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ABSTRACT

The Hybrid perfectly matched layer (H-PML) is extended to simulate second order
displacement-stress elastic wave equations. In this report, the simulation results with both
H-PML and C-PML in isotropic and anisotropic media are compared. H-PML is capable
of absorbing boundary reflections in both isotropic and anisotropic media, but the C-PML
only works perfectly in isotropic media. The simulation results with H-PML for both first
order and second order elastic wave equations show its efficiency in boundary reflections
suppression.

INTRODUCTION

For numerical simulations of elastic wave equations, absorbing boundary conditions
(ABCs) are needed at the truncated boundaries to suppress the artificial reflections. The
PML approach to boundary absorption, introduced by Berenger (1994), has been proven to
be very efficient compared with previously developed methods (Collino and Tsogka, 2001;
Komatitsch and Tromp, 2003; Festa and Vilotte, 2005). The original PML has two main
imperfections: 1) the velocity and stress fields are required to be split into two subfields re-
spectively; and 2) its efficiency decreases at grazing incidence after discretization, because
the damping coefficient is inversely proportional to the angular frequency and thus depends
on the direction of propagation of the wave. In order to improve the response of the discrete
PML at grazing incidence, the convolutional PML (or C-PML) method (Kuzuoglu and Mit-
tra, 1996) or the complex frequency shifted-PML (CFS-PML) method (Bérenger, 2002)
can be invoked. The CFS-PML method introduces a frequency-dependent term which
eliminates the requirement that the velocity-stress equation be split into separate terms.
However, this C-PML is not stable in anisotropic media. The multiaxial perfectly matched
layer (M-PML) method has been found to be stable even for media exhibiting very large
degrees of anisotropy (Meza-Fajardo and Papageorgiou, 2008). But its absorbing capabil-
ity in isotropic is less effective compared with the C-PML. To maximize both accuracy
and stability, a hybrid PML (H-PML) method, that combines the advantages of both the
C-PML and the M-PML through the optimization of the damping profile is proposed (Li
et al., 2017).

As the classical PML and PML methods discussed above were primarily designed for
first-order equation system, they cannot be applied to the second-order system directly.
However, the first-order wave equations are based on the iterations of velocity and stress
components. This implies when the first-order based wave equations are used into full
waveform inversion (FWI), the velocity components should be transformed into displace-
ment components to calculate the misfit function. It is necessary to develop a PML for
the second order wave equations. Komatitsch and Tromp (2003) first proposed the split
PML to the second-order seismic wave equation. In 2009, Pinton et al. (2009) proposed
an unsplit PML for the second-order acoustic equation and it was used in ultrasonic imag-
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ing simulation. But third-order temporal partial derivatives have to be calculated. Liu
et al. (2012) further improved this method. However, it’s difficult be applied in the imple-
mentation of C-PML. Li and Bou Matar (2010) proposed a C-PML for the second-order
elastic wave equations, yet he mentioned the instabilities of this method to be applied into
anisotropic medium. Ping et al. (2014) presented an M-PML for the second-order elastic
wave equation, but the wave fields are required to be split. In this paper, the H-PML are
implemented to the second-order wave equations in both isotropic and anisotropic media.
Its comparisons with the C-PML for second-order elastic wave equations and the H-PML
for first-order elastic wave equations proves its stability in reducing boundary reflections.

SECOND ORDER ELASTIC WAVE EQUATION

Wave propagation in an elastic medium is governed by the equation:

ρ∂2t uj = σij,j, (1)

where i, j = 1, 2, 3, ρ is the density, ui is the displacement vector and σij is stress tensor,
and where σij,j represent spatial derivatives of the stress tensor. The comma between sub-
scripts is used for spatial derivatives. The summation convention for repeated subscripts is
assumed. According to Hooke’s law, the relationship between the stress and strain tensors
is,

σij = cijklεkl, (2)

where cijkl are the elastic stiffness coefficients. The strain tensor εkl is

εkl =
1

2
(uk,l + ul,k)., (3)

In the case of a transverse isotopic medium, the second-order wave equation system
can be written as,

∂2u1
∂t2

= 1
ρ

(
∂σ11
∂x

+ ∂σ12
∂y

+ ∂σ13
∂z

)
∂2u2
∂t2

= 1
ρ

(
∂σ21
∂x

+ ∂σ22
∂y

+ ∂σ23
∂z

)
∂2u3
∂t2

= 1
ρ

(
∂σ31
∂x

+ ∂σ32
∂y

+ ∂σ33
∂z

) , (4)
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and
σ11 = c11

∂u1
∂x

+ (c11 − 2c66)
∂u2
∂y

+ c13
∂u3
∂z

σ22 = (c11 − 2c66)
∂u1
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+ c11
∂u2
∂y

+ c13
∂u3
∂z

σ33 = c13
∂u1
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∂u3
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∂u1
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)

σ12 = c66(
∂u1
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),

(5)

H-PML FOR SECOND ORDER ELASTIC WAVE EQUATIONS

In H-PML, for the new operator ∇x̃ = [ ∂
∂x̃
, ∂
∂y
, ∂
∂z
], where, ∂

∂x̃
= 1

sx
∂
∂x

, ∂
∂ỹ

= 1
sy

∂
∂y

and
∂
∂z̃

= 1
sz

∂
∂z

. The complex frequency shifted stretched-coordinate matrices sx, sy and sz are

sx = κx +
dx+mx/ydy+mx/zdz

αx+iω

sy = κy +
my/xdx+dy+my/zdz

αy+iω

sz = κz +
mz/xdx+mz/ydy+dz

αz+iω
,

(6)

where, κx, κy, κz are real and ≥1, dx, dy, dz are damping profiles, ω is angular frequency
and αx, αy, αz are assumed to be positive and real. The additional damping profiles mi/j

(i, j = 1, 2, 3, i 6= j) are weighting factors. When κx = 1 and αx = 0, the C-PML
degenerates to the classic PML case (Berenger, 1994). When mi/j = 0 , we get the C-PML
(Kuzuoglu and Mittra, 1996). Using the complex coordinate variables x̃, ỹ, z̃ to replace the
original coordinate variables in (4) and (5), we obtain new displacement-stress equation
system in frequency domain

−ω2û1 =
1
ρ

(
1
sx
∂σ̂11
∂x

+ 1
sy
∂σ̂12
∂y

+ 1
sz
∂σ̂13
∂z

)
−ω2û2 =

1
ρ

(
1
sx
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∂x

+ 1
sy
∂σ̂22
∂y

+ 1
sz
∂σ̂23
∂z

)
−ω2û3 =

1
ρ

(
1
sx
∂σ̂31
∂x
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∂σ̂32
∂y

+ 1
sz
∂σ̂33
∂z

) , (7)
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and
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∂û2
∂x

),

(8)

where û, σ̂ represent the Fourier transform of u and σ.

In order to get the H-PML formulation in time domain, equation set (7) and (8) should
be transformed back to time domain by inverse Fourier transform. Take the first equation
of equation set (7) as an example, we rewrite it by adding convolutional terms as

∂2u1
∂t2

=
1

ρ

(
DFT−1

[
1

sx

]
∗ ∂σ11
∂x

+DFT−1

[
1

sy

]
∗ ∂σ12
∂y

+DFT−1

[
1

sz

]
∗ ∂σ13
∂z

)
,

(9)
where ∗ denotes convolution and DFT−1 is inverse Fourier transform. This equation
means the new differential operator in the x direction emerges as

∂x̃ = DFT−1

[
1

sx

]
∗ ∂x. (10)

According to Roden and Gedney (2000); Komatitsch and Martin (2007), the inverse
Fourier transform term DFT−1

[
1
sx

]
is

DFT−1
[

1
sx

]
= δt

κx
− dx

κ2x
e−(dx/κx+αx)tH(t) = δt

κx
+ ζx(t), (11)

where δt and H(t) are Dirac delta and Heaviside distributions, respectively. The operator
in equation (10) now becomes

∂x̃ =
1
κx
∂x + ζx(t) ∗ ∂x. (12)

Komatitsch and Martin (2007) replace equation (12) with

∂x̃ =
1
κx
∂x + ψx, (13)

where ψx is a memory variable updated at each time step n:

ψnx = bxψ
n−1
x + cx(∂x)

n−1/2, (14)
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in which

bx = exp

[
−
(
dx +mx/ydy +mx/zdz

κx + αx

)
4t
]

cx =

[
dx +mx/ydy +mx/zdz

κx
(
dx +mx/ydy +mx/zdz

)
+ κxαx

]
(bx − 1) .

(15)

Therefore, equation (9) in time domain can further be expressed as

∂2u1
∂t2

=
1

ρ

(
1

κx

∂σ11
∂x

+ ψxσ11 +
1

κy

∂σ12
∂y

+ ψyσ12 +
1

κz

∂σ13
∂x

+ ψzσ13

)
. (16)

And the first equation of equation set (8) can be rewriten as

σ11 = c11

(
1

κx

∂u1
∂x

+ ψxu1

)
+ (c11 − 2c66)

(
1

κy

∂u2
∂y

+ ψyu2

)
+ c13

(
1

κz

∂u3
∂z

+ ψyu3

)
.

(17)

NUMERICAL TEST

In this section, we will first compare C-PML and H-PML applied in the second order
elastic wave equation. Then, comparisons between the first order velocity-stress elastic
wave field simulation and second order displacement-stress elastic wave simulation in VTI
media with H-PML will be discussed.

C-PML and H-PML in isotropic layered medium

In order to demonstrate the difference between C-PML and H-PML in second or-
der elastic wave equations, numerical simulations of elastic wave propagation in layered
isotropic medium are presented. The calculation domain (including 25 × 5m PMLs) is
1750 m width and 1750 m height. The properties of the elastic media are in Table 1.

Table 1. Parameters of layered model

VP (m/s) VS(m/s) ρ(g/cm3)
First layer 2500 1300 1.6

Second layer 3257 1377 2.25
Third layer 2000 1200 1.5

A directional point source located at (135 m, 935 m), is loaded on displacement com-
ponent towards X direction. The point source is the derivative of a Ricker wavelet given
by
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FIG. 1. Waveform comparison of second-order elastic wave equations when H-PML and C-PML
are applied respectively. In isotropic media, both the PMLs can provide satisfactory results.

f (t) = A0(2π
2F 2

0 )e
(−π2F 2

0 (t−t0)2) + 8A0t(π
4F 4

0 )(t− t0)3e(−π
2F 2

0 (t−t0)2), (18)

in which, t0 is the source delay, F0 is the central frequency A0 is the source amplitude.

The corresponding Ricker wavelet is

f (t) = A0(2π
2F 2

0 )(t− t0)e(−π
2F 2

0 (t−t0)2). (19)

In this paper, for the second order displacement-stress wave equations, we apply the
point source in equation (18) to the displacement components. And for the first order
velocity-stress wave equations, because the relationship between displacement and normal
stress components (∂ui

∂xi
= vi, i = x, y, z.), we put the point source of the Ricker wavelet in

equation (19) on the velocity components instead.

The time evolutions of the normal stress components τxx (Left) and τzz (Right) for three
receivers are plotted in Figure (1). Simulations with C-PML (red line) matches perfectly
with simulations with H-PML (blue line). This is in accordance with Li’s results (Li et al.,
2017) (both C-PML and H-PML are capable of absorbing boundary reflections effectively
in isotropic medium). In second order displacement-stress wave equations, they have al-
most the same absorbing efficiency. In Figure (2), the snapshots of wave propagation in the
layered model with H-PML are also plotted.

Comparisons between C-PML and H-PML in anisotropic media

The second example is for a VTI model. The formation elastic parameters and the den-
sity are c11 = 23.87e9N/m2, c13 = 9.79e9N/m2, c33 = 15.33e9N/m2, c44 = 2.77e9N/m2

and ρ = 2000kg/m3. The time step is 1ms, and a directional point source located in the
middle of this model is added on displacement component towards X direction.
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FIG. 2. Snapshots of the stress σxx in isotropic layered model when H-PML is applied.
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FIG. 3. Waveform comparison of second-order elastic wave equations when H-PML and C-PML
are applied respectively in anisotropic media. In anisotropic media, obvious boundary reflections
can be detected when C-PML is used as absorbing boundary layers .
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FIG. 4. Snapshots of stress component σxx for first-order velocity-stress wave equation set when
H-PML is applied

In Figure (3), waveforms of normal stress components in the case of both C-PMLs
(red dotted line) and H-PMLs (blue line) for absorbing the boundary wave are displayed.
The results demonstrated the efficiency of the H-PML in comparison with the C-PML in
this VTI model, especially when we zoom in the results from 0.6 s to 1.6 s, the stress
components obtained by using C-PML suffer severely from the oscillations because of the
boundary reflections.

In order to make a comparison with simulations of the first order velocity-stress wave
equations, a point source with the Ricker wavelet of equation (19) is added on velocity
component in X direction. The normal stress components can thus be obtained by the first
order velocity-stress staggered-grid finite difference method with H-PML. Snapshots of the
simulations are shown in Figure (5), which are almost the same with those in Figure (4)
calculated by the first-order wave equations.

In Figure (6), waveforms of normal stress components in the case of both first order
velocity-stress wave equations (blue line) and second order displacement-stress wave equa-
tions (red line) with H-PMLs are displayed. For different receivers, the normal stress com-
ponents both in X direction (Left) and in Z direction (Right) match quite well for the two
different wave equation sets. The results demonstrated the efficiency of the H-PML in both
the wave equation sets.

Thrust fault model for second-order wave equations using H-PML

The next example is the simplified anisotropic thrust fault model, in which anisotropy
presents through different depth intervals. In Figure (7), a vertical source is located in
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FIG. 5. Snapshots of stress component σxx for second-order displacement-stress wave equation
set when H-PML is applied
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FIG. 6. Waveform comparison of second-order and first-order velocity-stress elastic wave equation
sets when H-PML is applied in anisotropic media. H-pml works well in both first- and second-order
elastic wave equations.
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the upper middle of the fault. With the propagation time increasing, the waveform travels
through the model to the boundaries, however, no boundary reflections can be found in
each time slice. And the waveforms are absorbed when they travel into the PMLs.
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FIG. 7. Waveform snapshots with the increase of propagation time.

In figure (8), the seismograms of stress components σxx and σzz show the boundary
reflections are effectively suppressed. The receiver stations are evenly spaced along x-
direction with a same depth of the source.

CONCLUSIONS

In this paper, the H-PML is modified to be applied for suppression of the artificial
boundary reflections in second-order wave equations. Its results in both isotropic and
anisotropic medium are compared with those of the C-PML approach for the second-order
wave equations. The simulation results of the H-PML for first-order and second-order wave
equations are also compared. The H-PML can provide satisfying absorbing efficiency for
both first and second-order elastic wave equations. And both of the two PMLs are stable
and efficient in isotropic medium, yet, instability can be observed in anisotropic medium
when C-PML is applied.
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