Particle swarms

Particle swarms for numerical wave equation
Michael P. Lamoureux* and Heather K. Hardeman*

ABSTRACT

Motivated by the possibility of computation speed-ups using massive parallelization
on fast graphical processing units, we investigate the use of particle swarms to produce a
numerical simulation of seismic wave motion in heterogeneous media in 2D and 3D.

It is well known that Brownian motion of particles bouncing about at random forms
a useful model for diffusion of heat. In the limit as particle numbers go to infinity, the
Brownian motion leads to the diffusion equation: a second order, linear, parabolic partial
differential equation. A similar model with correlated, but still random, particle motion
leads to the acoustic wave equation in dimensions one, two and three.

Focusing on the Green’s function for individual source and receiver pairs in a seis-
mic experiment, we aim to compute the numerical simulation of wave motion using large
numbers of independently acting particles to recover the source/receiver response without
modelling the entire seismic waveform in the experiment. We present the mathematics
behind the theory of the particle simulation as well as a few numerical studies.

INTRODUCTION

A significant computational challenge that arises in seismic imaging is creating a nu-
merical simulation of seismic waves propagating through a complex, three dimensional
media. Whether one uses finite difference methods, finite elements or Galerkin methods,
or pseudospectral and Fourier transform methods, there is typically a computational grid
where all the wavefields are computed, which can become very large even for modest prob-
lems. For instance, with a 3D grid of 1000 samples points in each spatial dimension, one
immediately obtains one billion grid points (1000 x 1000 x 1000 = 10°), each of which be-
comes a locus for computation even for a simple wavefront traveling through the grid. Each
grid point needs to “communicate” at least with it nearest neighbours when computing dif-
ferential operators, hence the computational burden is increased by the tight intermingling
of data at diverse data storage points in memory.

However, there are other models for computation worth considering. A very familiar
physical model of Brownian motion involves tracking a large number of particles moving
randomly in a medium, resulting in a diffusion process that is accurately described by the
heat equation. (Indeed, these ideas go back to Einstein’s 1905 work on Brownian motion.)
Some useful references on these models of the heat equation appear in Kozdron (2008)
and Lawler (2010). More recently, researchers have been using random particle motion
as models for a wide variety of stochastic processes that extend such models to equations
beyond the heat equation. In the works of Crisan and Lyons (1999), Quer-Sardanyons and
Tindel (2007), Toomey and Bean (2000), and Yang and Li (2015) we see these stochastic

*University of Calgary

CREWES Research Report — Volume 29 (2017) 1

Lamoureux et al.

models applied to the wave equation, other hyperbolic equations, and more exotic partial
differential equations. Beyond Brownian motion, one can also consider super Brownian
motion (See Slade (2002)) where the randomly moving particles may also undergo branch-
ing processes where new particles may be born, and old ones may dies. This allows for an
even richer class of modelling processes.

In this work, we investigate the use of computational swarms of particles moving under
some random process to compute the Green’s function for specific instances of the acoustic
wave equation in difference dimensions. The idea is that once we have the Green’s func-
tion for a given source/receiver pair, we have enough information to compute the system
response to a source input into the wave medium. (As is done in, for example, Polimeridis
et al. (2007).)

A key motivation is that we observe the particles in the swarm move independently of
each other, so such a simulation is potentially amenable to parallelization in the compu-
tation. Each core in a CPU cluster or GPU assembly of graphics processors can compute
independently the paths of its own particles — no communication is required between sep-
arate paths. Although we did not have time to run these computational experiments, the
potential for large speedups is there.

GREEN’S FUNCTIONS

Let’s compute the Green’s function for the wave equation in d dimensions, getting the
physical units correct.

Start with the constant coefficient wave equation

ue = AV with initial condition (1)
u(Ft=0) = wuy(r) (2)
w(r,t=0) = (7). 3)

The quantity (7, ¢) is measured in some physical units [U] (displacement, or pressure),
position 7 measured in units of length [L] and time ¢ is measured in units of time [T7].
The coefficient ¢ is a velocity, measured in units of length over time [L/T]. The initial
conditions will have v, measured in units [U] and v, in units [U/T].

With constant coefficients in the PDE, the general solution is expressed in terms of two
Green’s functions G(*) and GV by the convolutional formulas

u(F,t) = / GOF = 7' t)uo(F') di' + / GO(F =7 t)ve(F') dF. (4)

Matching units, we observe that G is in units of [1/L%) while G(V) is in units [T/ L.
This is consistent with the observation noted below, that

aGMm

o =G (5)

where both sides of this equation are in units [1/L%].

2 CREWES Research Report — Volume 29 (2017)

Particle swarms

Both Green’s functions satisfy the wave equation

Gy = VG
with initial conditions
GO(F,0) = §(F) G 0) =0
GO(7,0) =0 G(7,0) = §(7)

To find GG, we expand in a Fourier transform, with
G(Ft) = / g(k,£)e2™ R qk
and observe from the wave equation that the transform ¢ satisfies
§ = —4r’k*3yg
which has solution in the general form

g(k,t) = A(k) cos(2mket) + B(k) sin(2mkct).

Recalling the delta function identity

5(7?) — / 627TiE~F dlg,
one obtains the initial condition for the transform functions
g (k,0) =1 9" (k,0) =0
gV(k,0) =0 a”(k,0) = 1.
Solving for A(E), B(l;) as the constants 0 and 1 gives the two transform functions

gk, t) = cos(2mkct)

- 1
gV (k,t) = Dy sin(2wket).
Observe that 5
= 1) — 00
9 tg g
from which we conclude a relation between the Green’s functions,
0
—cM = g,
ot

(6)

(7)
8)

)

(10)

(11)

(12)

(13)
(14)

(15)
(16)

(7)

(18)

In particular, it is enough to find GV as the second Green’s function can be computed as

its derivative.

The formula, then, for the Green’s function is given by the Fourier transform of g;

noting the even symmetry, we can include only the real part of the transform, so
- in(2rkct) -
_, sin(27kct) Ji.

GW(7 ¢t :/ 2k - 19
(7.t) = [cos(ark - 7)== 2= (19)
This formula is valid for any dimension d.
CREWES Research Report — Volume 29 (2017) 3

Lamoureux et al.

THE DIMENSIONS D =1,2,3

In dimension d = 1, Equation 19 reduces to a single integral

o0 in(2mkct
GO (r 1) = / cos(2mkr) SRETR) 4y 20)
2rkc

—00
which we recognize as the Fourier transform of a sinc function, which can be computed
directly. Indeed,

0o in(2 o0)
GO (r 1) = / COS(QW]{;T)Wtdk: / 2 sine(2ket) tdk. (21)
_ TKC _

[e.o] o0

The change of variables x/2¢ = tk, dx/2c = t dk yields

| Y
GY(rt) = % e?™2(a) sine () dk (22)
c —0o0
12, if-1/2< 5 <1)2 (23)
o, otherwise.

Or, in the more familiar form of the light cone, we write

GO (1) 1/2¢, if —ct <r <ct 24)
r,t) =)
0, otherwise.

There is a conservation law revealed by this formula, namely that
/ GY(r,t)dr =t, fort > 0, (25)

obtained by integrating the above boxcar integral over the interval [—ct, ct]. Since G* is
the time derivative of GV, we have

/ GO(r,t)dr =1, fort > 0, (26)

—00

which suggests we can think of the Green’s function G(*)(r,t) as a probability measure
over space R! that evolves over time, conserving the total “mass” of the measure.

For dimension d = 2, an integration in polar coordinates reveals

1 1
GO(7 1) = { Zre V= fort >r o
0, otherwise,
while in dimension d = 3,
dmer

4 CREWES Research Report — Volume 29 (2017)

Particle swarms

In all cases, again we have
/ GU(F t)di =t, fort > 0, (29)
Rd

and thus
/ GO(F t)di =1, fort > 0, (30)
Rd

We end this section by noting that in dimension 1, 2 and 3, the probability measure
p(t) = GO(7,t) is concentrated on a very thin set. Which is why we think the particle
swarm would be useful — the particles only need to track this thin wavefront.

BROWNIAN MOTION AND THE HEAT EQUATION

A useful model for the diffusion of heat can be constructed via a large collection of
particles that move in space at random (c.f. Zauderer (1989), Lawler (2010)), an idea that
Einstein used in his 1905 paper on the analysis of Brownian motion. This is a simpler model
that the one required for the wave equation, so it is instructive to analyze this situation first.

Following Zauderer (1989), consider a particle moving at random in one dimension.
We assume the particle moves in random jumps of size 44 in time increments 7. Writing
X, for the position of the particle after n time steps, and x; = 40 the step at the ¢-th jump,
we can write

Xn:$1+372+"'+$n, (31)

from which we can compute the expected value (mean) as

n

E(X,) = Z E(z:) =Y (p—q)d = (p— q)nd, (32)

where p, ¢ are the probabilities of the particle moving to the right (z; = +6), or to the left
(z; = —0), respectively.
The expected value of z? is computed as

E(x}) = (+0)*P(x; = 0) + (=0)*P(w; = —dx) = 6*(p + q) = 0°, (33)

since the probabilities p, ¢ must add up to one. We then find the variance of X, to be

n

V(X,) = Z V(z) =Y [Ex}) = E(z;)*) = n(6” = (p — ¢)°6°) = 4pqnd®, (34)

i=1

where we use the fact that the z; are independent random variables to expand the variance
as a sum.

In order to obtain a continuous flow of heat, we need to set up parameters so that the
expectation F/(X,,) and variance V' (X,,) lead to finite limits as § — 0 and n — oo. That is,
in the limit, we expect the heat to flow only a finite distance in finite time, and diffuse into

CREWES Research Report — Volume 29 (2017) 5

Lamoureux et al.

a finite sized region. Examining equations 32 and 34, its clear this cannot happen if p, ¢ are
constants, so an easy fix is to allow them to depend on step size, such as in the form

1 1
p:§(1+b5), p=§(1—b5). (35)
In this case, we have
E(X,) = (p— q)né = bnd?, V(X,) = 4pgné* = (1 — b*)nd?, (36)

thus to get finite limits we simply require that nd? tend to a finite limit as 6 — 0 and
n — oo. For a finite time ¢ = n7, we also require that 7 go to zero as n goes to infinite,
and thus 7 must go to zero at the same rate as §°. That is, we require asymptotic behaviour
like

0 ox — T X —. (37)

To obtain the diffusion equation, define v(x,t) to be the probability that the particle
reaches point + = nd at time ¢ = n7. At the next time step, the function v(z,t + dt)
will be determined by the density of particles moving in from the left or right, so we get a
difference equation

v(z,t+7) =pv(r—0,t) + qu(z +0,1). (38)

Expanding in a Taylor series in ¢ and 7, and keeping only orders up to 7! and 52 (which are
similar size), this equation is approximately

v(x, t)+v(z, t)T = plv(z, t)—v,(x, t)é—%vm(a:,)63 +qlv(w, t) v, (m, t)(5—|—%vm(m, 1)8?).

(39)
Cancelling out the terms v(z,t) = (p + ¢)v(z, t) and dividing by 7 we obtain
o 1.6°
Ut(x7t> = [(q_p)_]vx(xat) + —[—]sz(l’,t), (40)
T 2T
and recalling that p, ¢ = 1/2 4 bJ, we have
2 1 52
vi(z,t) = —=b[—|vg(x,t) + =[—]vea (2, 1), 41)
T 27T

In the limit as n — oo, the asymptotic choice for , 7 has the factor 62/7 heading to
some finite limit, and thus we obtain in the limit a diffusion equation

vp(z,t) = —cvg(x,t) + %Dvm(a:,t) (42)

for constants ¢, D. It is interesting to note that ¢ can be interpreted as a drift coefficient,
and arises from the lack of symmetry in that random motion choosing to move left or right
at each step. The coefficient D is the diffusion coefficient, and is a measure of how quickly
the “heat” diffuses in space.

6 CREWES Research Report — Volume 29 (2017)

Particle swarms

NUMERICAL VERIFICATION: HEAT EQUATION

Our key observation is that a simulation with random particles should give a useful
computational method for finding a Green’s function.

As a demonstration, first we show the results of a one particle simulation of random
motion, with step size 6 = 0.1 and 1000 steps. The code consists of a simple for loop, as
follows:

x = zeros(1001)
for k=1:1000

x[k+1] = x[k] + 0.1*x(2*rand(0:1) -1)
end

Note the factor (2 * rand(0 : 1) — 1) simply picks at random the direction +1 at each step
in the loop.

The result is shown in Figure 1, showing the path of the randomly moving particle.

4

0 200 400 600 800 1000

FIG. 1. A simple path in Brownian motion.

To obtain the Green’s function, we run a similar loop but with a large number of par-
ticles (here, nparticles = 100,000) for a large number of steps (nsteps = 1000/(0.1)% =
100,000) corresponding to spatial step 6 = 0.1, time step 7 = 0.01 and terminal time
t = 1000. The core loop is as follows:

x = zeros(nparticles)
for k=1:nsteps

x = x + 0.1x(2*xrand(0:1,nparticles)-1)
end

CREWES Research Report — Volume 29 (2017) 7

Lamoureux et al.

The histogram of particle positions is shown in Figure 2, which is a good approximation to
a Gaussian of width v/2t = 44.7, which is the desired Green’s function.

7000 Hlstogram

6000 -
5000
4000 |-
3000}
2000 -

1000}

0
-150 -100 =50 0 50 100 150
X

FIG. 2. Histogram of many Brownian paths, demonstrating difffusion.

RANDOM MOTION AND THE WAVE EQUATION

We again follow Zauderer here, using Brownian motion with correlation to model the
propagation of a way. The key difference is that the random steps of a particle are not
completely independent: the direction at step n is correlated with direction in step n — 1.
Which is to say, once a particle is in motion, it tends to keep moving in the same direction.

In one dimension, we let p denote the probability that a particle continues in the same
direction as the previous step, and ¢ the probability that it reverses direction. To get a con-
tinuous motion, one can assume the probability p tends to one as the step size ¢ decreases
to zero, SO we can write

p=1—X+0O(6%) and ¢ = \§ + O(6?). (43)

If we let a(x, t) represent the density of particles at z that arrived there from the left, and
B(z,y) the density of particles that arrived from the right, we obtain a system of difference
equations

alz,t+71) = pa(z—9,t)+qB(x —0,t) (44)
Blx,t+71) = pB(x+6,t) + qalr + 4,t). (45)

Expanding as Taylor series in d, 7 and setting ¢ = § /7 as the velocity parameter, in the limit
as 0, 7 — 0 we obtain the coupled system of equations

a; +ca, = —cha+cA\p (46)
by — B, = cha—cAS. 47

This system of PDEs is solvable in this form, but it is convenient to recast it as the usual
two-way wave equation.

8 CREWES Research Report — Volume 29 (2017)

Particle swarms

A particle at point = had to get there either from the left or the right, so the density of
particles is given by the sum

v(x,t) = alx,t) + Bz,). (48)
Adding equations 46 and 47 gives
(a+B)i+cla—B).=0 (49)

while subtracting the two gives
(= B)e+ cla+ B)r = —2cA(a— f). (50)

Differentiating equation 49 w.r.t. ¢t and equation 50 w.r.t. z and subtracting gives a differ-
ential equation for v = o + 3 as

Vg — gy + 2y = 0. 51

This is a special case of the telegrapher’s equation and is simply the 1D wave equation
with a damping term 2)\v;.

To obtain the Green’s function, we start all the random particles at position x = 0 at
time ¢t = 0, with random direction of travel. Since half of them will travel left, the other
half to the right, this corresponds to an initial condition for «, 3 as

o(,0) = H(x,0) = 53(x), (52)

where here, d(x) is the Dirac delta function. This corresponds to the initial conditions for
v as

v(x,0) = d(z) and v¢(x,0) =0 (53)

since v is the sum of o and while the time derivative v; is proportional to the difference
o, — [, by equation 49. In this case, the random particle motion will recover the Green’s
function G (z,) which we expect to be two Dirac delta functions travelling at velocity c.
Plus, of course, some residual due to the damping term.

NUMERICAL VERIFICATION: 1D WAVE EQUATION

We do a simple numerical example to demonstrate that the random particle motion does
indeed create a Green’s function for the wave equation.

In this example, we begin with the 1D telegrapher’s equation
Vgt — g + 2y = 0 (54)

which, as mentioned in the previous section, is the wave equation with an additional damp-
ing term. We again will write code for random motion, with a large number of random
particles all starting at position x = 0 at time ¢ = 0. For the differential equation, fix the
velocity to be ¢ = 3000 m/s, the time for the simulation to be ¢ = 2 s and set a small value
for A = .0001 in this example. For the simulation, we choose the number of particles to be
nparticles = 10000, spatial step size 6 = 0.1, time step size 7 = /¢, and probability of
travelling in the same direction to be p = 1 — Ad = .99999. The main loop in the code is
given as follows:

CREWES Research Report — Volume 29 (2017) 9

Lamoureux et al.

x = zeros(nparticles)
xstep = 2*rand(0:1,nparticles)-1
for k=1:nsteps
X = x + dx*xstep
xstep = xstep.*(2x(rand(nparticles).<p)-1)
end

where the line “xstep = xstep.*(2*(rand(nparticles).<p)-1)” is what forces the particles to
tend to move in the same direction at each step.

Running the code, we obtain the histogram shown in Figure 3 representing the density
of particles, and we see two strongly focuses delta-type peaks at z = 6000, which is what
we would expect for waves travelling at velocity 3000 m/s over a period of 2 seconds.

3000 ‘ Hlsto:;ram !

2500 1o

2000 |-

> 1500

1000

500

0
-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
X

FIG. 3. Histogram of many correlated Brownian paths, giving Green’s function for wave equation.

NUMERICAL EXPERIMENTS: 2D WAVE EQUATION

In the 2D case, we don’t have the benefit of a mathematical proof of random particles
simulating a wave equation. Nevertheless, we will try a few experiments.

In the first experiment, we track a single particle as it moves at random in 2 dimension.
The particle will have a position in z, y stored in array as components z[1], z[2] and will
have a direction 6 as the polar angle, stored as component x[3]. Starting the particle at the
origin (0, 0) and headed in direction of 45°, we will take 10,000 steps of length § = 0.1 in
the following loop:

x[:,1] = [0,0,.125]
for k=1:10000

x[1,k+1] = x[1,k]+0.1*cos(2*xpi*x[3,k]) # x_1 component
x[2,k+1] = x[2,k]+0.1*sin(2*pi*x[3,k]) # yx_2 component
x[3,k+1] = mod(x[3,k]+.01*(randn()),1)

10 CREWES Research Report — Volume 29 (2017)

Particle swarms

end

The sample random path is displayed in Figure 4.

Random path in 2D

20+

15

10 1

FIG. 4. Brownian motion in 2D, with correlation of direction between adjacent steps.

Changing the correlation parameter .01 in the (3, k + 1] assignment (of the code) to a
smaller value (say 0.003) results in a smoother, less random path, as shown in Figure 5.

Random path in 2D, more coherence

10 4

—10

FIG. 5. Brownian motion in 2D, with stronger correlation of direction between adjacent steps.

We now take a simulation with many particles (here, the number of particles is set
to nparticles = 10,000) all moving at random in two dimensions. The key inner loop in
the code updates the x[1], x[2] position by moving a distance dx in the direction given by
the x[3] parameter. The x[3] parameter (direction) is then randomly changed by a small
increment. This inner loop is as follows:

CREWES Research Report — Volume 29 (2017) 11

Lamoureux et al.

for k=1:nsteps
for j=1l:nparticles
x[1,j] += dx*cos(2*pi*x[3,j])
x[2,j] += dx*sin(2*pi*x[3,j])
x[3,j] = mod(x[3,jl+g*randn(),1)
end
end

The resulting distribution of particles appears to be a circle of radius 6000 m (2 seconds
at speed 3000 m/s), as shown in Figure 6, which is a bit reassuring. However, we know
that in 2D, the Green’s function is not limited to a thin set along a circle — there should be a
“tail.” So, we compute a more precise histogram of the distribution of the particles at time
t = 2 s, as a function of radial distance. Figure 7 shows the distribution, and clearly we see
there is a tail in place — so not all the particles are concentrated on the circle.

Distribution of particles in 2D

6000 —
2000 A
—2000 - \\ /J
—4000 1

—6000 e ——

T T T T T T
—6000 —4000 —2000 0 2000 4000 6000
X

FIG. 6. Distribution of particles 2D, after travelling 6000 m.

It is somewhat comforting to compare the histogram in Figure 7 to a plot of the 2D
Green’s function as shown in Figure 8. The shapes are the same — although there is a lot of
work to be done to get these to match.

FIRST ORDER HYPERBOLIC SYSTEMS

It is useful to recast the second order linear wave equation as a system of first order
partial differential equations, and consider how this might be modelled by a particle simu-
lation.

One obtains a PDE system for the acoustic wave equation by considering two functions
P(z,t) and U(x, t) representing acoustic pressure and fluid flow. With p the density of the
fluid, conservation of mass gives the equation

dp , 9(pU)
ot T on

=0, (55)

12 CREWES Research Report — Volume 29 (2017)

Particle swarms

Histogram

2000

1750

1500 -

1250 +

1000 A

Number

750 A

500 +

250 4

I

i

1

0

il

]

r
|

T T ;
5900 5920 5940 5960 5980 6000
Radius r

FIG. 7. Histogram of the particle distribution, as a function of radial distance r.

0.00045

0.00040 -

0.00035

0.00030 -

0.00025

0.00020 -

0.00015

0.00010 -

0.00005 . . . - -
0 1000 2000 3000 4000 5000 6000

FIG. 8. Histogram of the particle distribution, as a function of radial distance r.

and linearizing density p = py + pos about a median density py and applying an equation
of state P = Bs, we obtain

oP ou
—+B—=0. 56
ot 7 oa 0
Conservation of momentum, linearized, gives the equation
ou oP
S 57
P05t i Ox 0 57)

Taking these last two equations, we obtain a first order system of two coupled PDEs,
o (P 0O -B\ O /[P
wlo)= (% 7)alo) 5

To model this first order system, we consider a swarm of particles made up of two
types: type P and type U. These particles will each have a sign attached to them, a £1.

CREWES Research Report — Volume 29 (2017) 13

Lamoureux et al.

We step in time with step size 7 and step in space with step size J. A particle of type P at
x will generate a particle of type U in the next time step, at location x + 9, with probability
p’. It will also generate a particle of type —U in the next time step, at location = — §, with
probability ¢’. Similarly, a particle of type U will generate particles of type + P to the right
and left of its position in the next time step.

Now let v(x,t) equal the sum of particles of type P at point x, at time ¢, where the
sum takes into account the sign of the particles, and w(z, t) the corresponding sum for the
particles of type U. We now have difference equations for v, w that tells us how many
particles are present in the next time step. Namely,

v(z,t+7) =v(x,t) + pw(x —6,t) — ¢"w(x + 9,t) (59)
and

w(z,t+7) =w(x,t) + pv(x —§,t) — dv(z+0,t). (60)
Expanding in a Taylor series in 0, 7 and choosing p' = ¢/, p” = ¢” for a cancellation, we

obtain the linearized system

v(x,t)r = —2p"w.(x,t)d (61)
wi(z,)T = —2pv(x,t)0. (62)

Choosing our ratio §/7 and probabilities p’, p” appropriately, in the limit as 6,7 — 0 we
obtain the desired system of PDEs,

v, = —Buw, (63)
wy = —(1/po)vs. (64)

From this we conclude that a simulation with particles following the generating process
above will result in a numerical solution to the first order PDE system. Note however, that
this is an example of a branching process, as new particles are potentially created at each
time step. This may lead to some computational difficulties, as the number of particles will
be expected to increase over the duration of the simulation.

FIRST ORDER HYPERBOLIC SYSTEMS - 3D

In three dimensions, the corresponding (normalized) system of coupled PDEs is given
as

o) o) o)
o [P O A N
v u _ ~ 92 u
at | ~9d 9 0 0 u? | (65)
u? _8% 0 0 0 u?

where P is the acoustic pressure and U = (u!, u?, u?) is the fluid flow in three dimensions.
It seems we would need to consider four types of particles moving randomly in the particle
swarm in order to model this system of PDEs. We have not explored this idea in detail yet.

14 CREWES Research Report — Volume 29 (2017)

Particle swarms

COMPUTATIONAL SPEED UPS

The goal of this exercise is to get a method that can rapidly compute Green’s functions,
and consequently calculate wave propagation from source to receivers in a typical seismic
simulation. Some features we intend to exploit:

1. Each particle moves independently of the others. Thus the computational burden of
following many particles can be distributed across many processors, which do not
need to communicate with each other. This is a significant advantage over finite
difference methods, where computational cells must communicate with their neigh-
bouring cells.

2. The computations are simple, mainly involving additions and multiplications, thus
well suited for graphical processing units (GPUs). A graphics card running CUDA
may be a very efficient way of achieving a highly parallel, accelerated computation.

3. There are no computational boundaries. We do not have to worry about implementing
numerical absorption of a particle at a computational boundary, as the particles can
move without bound, or at least up to the numerical range of IEEE floating point
numbers. Indeed, once a particle has travelled too far, we can remove it from the
simulation since it will not have time to return to a receiver. Exiting particles free up
computational resources for other particles.

4. There is considerable flexibility in choice of parameters: number of particles, step
sizes, correlations between steps. We may be able have choices that give both high
accuracy as well as speed.

We did some initial experiments with timing, only on a choice of languages. We did ob-
serve that Matlab is indeed very fast, and faster than our current favourite, the programming
language Julia. In highly optimized code, we performed a tight loop of 10,000 particles in
2D, using 60,000 steps to obtain timings of

e 14.9 seconds in Matlab (3.5 GHz 6-Core Intel Xeon E5)

e 26.5 seconds in Julia (3.5 GHz 6-Core Intel Xeon ES)

From these measurements, it is observed Matlab is about twice as fast.

It is also interesting to note that Matlab ran faster with code written as vectors, while
Julia was faster with the vector operations unrolled into a for loop on components.

INHOMOGENEOUS MEDIA

The examples above all assumed constant coefficients for the wave equation, or more
generally for the telegrapher’s equation. However, as discussed in Zauderer (1989), by
choosing the probabilities for the random motion so that change of persistence in motion to

CREWES Research Report — Volume 29 (2017) 15

Lamoureux et al.

the left is different than the persistence in motion to the right, the 1D differential equation
that arise in the limit of particle motion becomes

vy + Ao (00)]e + 2\/Xc(01/)v)x + 2Xev, =0, (66)

where functions o = o(x), ¢ = 1 (z) are functions that characterize these different proba-
bilities. We are skipping the details here, only to point out that inhomogeneous media for
wave propagation can in principle be simulated by this particle motion.

SOME PROBLEMS AND POSSIBLE SOLUTIONS

A major problem with this method is that a probability distribution, as modelled by
random particles, is always positive, while a Green’s function need not be. In particular, if
the medium for the waves has a reflective layer, it could induce a change in polarity so a
negative Green’s function can result there. Also, in 2D and 3D, the first Green’s function
G takes negative values even in the constant coefficient case.

As suggested in the section on hyperbolic systems, a possible solution may be to in-
clude particles with a negative “sign” in the simulation, to produce a signed probability
distribution.

A second problem is that our 1D simulation only generates the first Green’s function
G corresponding to an initial condition of a delta function for u(x, 0), with u;(z,0) = 0.
We do not know (yet) how to compute the Green’s function G(!). One challenge is that
G is not a normalized probability distribution — its total mass grows linearly with time,
which would suggest the number of particles would need to increase with time.

Also as suggested in the section on hyperbolic systems, a possible solution may be to
include particles that spawn off new particles, or to allow the weight (or “mass”) of the
particles to increase. Or perhaps particles move while keeping track of a “tail” that records
where their path was.

SUMMARY

Randomly moving particles may be used as a computational model for a numerical
simulation of partial differential equations in several spatial variables. We demonstrated
examples in one and two spatial dimensions to show how a Green’s function for the heat
equation, and the acoustic wave equation, can be approximated by a simulation with many
random particles. We considered a simple case of a coupled system of first order partial
differential equation in one spatial dimension that can be modelled by a branching process
of super Brownian particle motion, and showed the limiting density of the particles forms
a solution to the PDEs. This system required a model with two types of particles. In three
spatial dimension, we expect four types of signed particles to be required.

A few numerical examples were presented to demonstrate the simulations.

16 CREWES Research Report — Volume 29 (2017)

Particle swarms

FUTURE WORK

This is very much a work in progress. Our goal is to show the randomly moving par-
ticles, with no interaction between the particles, can be used to model the wave equation.
We expect this to provide significant computation benefits, particularly in parallelization.
We will draw on the extensive literature on stochastic modelling to make rigorous the ideas
presented in this outline.

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for their support. We also gratefully acknowl-
edge support from NSERC (Natural Science and Engineering Research Council of Canada)
through the grant CRDPJ 461179-13 and through a Discovery Grant for the first author.

REFERENCES

Crisan, D., and Lyons, T., 1999, A particle approximation of the solution of the Kushner-Stratonovitch equa-
tion: Probab. Theory Relat. Fields, 155, 549-578.

Kozdron, M. J., 2008, Brownian motion and the heat equation: Lecture notes for ACSC 456.

Lawler, G. F,, 2010, Random walk and the heat equation: American Mathematical Society.

Polimeridis, A. G., Yioultsis, T. V., and Tsiboukis, T. D., 2007, Fast numerical computation of Green’s
functions for unbounded planar stratified media with a finite-difference technique and Gaussian spectral

rules: IEEE Trans. on microwave theory and techniques, 55, 1056-1067.

Quer-Sardanyons, L., and Tindel, S., 2007, The 1-D stochastic wave equation driven by a fractional Brownian
motion: Stochastic Processes and their Applications, 117, 1448-1472.

Slade, G., 2002, Scaling limits and super-Brownian motion: Notices of the AMS, 49, 1056-1067.

Toomey, A., and Bean, C. J., 2000, Numerical simulation of seismic waves using a discrete particle scheme:
Geophys. J. Int, 141, 595-604.

Yang, X., and Li, X., 2015, Full-discrete finite element method for stochastic hyperbolic equation: Journal of
Computational Mathematics, 33, 533-556.

Zauderer, E., 1989, Partial Differential Equations of Applied Mathematics: Wiley Interscience.

CREWES Research Report — Volume 29 (2017) 17

