates are illustrated.

At time t=0.75s, let the velocity everywhere jump suddenly from 2.0km/s to 2.4km/s, as
if some external process had managed to change the elastic properties of the medium on a
spatial scale comparable to that of our computational volume. What happens to the wave—
does it reflect? Evidently (Figure 1) it does: the waveform propagating in one direction
is partitioned into a wave with left- and right-going components, whose amplitudes have
changed. Notice that the amplitude of the new right-going pulse has dropped from 1.091 to
1. We will return to these numbers to better understand them in the next section.

Can we use them?

If they could be created in practice, it would not be hard to use them. Suppose the initial
waveform was set up by a geophysicist constrained to sit at the left boundary in Figure 1.
The phenomenon generates for her an observable result, the weak left-going waveform.
This reflection contains intelligible information about the dynamic process that caused it.
In fact, the amplitude of the reflection is proportional to the jump in the properties of the
medium from its initial state to its final state, and it would not be difficult to infer the jump
from the amplitude.

Sounds like I am saying that we can do AVO without an interface. Really? The pedantic
answer is no, because there is an interface, just not a spatial interface. On the other hand,
a medium that remains at all times spatially homogeneous creates a reflection, and, as we
will see, the amplitude of the reflection can be easily analyzed, so answering yes is not
outlandish. A more interesting criticism is not of the A in AVO, but of the O, the offset. All
time-boundary reflections described in the literature occur normally, i.e., without obliquity.
For offset to be introduced, one would have to figure out how to aim a plane wave at a
time-boundary at an angle.
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FIG. 1. Five snapshots of a waveform propagating through a 1D scalar acoustic medium, as com-
puted with a simple finite difference solver. At ¢t=0.75s, the velocity of the homogeneous medium is
rapidly altered from 2.0km/s to 2.4km/s. The reference amplitude values of 1.091, 1, and 0.091 are
labelled with blue, black and red dashed lines respectively.
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DETAILED FEATURES
Time-boundary reflection and transmission coefficients

The possibility of measuring time-boundary reflections appears to have been initially
guessed at because of the similarity of the roles played by time and space in wave motion.
However, inspection of Figure 1, wherein the “incident” wave and the “transmitted” wave
seem to have exchanged amplitudes, is suggestive that the roles are not exactly compa-
rable. The symmetry between time- and space-boundary reflections is imperfect because
the symmetry of the wave equation in a heterogeneous medium (though clearly present
in some form) is imperfect. The wave equation in a perfectly homogeneous medium can
be expressed in units such that the velocity is 1, which means it is symmetric under an
exchange of z and ¢:

OpaD = Oup — OuD = Opzp (1)

However, if the medium properties change at some point in space, units cannot be found
which preserve the symmetry and we have

Opep = ¢ 2(2)Oup — Oup = ¢ (t)Dpup- (2)

As a consequence, when standard scalar boundary conditions (i.e., p and its derivative
being continuous across the interface) are applied in the time-boundary setting, we obtain
recognizable but slightly altered rules for reflection and transmission. Assuming a single
right-propagating waveform for ¢ < 0, before and after the medium change we have

o (zt), t<0 | Af(x— cot), t<0
p(m’w_{p*(fat), t>0 _{ Bf(:r—c?t)+0f(:c+clt), t>0 3)

Continuity of field and derivative require us to impose the conditions

P ()]0 = p~ (@, 1) |10

_ “4)
Opt(x,t)|i=0 = Op™ (z, 1) |1=0,
from which we obtain
A=B+C,
_ 5
— CQA = —ClB + ch,
or, normalizing by B,
A C
5 5 (6)
where
T — 201 ’ R— Cl—CQ‘ (7)
C1 + Co C1 + Co

This looks more or less as expected, but with one important difference. The amplitude
B used to normalize A and C' was not that of the incident wave. It was the amplitude of
the “transmitted” wave component, i.e., the part of the wave which continues to propagate
to the right after the boundary has been encountered. If we assign to the initial wave an
amplitude 7" based on the upcoming change from ¢y to ¢;, we find that the “transmitted”
waveform takes on a unit amplitude.
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Plane waves and normal incidence time-boundary reflections

Time-boundary reflections can be categorized as normal incidence phenomena. This
emerges empirically, as we can see from the 2D numerical experiment summarized in Fig-
ure 2. A plane wave propagating at an angle oblique to the = and 2z coordinate axes through
a homogeneous medium impinges on a pure time boundary at 0.7s. The up- and down-
going waves emerging from the reflection process propagate along the same axis as the
incident wave, as they would do in the case of a space-boundary reflection at normal in-
cidence. Hence, we will refer to such as wave as having been normally-incident upon the
time-boundary. Later in this document we will repeat this claim again, basing it on other
arguments.

t=0.45s t=0.55s t=0.65s
p) / 2
e
~ 3 ~ 3
4 4
km km
t=0.85s t—O 95s
2 4 6 8
X (km) (km) (km)

FIG. 2. A plane wave before and after its interaction with a time-boundary (occurring at 0.7s).
Because the two emerging waveforms propagate forwards and backwards along the same propa-
gation axis

Time-mirror “Bacot images’’, Canadian-style

Before moving on to some extensions to the time-boundary idea, let us reproduce syn-
thetically the wave control experiment Bacot et al. carried out. In Figure 3, the waveform
a few instants after a maple leaf hits a pond surface is illustrated propagating outward.
At 0.7s, a sudden process occurs that affects the wave velocity everywhere, and a time-
boundary reflection is excited. By 0.9s the collapsing waveform is discernible, and at
exactly 1.18s the waves focus on the original source.

OBLIQUE INCIDENCE ON SPACE-, TIME-, AND MIXED BOUNDARIES

In seismic problems it is common to consider both normal-incidence and oblique-
incidence reflections. A reflection occurring obliquely is generated by setting up a plane
wave such that it impinges upon a spatial boundary at an angle. But we are considering
time boundaries now. Is the idea of obliquity applicable? What does it mean for a wave to
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FIG. 3. Snapshots of a waveform on a (say) pond surface excited by a falling maple leaf. At
0.7s, caused by some unknown process, the surface wave velocity suddenly changes. The time-
boundary reflected waveform re-focuses on the original source at 1.18s.
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impinge on a time boundary at an angle? To analyze this we appeal to Huygens’ principle
and draw an analogy with wave reflection processes from standard space-boundaries.

Huygens’ principle is useful for analyzing time-boundaries because it transforms space
boundaries into time boundaries implicitly anyway. First let us agree that from a Huygens’
principle point of view, reflections from time boundaries as developed by Bacot et al. are
normal-incidence reflections. A plane wavefront is normally-incident on a space-boundary
if it is set up so that the entire wavefront experiences the medium property change at the
same instant. At that instant each point on the wavefront becomes a Huygens’ source, and
all of these sources which ignite simultaneously. The envelope of these sources is then
seen to be a plane wavefront scattered directly away from the wavefront as it was at the
moment it hit the boundary. Because this is precisely the set of phenomena that give rise
to the time-boundary reflection, both of these reflection processes are classifiable as being
normal-incidence.

A plane wavefront impinges on a space-boundary at oblique incidence, in contrast, if
regularly-spaced points along the wavefront are set up to experience the medium property
change non-simultaneously, at regularly-delayed instants. Thus any wavefront experienc-
ing a time-boundary of the type introduced by Mendonca and Shukla (2002), Bacot et al.
(2016), and Fink and Fort (2017), but so arranged that sequential points on the wavefront
experience the property change at different, and regularly delayed, times, could be said to
have been approaching the time-boundary obliquely.

To produce such a change requires, at some particular instant, one part of an incident
wavefront to experience the time-boundary property change and another part not. Logically
this is possible only if a space-boundary of some kind, separating the two intervals, is also
present at that instant. So, time-obliquity evidently requires a boundary to be introduced
whose description involves both space and time coordinates. This fits with our normal
experience of a wavefront impinging at an angle on a space-boundary, which requires at
least two coordinates in its description (i.e., for there to be a slope there must be a ‘rise’
coordinate and a ‘run’ coordinate).

Consider two wave experiments (Figure 4), both beginning with a plane wavefront
propagating vertically downward at velocity cy. In the first experiment (Figure 4a), it en-
counters a space-boundary, with dip angle v from the horizontal, below which the wave
velocity is ¢;. This induces a reflection at an angle 2+ from the vertical, in agreement with
standard rules for reflection. In the second experiment (Figure 4b), the medium is entirely
homogeneous with wave velocity ¢, everywhere, but at some time %y, a time-boundary is
encountered and the entire medium jumps such that it has properties c; everywhere. In ac-
cordance with the time-boundary phenomena discussed previously, a reflection is induced
which propagates vertically upward.

Suppose we created a boundary with both of these space and time aspects. The plane
horizontal wavefront again propagates downward in a homogenous (cy) medium (Figure
4c). At time ¢, let a space-boundary with dip angle ~y from the horizontal appear suddenly,
such that part of the incident wavefront remains in the ¢y medium, and part finds itself
having crossed the time-boundary into a medium with velocity c;. This experiment exposes
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FIG. 4. Three experiments. (a) Experiment 1: a plane wave (blue arrow, top panel) is incident on
a space-boundary (angle ) which causes a reflection to take off at ¢ at angle 2y (bottom panel).
(b) Experiment 2: a plane wave encounters a time-boundary at time ¢, (top panel), after which it
reflects at angle 0 (bottom panel). (c) Experiment 3: a plane wave is incident (top panel) on a
space-boundary like that in (a), but one which only appears at time ¢, like the time-boundary in (b).
Question: what are the characteristics (angle etc.), as picture in the bottom panel, of the reflection
induced by this mixed space/time boundary?

the wavefront to a boundary that in some sense mixes both space and time components.
Does the reflected wavefront induced by this mixed boundary have a direction that is a
mixture of the time-boundary direction (directly upward) and the space-boundary direction
(angle 2v)? If so, what are the rules governing this direction?

Numerical simulation of the three experiments

Let us develop answers to these questions by simulating the first two different reflec-
tions, the first a standard oblique-incidence space-boundary reflection, and the second a
“normal incidence” time-boundary reflection. In Figures 5a-i time snapshots of the first
case are illustrated at various points as a normal incidence plane wavefront impinges on
a right-dipping interface. In the last diagram wavefront lines constructed using Snell’s
law confirm that the transmitted (blue) and reflected (yellow) wavefronts are behaving as
expected and as per Figure 4a.

In Figures 6a-i a comparable time-boundary experiment is simulated, and, as in the
earlier plane-wave experiment (Figure 2), we find that the experiment sketched in Figure
4b is also accurate in essence.

In Figures 7a-i, the mixed, or space-time boundary interaction is modelled. In Figures
7a-c the plane wavefront propagates vertically downward in a homogeneous medium. At
a moment between panels (c) and (d) a mixed boundary is encountered, at at times from
(d)-(1) the medium now has a region with the original velocity ¢, and a region with velocity
Ct.
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FIG. 5. Snapshots of wavefront interacting with a space-boundary at oblique incidence.
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FIG. 6. Snapshots of wavefront interacting with a time-boundary at normal incidence.
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The waveform which expands outward in panels (d)-(i) has six identifiable wavefronts.
On the left (low z) and deeper end is a horizontal and downward propagating wavefront.
On the right the original horizontal and downward propagating wavefront that has not yet
encountered the space boundary is visible. Between these there is a set of four conjoined
wavefronts making a tilted kite-shape. A zoomed in snapshot of this shape is illustrated in
Figure 7.

FIG. 7. Snapshots of wavefront interacting with a boundary involving both time- and space-
boundary components.

Two of these wavefronts are largely the responsibility of the space-boundary, and appear
to correspond to the expected reflection and transsmission responses the plane wave would
have had if the space-boundary had been there alone. These are marked with solid blue
and solid yellow lines in Figure 7i. The third, which is marked with a blue dashed line, is
precisely parallel to the yellow solid wavefront and propagating away from the boundary.
The fourth, marked with a dashed yellow line, is not parallel with any of the other three
wavefronts and is not consistent with any of the wavefronts generated by either the pure
time- or pure space-boundary. It propagates upward with a ray angle somewhere between
the angle of pure space-boundary and the pure time-boundary reflections.

Reflection and transmission angles of the oblique wavefronts

To analyze the upgoing wave model generated by the of space- and time-boundaries
acting together, labelled with the yellow-dashed wavefront in Figure 7i, we consider the
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FIG. 8. Zoom in of the response a few instants after a putative mixed boundary has been encoun-
tered.

angles of the four oblique wavefronts in Figure 8. In Figure 9 these wavefronts are labelled
AF, AB, ED and CD, and the angles their rays make with the vertical are labelled ¢, 6,
and 0. Suppose a downward propagating horizontal plane wavefront passes the point O at
to, the moment the medium jumps from being homogeneous with velocity ¢, to having a
single interface separating regions with velocity ¢y and ¢, as illustrated. Allow a further
time interval dt to elapse. The various new wavefronts at ¢, + d¢ are in red. The component
of the wavefront to the right of O at ¢, continues to propagate downward at speed cy. It
gives rise to reflected and transmitted wavefronts ED and CD respectively. The component
of the initial wavefront which was to the left of O at ¢, experiences the time-boundary, and
partitions into two wavefronts, one continuing downward and one propagating upward,
both at speed c;. The upward-propagating wavefront gives rise to reflected and transmitted
wavefronts AB and AF respectively. The four wavefronts ED, CD, AB, and AF are the
modes of interest.

The upgoing horizontal wavefront intersects O at ¢y and A at ¢y, + ot. This wave trans-
mits through the boundary forming the refracted upgoing wavefront AF. From Huygens’
principle the point F (a distance cydt away from O) and the point A must both lie on this
refracted wavefront such that ZAFO is 90°. Thus AF forms right triangle AAOF, AB like-
wise forms AAOB, CD forms ADOC, and ED forms ADOE. Because by again invoking
Huygens’ principle we know lengths AO, OD, OB, OF, OE, and OC, the directions of the
four oblique rays (OF, OE, OB, and OC) in terms of 6, ¢, and ¢ are fixed and can be shown
to be

¢ =2y
0 =n— ®)
02V—77
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where 1 and v satisfy

siny sinp J siny sinv )
= , an = .

Co C1 C1 Co

OB and OE are antiparallel and are both given by ¢, which is the reflection angle from
vertical experienced by the wavefront incident on the interface as a pure space-boundary.
From equation (8) we observe that the angle y is the refraction angle of a ray incident
on the c¢o/c; boundary at angle v. The angle ¢’ is, then, simply this angle less the dip of
the interface, meaning that the ray OC corresponds to the expected transmission of the
horizontal incident wavefront through the space-boundary of angle ~.

The angle 6 is unique to the mixed space- and time-boundary.the reflection angle pro-
duced when a time-boundary component is added to the space-boundary:

6 = sin~* (C—O sin 7) — . (10)

&1

r

coot

D
C
v \ Co
‘\
'I” _/‘\
e Qu L
B 6 ‘\
‘\
‘|

FIG. 9. Schematic representation of the wavefronts generated in the moments after a downward,
vertically propagating wavefront has encountered a boundary with both time- and space- aspects.

Summarizing, the upgoing planewave induced by the time-boundary component of the
mixed boundary refracts through the newly-appeared space-boundary component, creating
an upgoing wavefront with an angle lying between those of the reflections from the pure
time- and space-boundary components. This may be interpreted as an oblique reflection
from a mixed space and time boundary.

AVO WITHOUT AN INTERFACE: THE INFORMATION CONTENT OF A
TIME-BOUNDARY REFLECTION

Consider the reflection coefficient associated with a wavefront that is incident on a pure
time-boundary, as determined in equation (7. We observe that this coefficient has the same
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form as the coefficient which would have been involved if the wavefront was incident on a
spatial interface separating one medium with velocity ¢y from another with velocity c;. In
this case there is no spatial interface at all, and yet there is a reflection, and that reflection
is information-carrying. The reflection coefficient directly measures the jump from one
property value to another:

ci—c 1Ac
01+Co—2 é’

= (11)
where Ac is the change in velocity and ¢ is the average of the two. Analyzing this reflection
information, given knowledge of the incidence medium properties, in principle inferences
can be

Speculative remarks on the creation of time-boundaries in reservoir settings
Dynamic reservoirs

Suppose a reservoir undergoing rapid change, due perhaps to a production process like
fluid injection, was at the same time illuminated by a seismic wave (Figure 10). If con-
ditions could be arranged such that the frequency content of an illuminating wave and the
time-scales of the pressuring up were comparable, the part of the field propagating through
the region nearby the well-bore would in principle experience a time-boundary and fluctu-
ate accordingly.

injection
well

=7

\ source
),
( region of elastic

property change

FIG. 10. Scheme: a reservoir setting in which (perhaps by a rapid pressuring-up) medium proper-
ties vary at the same time that they are illuminated by a seismic wave.

Controlled reservoirs

Research is currently underway to make the next generation of storage or hydrocarbon
production reservoirs “smart”, and fully controlled, in part using nanoparticles suspended
in injection fluids. Research projects in which these nanoparticles are so designed to allow
electrical and seismic geophysics to determine the fraction and locations of propped versus
un-propped fractures. In a [distant? ...not too distant?] future reservoir that contains sig-
nificant “smart” fluids, choosing nanoparticles which react to, and align with, say, a mild
magnetic field, causing locally rigid regions to appear almost instantaneously. Again, if
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this coincided with the passing of a seismic waveform, conditions for a time-boundary will
be in place.

CONCLUSIONS

Time-boundaries are unusual, but perfectly real, types of reflector which seismic waves
could in principle be arranged to impinge on. Simple time-boundaries cause essentially
non-oblique reflections, but boundaries with time- and space-components can be designed
which create angles of reflection that are unique, but predictable by appeal to Huygens’
principle. We can speculate on practical uses for time- and mixed time- and space bound-
aries within enhanced reservoir monitoring and imaging — it would take quite a bit of doing
to arrange for a seismic wave to hit a time-boundary in the field, but if it could be done, the
information available to an observing geophysicist would be very valuable.
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