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Inverse scattering series internal multiple prediction with depth 
dependent scalars 

Andrew Iverson and Kris Innanen 

ABSTRACT 
Interbed multiples continue to be detrimental to the processing and interpretation of 

seismic data.  One prospective method to attenuate interbed multiples uses the inverse 
scattering series developed by Weglein et al in the 1990’s.  The method predicts internal 
multiples from the recorded data with no additional subsurface information requirements.  
The issue addressed in this report involves the amplitudes of the predicted internal 
multiples.  This report displays how a depth dependent scalar can be added to the 
algorithm to account for errors in the prediction amplitude and improve accuracy for 
specific cases.  The location of the scalar application in the inverse scattering series is 
outlined. 

INTRODUCTION 
When seismic waves travel into the subsurface and cross an interface with varying 

mechanical properties part of the seismic energy is reflected towards the surface.  If the 
reflection is from a single interface this is termed a primary reflection.  A seismic 
multiple refers to an event that has reflected off multiple boundaries (Figure 1).     The 
multiple energy is unwanted coherent noise that interferes with primary reflections and 
degrades the final image.  For this project the type of noise targeted for removal is due to 
internal multiple reflections in the subsurface.  It has been shown that internal multiples 
can negatively impact the interpretation of seismic data (Iverson, 2014).   

 

FIG. 1. (Left) Primary events for a three-layer model plus half-space (Right) First order internal 
multiples for the three-layer model plus half-space  

Numerous methods have been utilized to attenuate multiple reflections and can be 
grouped into three broad categories of deconvolution, filtering and wavefield prediction 
(Xiao et al., 2003).  Deconvolution uses the periodic nature of multiples to develop an 
operator to remove them, with several assumptions (Xiao et al., 2003).  Filtering methods 
rely on the separation of primary and multiple events in various domains including f-k, 
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tau-p or RADON (Xiao et al., 2003).  Filtering can be successful given sufficient 
moveout differences between primary and multiple reflections.  When the moveout 
difference is small, multiple energy is difficult to isolate.  This project implemented the 
Inverse Scattering Series (Weglein et al., 1997) which falls under the wavefield 
prediction category. 

Using the Inverse Scattering Series (ISS), multiples can be predicted solely with the 
seismic data as input and no additional subsurface information.  The method was derived 
using reflectivities, thus implementation on band limited data must be done cautiously.  
This is overcome through a parameter epsilon which accounts for the seismic bandwidth 
and any other lower-higher-lower criteria issues.  ISS correctly predicts the time the 
multiples occur but the predicted amplitude will be incorrect.  The amplitude errors are 
often rectified with the application of a shaping filter through the process of adaptive 
subtraction (Keating et al., 2015).  What is outlined is a method to correct the amplitude 
issues and reduce the load on the adaptive subtraction. 

THEORY 
The scattering series describes the relationship between the physical properties of an 

actual and reference medium and the impulse response of that reference and actual 
medium (Weglein et al., 1997).  Where the inverse scattering series takes the resulting 
wavefield, the reference medium and reference wavefield to give the perturbation 
operator (Weglein et al., 1997).  By writing the scattering equation as a series the given 
order of multiple is represented from the higher order terms of the series.  This equation 
can predict higher order events from the resulting wavefield alone but at this stage it will 
predict events that are not interbed multiples.  A subset of the series order is selected to 
obey a lower-higher-lower criterion (Weglein et al., 1997).   This ensures that the 
multiples predicted are from a set of sub events that are initially deeper in the subsurface 
then shallower, then deeper.  Giving equation (1) below to predict interbed multiples 
from the seismic data alone. 

       𝑏𝑏3�𝑘𝑘𝑔𝑔, 𝑘𝑘𝑠𝑠, 𝜔𝜔�  

= 1
(2𝜋𝜋)2 ∬ 𝑑𝑑𝑘𝑘1𝑒𝑒−𝑖𝑖𝑞𝑞1�𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠�

∞
−∞ 𝑑𝑑𝑘𝑘2𝑒𝑒𝑖𝑖𝑞𝑞2�𝜖𝜖𝑔𝑔−𝜖𝜖𝑠𝑠� ∫ 𝑑𝑑𝑧𝑧1𝑒𝑒𝑖𝑖�𝑞𝑞𝑔𝑔+𝑞𝑞1�𝑧𝑧1𝑏𝑏1(𝑘𝑘𝑔𝑔,−𝑘𝑘1, 𝑧𝑧1)∞

−∞    

× ∫ 𝑑𝑑𝑧𝑧2𝑒𝑒−𝑖𝑖(𝑞𝑞1+𝑞𝑞2)𝑧𝑧2𝑏𝑏1(𝑘𝑘1, −𝑘𝑘2, 𝑧𝑧2) ∫ 𝑑𝑑𝑧𝑧3𝑒𝑒𝑖𝑖(𝑞𝑞2+𝑞𝑞𝑠𝑠)𝑧𝑧3𝑏𝑏1(𝑘𝑘2,−𝑘𝑘𝑠𝑠, 𝑧𝑧3),∞
𝑧𝑧2+𝜀𝜀

𝑧𝑧1− 𝜀𝜀
−∞         (1) 

Where in equation (1) 

 𝑞𝑞𝑥𝑥 =  𝜔𝜔
𝑐𝑐0
�1 − 𝑘𝑘𝑥𝑥2𝑐𝑐02

𝜔𝜔2 , (2) 

𝑏𝑏3 is the interbed multiple prediction, 𝑏𝑏1 is the prepared input data, 𝑞𝑞𝑥𝑥 is the vertical 
wavenumber and 𝜖𝜖 is the depth below free surface of the source (s) and receiver (g), k is 
the Fourier conjugate variable, 𝑧𝑧1, 𝑧𝑧2 and 𝑧𝑧3 are the depths chosen to satisfy lower-
higher-lower relationship and 𝜀𝜀 is the search limiting parameter (Sun and Innanen, 2014).  
Epsilon is used to account for the bandwidth of the data which is used in the integration 
limits.  This sets a limit on the distance the multiple must have traveled to prevent the 
method from predicting multiples within the wavelength of a single wavelet. 
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Equation (1) predicts seismic multiples in the Fourier domain through the specific 
combinations of events which obey the lower-higher-lower relationship in the data.  In 
time this is equivalent to a combination of convolutions and correlations of these specific 
events that satisfy the location criteria. It is shown schematically how two deeper events 
can be convolved relative to a shallower event, which can be correlated to mimic the 
equivalent multiple (Figure 2).  More simply two deeper events can be added, and then 
the shallower event subtracted to create the multiple. 

 

FIG. 2. Schematic displaying how a multiple can be replicated with a combination of primaries 
through a convolution (*) and correlation (x) 

Reduction to 1D Pseudo-depth domain  
Equation (1) can also be reduced to a 1D prediction algorithm (Eaid et al. 2016).  This 

1D version will be used to introduce how the method calculates multiples.  The 1D 
version of the algorithm assumes that there is no spatial dimension. 

𝑘𝑘𝑔𝑔 =  𝑘𝑘𝑠𝑠 = 0,                           (3) 

Then 𝑞𝑞𝑔𝑔 reduces to 

𝑞𝑞𝑔𝑔 =  2 𝜔𝜔
𝑐𝑐0

,                      (4) 

The original 2D equation (1) then reduces to the following the 1D equation (5) 

𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑧𝑧1𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1𝑏𝑏1(𝑧𝑧1)∞
−∞ ∫ 𝑑𝑑𝑧𝑧2𝑒𝑒

−𝑖𝑖2𝜔𝜔𝑐𝑐0
𝑧𝑧2𝑏𝑏1(𝑧𝑧2) ∫ 𝑑𝑑𝑧𝑧3𝑒𝑒

𝑖𝑖2𝜔𝜔𝑐𝑐0
𝑧𝑧3𝑏𝑏1(𝑧𝑧3)∞

𝑧𝑧2+𝜀𝜀
,𝑧𝑧1− 𝜀𝜀

−∞      (5) 

The data preparation for the 1D version of the algorithm is displayed (Eaid et al. 2016). 
First by first Fourier transforming the input data 

𝑑𝑑(𝑡𝑡)
𝐹𝐹
→  𝐷𝐷(𝜔𝜔),                           (6) 

Then using the follow change of variables from frequency to wavenumber  

𝑘𝑘𝑧𝑧 = 2𝜔𝜔
𝑐𝑐0

,                     (7) 

Then Inverse Fourier transformed to pseudo depth 

𝐷𝐷(𝑘𝑘𝑧𝑧)
𝑖𝑖𝑖𝑖
→ 𝑏𝑏1(𝑧𝑧),                               (8) 

Where the pseudo-depth variable z is  
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𝑧𝑧 = 𝑐𝑐0𝑡𝑡
2

,                  (9) 

In practice when implementing the method numerically the 1D version of the algorithm 
can be further simplified using a Heaviside step function (Eaid et al. 2016).  For 1D this 
gives the equation (10).  This has not altered the effectiveness of the equation as no new 
assumptions have been made, it simply reduces the computational expense (Eaid et al. 
2016). 

𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑𝑧𝑧1𝑒𝑒
−𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1𝑏𝑏1(𝑧𝑧1)∞
−∞ �∫ 𝑑𝑑𝑧𝑧2𝑒𝑒

𝑖𝑖2𝜔𝜔𝑐𝑐0
𝑧𝑧2𝑏𝑏1(𝑧𝑧2)∞

𝑧𝑧1+𝜀𝜀
�
2

, (10) 

1D Analytic Multiple Prediction Example 
Next a 1D analytic example will be completed to demonstrate how the method 

predicts multiples from an input data set.  Using a geologic model that has two layers 
plus a half space the resulting seismic trace will contain two primary events and a 
multiple train with the first order multiple referred to as M212 (Figure 2).  Giving the 
following amplitudes for the seismic trace. 

 𝑃𝑃1 =  𝑅𝑅1  

 𝑃𝑃2 =   𝑇𝑇01𝑅𝑅2 𝑇𝑇10                                   (11) 

 𝑀𝑀212 =   𝑇𝑇01𝑅𝑅2(− 𝑅𝑅1)  𝑅𝑅2𝑇𝑇10,  
Where R is the zero-offset reflection coefficient, T is the transmission coefficient and P 
and M are the primary and multiple events.  With corresponding traveltimes, 

 𝑡𝑡1 = 2 𝑧𝑧1
𝑣𝑣1

  

 𝑡𝑡2 = 2 𝑧𝑧1
𝑣𝑣1

+ 2 𝑧𝑧2−𝑧𝑧1
𝑣𝑣2

                                  (12) 

 𝑡𝑡212 = 2 𝑧𝑧1
𝑣𝑣1

+ 4 𝑧𝑧2−𝑧𝑧1
𝑣𝑣2

,  

Then the input data  𝑏𝑏1 will be given as follows 

 𝑏𝑏1(𝑧𝑧) =  𝑃𝑃1𝛿𝛿(𝑧𝑧 −  𝑧𝑧1) + 𝑃𝑃2𝛿𝛿(𝑧𝑧 −  𝑧𝑧2) + 𝑀𝑀212𝛿𝛿(𝑧𝑧 −  𝑧𝑧212) + 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼 (13) 

Inserting this into the innermost integral of equation (10) where ẑ is used to denote the 
integration variable and distinguish from z for the pseudo-depths of the layers. 

𝐼𝐼1(ẑ1) = ∫ 𝑑𝑑ẑ2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

ẑ2[𝑃𝑃1𝛿𝛿( ẑ2 −  𝑧𝑧1) + 𝑃𝑃2𝛿𝛿( ẑ2 −  𝑧𝑧2) + 𝑀𝑀212𝛿𝛿(ẑ2 −  𝑧𝑧212) ∞
ẑ1+𝜀𝜀

  

+𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼],                                                                         (14) 

Solving the innermost integral gives the following result 

= �𝑃𝑃1𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1, 𝑧𝑧1 > ẑ1 + 𝜀𝜀
0,              𝑧𝑧1 < ẑ1 + 𝜀𝜀

+ �𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧2, 𝑧𝑧2 > ẑ1 + 𝜀𝜀
0,              𝑧𝑧2 < ẑ1 + 𝜀𝜀

+ �𝑀𝑀212𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧212, 𝑧𝑧212 > ẑ1 + 𝜀𝜀
0,                       𝑧𝑧212 < ẑ1 + 𝜀𝜀

+ ⋯

 (15) 
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Can also be written as followed with the use of Heaviside step function 

𝐼𝐼1(ẑ1) = 𝑃𝑃1𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)] 

+𝑀𝑀212𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧212𝐻𝐻[𝑧𝑧212 − (ẑ1 + 𝜀𝜀)],                                               (16) 
Squaring equation (16) will give the result to be used in the next integral from equation 
(10) 

𝐼𝐼2(ẑ1) = 𝑃𝑃12𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 2𝑃𝑃1𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(𝑧𝑧2+𝑧𝑧1)𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] 

+𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)] + ⋯,                                                       (17) 
Inserting equation (17) into the outermost integral in equation (10) integral gives the 
following 

𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑ẑ1𝑒𝑒
−𝑖𝑖2𝜔𝜔𝑐𝑐0

ẑ1[𝑃𝑃1𝛿𝛿( ẑ1 −  𝑧𝑧1) + 𝑃𝑃2𝛿𝛿( ẑ1 −  𝑧𝑧2) + 𝑀𝑀212𝛿𝛿(ẑ1 −  𝑧𝑧212)∞
−∞   

                     + 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐼𝐼𝐼𝐼] × [𝑃𝑃12𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] 

  +2𝑃𝑃1𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(𝑧𝑧2+𝑧𝑧1)𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)] + ⋯ ], (18) 
Truncating this to only include the primary events gives 

𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑ẑ1𝑒𝑒
−𝑖𝑖2𝜔𝜔𝑐𝑐0

ẑ1[𝑃𝑃1𝛿𝛿( ẑ1 −  𝑧𝑧1) + 𝑃𝑃2𝛿𝛿( ẑ1 −  𝑧𝑧2)]∞
−∞ × �𝑃𝑃12𝑒𝑒

𝑖𝑖2𝜔𝜔𝑐𝑐0
2𝑧𝑧1𝐻𝐻[𝑧𝑧1 −

(ẑ1 + 𝜀𝜀)] + 2𝑃𝑃1𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(𝑧𝑧2+𝑧𝑧1)𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)]�,  (19) 

Rearranging for both primaries 

𝑏𝑏3(𝜔𝜔) = ∫ 𝑑𝑑ẑ1𝑒𝑒
−𝑖𝑖2𝜔𝜔𝑐𝑐0

ẑ1𝑃𝑃1𝛿𝛿( ẑ1 −  𝑧𝑧1) × �𝑃𝑃12𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] +∞
−∞

                       2𝑃𝑃1𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(𝑧𝑧2+𝑧𝑧1)𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)]�  

          + ∫ 𝑑𝑑ẑ1𝑒𝑒
−𝑖𝑖2𝜔𝜔𝑐𝑐0

ẑ1𝑃𝑃2𝛿𝛿( ẑ1 −  𝑧𝑧2) �𝑃𝑃12𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] +∞
−∞

                              2𝑃𝑃1𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(𝑧𝑧2+𝑧𝑧1)𝐻𝐻[𝑧𝑧1 − (ẑ1 + 𝜀𝜀)] + 𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

2𝑧𝑧2𝐻𝐻[𝑧𝑧2 − (ẑ1 + 𝜀𝜀)]� ,   (20) 

Then solving gives the following result 
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               𝑏𝑏3(𝜔𝜔) = 𝑃𝑃13𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1𝐻𝐻[𝑧𝑧1 − (𝑧𝑧1 + 𝜀𝜀)] + 2𝑃𝑃12𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧2𝐻𝐻[𝑧𝑧1 − (𝑧𝑧1 + 𝜀𝜀)] 

+𝑃𝑃1𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(2𝑧𝑧2−𝑧𝑧1)𝐻𝐻[𝑧𝑧2 − (𝑧𝑧1 + 𝜀𝜀)] + 𝑃𝑃12𝑃𝑃2𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(2𝑧𝑧1−𝑧𝑧2)𝐻𝐻[𝑧𝑧1 − ( 𝑧𝑧2 + 𝜀𝜀)] 

+2𝑃𝑃1𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧1𝐻𝐻[𝑧𝑧1 − ( 𝑧𝑧2 + 𝜀𝜀)] + 𝑃𝑃23𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

𝑧𝑧2𝐻𝐻[𝑧𝑧2 − ( 𝑧𝑧2 + 𝜀𝜀)],            (21) 
Note that the above Heaviside step functions will give the following 

�
0, 𝐻𝐻[𝑧𝑧1 − (𝑧𝑧1 + 𝜀𝜀)]  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀 
0, 𝐻𝐻[𝑧𝑧1 − ( 𝑧𝑧2 + 𝜀𝜀)]  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀
0, 𝐻𝐻[𝑧𝑧2 − ( 𝑧𝑧2 + 𝜀𝜀)]  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀

  

{1, 𝐻𝐻[𝑧𝑧2 − (𝑧𝑧1 + 𝜀𝜀)]  𝑓𝑓𝑓𝑓𝑓𝑓 𝜀𝜀 < ( 𝑧𝑧2 − 𝑧𝑧1),                     (22) 
Resulting in the final truncated solution in the Fourier domain 

𝑏𝑏3(𝜔𝜔) = 𝑃𝑃1𝑃𝑃22𝑒𝑒
𝑖𝑖2𝜔𝜔𝑐𝑐0

(2𝑧𝑧2−𝑧𝑧1),                                            (23) 
Then applying the inverse Fourier transform gives. 

𝑏𝑏3(𝑡𝑡) =    𝑅𝑅1𝑇𝑇01𝑅𝑅2 𝑇𝑇10 𝑇𝑇01𝑅𝑅2 𝑇𝑇10δ�t − (2𝑡𝑡2 − 𝑡𝑡1)�,                       (24) 

Comparing this back to the multiple defined in equation (11) and (12) the ISS has 
predicted the time of the multiple exactly.  The amplitude prediction is off by the 
transmission coefficients from both the downgoing (𝑇𝑇01) and upgoing (𝑇𝑇10) component 
across the multiple generating horizon (interface 1).  The error in the amplitude arises 
from the outermost integral and is a function of the “generator” depth ẑ1 in the analytic 
example, or z1 from equation (10). 

1D INTERNAL MULTIPLE PREDICTION 
The 1D version of the algorithm is implemented on a simple geologic model where the 

velocities and depths are displayed below (Figure 3).  The modeling and subsequent 
prediction is completed using a constant density.  Model parameters were chosen to 
produce multiples that have high amplitudes due to the large impedance contrasts and 
occur in distinct locations from the primary events.  The goal is to evaluate the accuracy 
of the ISS prediction on a simple 1D model. 

 

FIG. 3. Velocity and depth model used for the 1D prediction. 
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The primaries and first order multiples were computed using zero offset reflection and 
transmission coefficients to create a reflectivity series with sample rate 0.0001s, then 
convolved with a 40Hz Ricker wavelet and resampled to 0.002s to create the seismic 
trace (Figure 4). 

 

FIG. 4. Reflectivity series for primaries and first order multiples and seismic trace 

The resulting prediction is displayed (Figure 5), this prediction was completed using 
an epsilon value of 15 due to the bandwidth of the data.  The output from the prediction 
requires a single global scalar to place the prediction at approximately the same 
amplitude as the input trace.  In this example, the global scalar was calculated by 
matching the maximum amplitude of the first multiple (M212) to the prediction.  In 
practice the subsurface model is unknown, as are which events are primaries and 
multiples, but an estimate for a single scalar would still be required.  The trace was also 
shifted by a single sample to further improve the prediction.  Displayed is the input trace 
overlain by the result of the internal multiple prediction multiplied by negative one to 
examine the match to the input data (Figure 5). 
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FIG. 5. Input seismic trace and 1D internal multiple prediction 

All of the multiples from the input model have been predicted correctly in time and the 
primaries have not been predicted.  There are also predictions of higher order multiples, 
which are the additional wavelets that do not correspond with the input trace as these 
were not originally modeled. The wavelets on the prediction appear to be have been 
altered relative to the input trace and now contain additional sidelobes.  This is due to the 
autocorrelation of the band limited data.   

Autoconvolution of a Wavelet 
A 40Hz Ricker wavelet is taken and autoconvolved to display the impact of this on the 

prediction (Figure 6). 

 

FIG. 6. (Left) 40 Hz Ricker wavelet and autoconvolution of the wavelet. (Right) amplitude 
spectrum of the 40 Hz Ricker wavelet and autoconvolution of the wavelet 
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The result in the time domain is both the slight decrease in amplitude of the wavelet 
and the addition of the sidelobes.  In the amplitude spectrum, the dominant frequency has 
remained the same for the prediction but the amplitude has decreased at both the high and 
low end of the frequency spectrum. 

Algorithm Order of Operations 
 In practice this algorithm is implemented numerically by solving each frequency 

for all possible pseudo depth locations of multiple generators.  From equation (10) the 
pseudo-depth location of the outermost integral varies at the location of the downward 
generator.  The pseudo code for how this is implemented is shown (Figure 7).  Equation 
(24) displayed that the amplitude that is predicted will be in error by the transmission 
across the downward generator.  What is proposed is a change to the order of operations 
for the numerical application of the internal multiple prediction.  The change proposed is 
to predict all frequencies for each downward generator (Figure 7).  This produces a 
natural location to alter the equation to account for the transmission loss at the generator.  
This is done at the last step where the prediction at a given depth z is multiplied by the 
scalar φ(z).  Also proposed is the recording of a matrix of predictions for each pseudo-
depth generator.  Then to obtain the final prediction simply sum over all pseudo-depth 
predictions. 

 

FIG. 7. (Left) Summing over wavenumber then depth (Right) proposed order of operations 
alteration summing over depth then wavenumber with scalar applied to give scaled prediction 

This additional scalar can be displayed in either the frequency domain as 

𝑠𝑠𝑏𝑏3(𝑧𝑧1, 𝜔𝜔) = φ(𝑧𝑧1) × 𝑏𝑏3(𝑧𝑧1,𝜔𝜔),    (25) 

Where 𝑠𝑠𝑏𝑏3 is the scaled version of 𝑏𝑏3.  Or applied in the time domain after inverse 
Fourier transforming gives 

𝑠𝑠𝑏𝑏3(𝑧𝑧1, 𝑡𝑡) = φ(𝑧𝑧1) × 𝑏𝑏3(𝑧𝑧1, 𝑡𝑡),             (26) 
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 One concern that immediately arises from applying a scalar at to the prediction is 
that some subsurface information must be assumed.  As the scalar is a precalculated 
depth dependent value to account for losses.  One of the key benefits of the original 
method is that it is data driven.  If some prior knowledge of the subsurface is now 
assumed then this may be too significant an alteration to the original equation.  What was 
shown from the analytic example is that the difference was due to transmission losses 
which this can now theoretically be accounted for.  This could also be applied to any 
other losses such as those due to geometric spreading or attenuation through a more 
complex scalar. The goal of this alteration is to attempt to correctly calculate the 
amplitudes with the utilization of additional physics to reduce the load on adaptive 
subtraction. 

For the previous geologic model the scalar is calculated by using the velocities and 
depths from the model and calculating the transmission loss with depth.  In practice this 
could be implemented with a sonic log to calculate the transmission loss.  For this 
example, the first and last values were extrapolated to zero depth and final depth and the 
intermediate values were linearly interpolated.  A block model was not used so that there 
would not be a step change at the location of the downward generator as this would 
significantly impact the amplitude within the width of the wavelet.  The Transmission 
loss is displayed (Figure 8).  To apply this to the prediction, take one over this to create φ 
or directly divide the transmission loss. 

 

FIG. 8. Transmission loss scalar for internal multiple prediction. 

The result from the both the original prediction and the scalar applied prediction is 
displayed (Figure 9).  Similarly, to the previous example both have a single global scalar 
applied to compare the differences.  This global scalar was computed by matching the 
maximum amplitude of the first multiple (M212).  Both versions of the method have 
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accurately predicted all multiples in the data.  There exist small variations throughout the 
trace but in general both predictions are comparable.  The minimal differences between 
the two reflect the small adjustment made to the amplitude of the prediction.  The largest 
impact of the depth dependent scalar should be located at the internal multiple M323 
(Figure 9).  This internal multiple will have transmission effects due to the second 
interface not previously accounted for.  From Figure 9 the peak amplitude of the multiple 
prediction for the scaled version has better accounted for extra transmission terms relative 
to the unscaled version.  There is also an increased amplitude of the sidelobes.  In Figure 
9 there is a slightly lower amplitude prediction for the multiple M313.  Thus this depth 
dependent scalar has improved the prediction for one multiple and been detrimental to 
another. 

 

FIG. 9. (Left) Trace with both scaled and unscaled predictions (Right) Zoom in on two multiples 
M323 and M313 

Second Order Multiple Predictions 
 The theory section displayed how the algorithm predicts multiples with a 

combination of primaries from the input trace.  It was also noted that the analytic 
prediction was truncated to only include the primary events.  When internal multiples are 
present in the data these events will be used to predict the higher order multiples.  These 
higher order multiple predictions must still obey the lower-higher-lower relationship. 
Displayed is a schematic of how the algorithm will produce a 2nd order internal multiple 
from the first order multiples and primaries in the trace (Zhang & Shaw, 2010) (Figure 
10). 
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FIG. 10. Displaying the algorithm computing second order multiples with convolution (*) and 
correlation (x) 

Schematically displayed is how higher order multiples are predicted in an equivalent 
manner by combining a subset of events, however the problem that arises is that second 
order multiples are generally overpredicted.  This further complicates the amplitude 
prediction issue as first order multiples are generally underpredicted and the second order 
multiples are over predicted (Zhang & Shaw, 2010). 

 Displayed in Figure 11 is the seismic trace using the previous geologic model 
with both first and second order multiples modeled.  At the location of the underpredicted 
M313 multiple from Figure 9 there is a second order multiple at this location with the 
opposite sign relative to the first order multiple.  Thus, this event may not have been as 
underpredicted as observed, due to a higher order multiple that was not originally 
modeled.  In practice the amplitude correction necessary is more complicated than the 
multiplication of a single depth dependent scalar. 



Internal multiple prediction with scalars 

 CREWES Research Report — Volume 29 (2017) 13 

 

FIG. 11. Reflectivity series and trace for primaries, first and second order multiples 

This seismic trace is then applied to the internal multiple prediction algorithm using 
both the scaled and unscaled version (Figure 12). The prediction has done an accurate job 
of predicting the all multiples including the second order.  The scalar impacts this 
prediction as it is also applied to the multiples in the trace used as a subevent, though the 
scalar was designed from the primary transmission loss.  There are still some issues with 
the prediction of higher order multiples and the scalar appears to have been detrimental to 
the prediction in some locations. 

 

FIG. 12. (Left) Trace with both scaled and unscaled predictions with higher order multiples (Right) 
Zoom in on two multiples M323 and M313 

 Displayed is the prediction matrix in time from equation (26) (Figure 13).  This 
two dimensional plot displays the multiple train that is the result of a layer in pseudo-
depth.  If we sum along all possible pseudo-depths, this creates the prediction for the 
entire seismic trace.  This extra dimension may also allow for the calculation of a more 
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complete scalar to account for all amplitude issues.  This also allows for a qualitative way 
to understand the impact of a depth dependent scalar.  Combining this with the input 
trace, scalar and prediction gives an uncollapsed image of the multiple prediction (Figure 
13).  The image display how the combination of multiples of various order sum to make 
the final prediction. 

 FIG. 13. (Top Left) Trace and transmission loss (Top Right) pseudo-depth and time plot with 
scalar applied (Bottom Right) trace and multiple prediction 

CONCLUSIONS 
 The objective addressed in this project was to analyze the amplitudes of the 

prediction to generate the cleanest possible result.  A depth dependent scalar can be 
applied to account for losses not included in the prediction.  Though it can be detrimental 
in the presence of significant higher order multiples.  The scaler can be applied with 
success but it must be used cautiously and will not be beneficial to all cases.  Another 
benefit of the change to the order of operations separate from the scalar is the ability to 
display the data in the pseudo-depth time plot.  The pseudo-depth time plot makes it 
possible to visualize the multiple generators and resulting multiple train created, this also 
allows for the increased understanding of the final prediction which is calculated through 
the summation over all possible pseudo-depth generators.   
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