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ABSTRACT

To date, most of presented approaches of internal multiples prediction or elimination
assume an acoustic background model. In practice, the acoustic approximation will result
in a false, misleading and potentially injurious estimate due to the neglect of the wave-
mode conversion. The closer the reference model is to reality, the more accurate achieved
prediction algorithm will be. Inverse scattering series has been revealed in extremely pow-
erful capabilities of seismic data processing and inversion, such as full waveform inversion
(FWI), direct non-linear AVO analysis, and surface-related or internal multiples attenuation
on acoustic cases, due to its property of model independence. The 3D formulation of elastic
internal multiples prediction algorithm was introduced by considering an isotropic-elastic-
homogeneous reference medium, which evaluates the wave-mode conversion and multiples
prediction in a self-acting manner. The input preparation is the essential step for the predic-
tion. Since the wave-mode conversion can only be handled in the top layer, an inappropriate
will misleads the conversion in lower layers which disorders lower-higher-lower relation-
ship of events reflected by the same layer but with different wave mode conversions. In
this paper, we analyse the possible input preparation methods for the algorithm implement-
ing in different domains using wavenumber related elastic stolt migration, slowness related
elastic stolt migration, time-stretching method in plane wave domain, and the best-fitting
method with high resolution hyperbolic radon transform. The advantages and weaknesses
of each approach are discussed.

INTRODUCTION

In seismic exploration, internal multiples used to be identified as undesired noises be-
cause the conventional seismic imaging algorithms deal correctly only with primary reflec-
tions. One reason for its negative feedbacks is most of migration and inversion methods are
based on the Born approximation, i.e., the assumption of one single scattering. By analyz-
ing the role that primaries and multiples play in migration, recent studies indicate that, for a
smooth and continuous velocity model, internal multiples will lead to an artificial, mislead-
ing , and false subsurface image (Berkhout and Verschuur, 2006; Behura et al., 2014; Zuberi
and Alkhalifah, 2014; Li et al., 2016; Weglein, 2016). In practice, to enhance the image
quality, internal multiples must be removed if we migrate seismic reflection in conventional
way. It is worth to note that internal multiples has their unique characteristics, smaller re-
flection angle and longer ray-path, compared to primary events. These features of internal
multiples recorded in seismic data could increase the aperture of illumination and enhance
subsurface imaging and structure determination. In other words, instead of eliminating
internal multiples in conventional imaging process, migration of internal multiples under
appropriate imaging conditions could penetrate into earth to provide more stratigraphic in-
formation and to illuminate shadow zones where primaries cannot reach (Liu et al., 2011;
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Malcolm et al., 2009, 2011; Slob et al., 2014), for example, sub-salt areas. To make use
of these attractive features, internal multiples prediction need to be performed precisely as
multicomponent acquisition developed.

Considerable progress of internal multiple prediction has been made recently. There
are two distinguished ways to attenuate internal multiples from primary events. One is
transforming internal multiples to be ‘surface-related’ and then eliminating them by their
characteristics of the free surface. The representative approach, boundary-related/layer-
related method, by recalibrating and exfoliating the top of the multiple generators in a
stepwise way, was implemented in different domains, such as in poststack (CMP) data (Ke-
lamis et al., 2002), in common-focus-point (CFP) domain (Berkhout and Verschuur, 2005;
Berkhout, 2006), in inverse-data domain (Luo et al., 2007). The second, by considering
internal multiples as the combination of a certain sub-events based on the inverse scatter-
ing series, is optimal to implement the internal multiple prediction without any subsurface
information in an automatic way. Weglein et al. (1997) demonstrated that internal mutli-
ples can be estimated from sub-events which satisfy the lower-higher-lower criterion in the
pseudo-depth or vertical traveltime domain. Many incentive research and discussions of
inverse scattering series (ISS) on internal multiples prediction (IMP) have been presented
serving diverse purposes. To correct the predicted amplitude of internal multiples and avoid
the deterioration of the energy minimization adaptive subtraction, Zou and Weglein (2015)
demonstrated an alternative version of ISS-IMP algorithm for all first order internal mul-
tiples in model of parameters varying in depth only. One of the key features to determine
the capacity of the existing ISS-IMP algorithm in complex environments, is the search
parameter selection which guarantees the selected combination to meet the lower-higher-
lower relationship (Luo et al., 2007; Sun and Innanen, 2016b). To mitigate the artifacts of
a fixed search parameter and to enhace the proximity of ISS algorithm, by reformulating
ISS algorithm, Innanen (2017) demonstrated that inverse scattering-based internal multiple
prediction can be performed with a non-stationary search parameter in time-related do-
mains. Another promising line of research is to seek optimum domains in which apply to
a relative stationary parameter. In particular, especially concerning artifact mitigation, im-
plementation in τ − p domain (Coates and Weglein, 1996) appears to have some attractive
features (Sun and Innanen, 2015) and motivates a numerical analysis of 2D ISS internal
multiple prediction in couple plane-wave domain which has a range of attractive features,
practical and computational (Sun and Innanen, 2016c). Moreover, the multidimensional
plane-wave-domain ISS algorithm can also be merged with non-stationary parameter to
perform 2D/3D application with time-varying parameter in challenging environments.

Nevertheless, these approaches, even though powerful, are on the strength of acous-
tic assumption which is not reality and consistent with rapidly developed multicomponent
acquisition. For inverse scattering-based approach, unlike acoustic cases, wave-mode con-
version in multicomponent seismic record will wreck the wavenumber / slowness - depen-
dent relationship of subsevents in the combination and misleads the lower-higher-lower
criteria. To adapt for multicomponent seismic records, by considering an isotropic-elastic-
homogeneous background and decomposing the elastic inverse scattering series into types
of wave-mode, Sun and Innanen (2016a) extend the elastic internal multiple prediction al-
gorithm into 3D based on inverse scattering series, first introduced by Matson (1997), while
involving wave-mode conversion.
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However, preparing input for the multicomponent prediction algorithm, either proposed
in pseudo-depth domain/horizontal slowness pseudo-depth domain, or plane wave domain,
without causing suspicious noises and breaking lower-higher-lower relationship, is a key
feature and remains to be an obstacle. Since the elastic inverse scattering series internal
multiple algorithm only handles the wave-model conversion in the top layer, the reflections
generated by same interface will be mislead and create aliasing combinations satisfying
lower-higher-lower relationship. In this paper, details of existed issues in elastic internal
multiple prediction are revealed and discussed. By computing ray-path analytically, we
illustrate and compare a few different methods to prepare the inputs for multicomponent
prediction including elastic stolt migration, vertical traveltime stretching, best-fitting ve-
locity obtained by hyperbolic radon transform. A analytical comparison will also be made
to discuss the advantages and shortcomings of each approach.

ELASTIC ISS-IMP ALGORITHM

Multicomponent internal multiples prediction algorithm based on inverse scattering se-
ries was first mentioned by Matson (1997) in wavenumber-pseudo depth domain with its 2D
formulation. The algorithm can be successfully extended to a full 3D case by incorporating
wavenumbers with respect to two different lateral coordinates of sources and receivers in a
same manner (Sun and Innanen, 2016d). The formula of the leading order multicomponent
internal multiples prediction in a wavenumber pseudo-depth domain can be delineated as,
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with,

νIM =

√
ω2

(cI0)2
− (kIxM )2 − (kIyM )2 (2)

where, z is the pseudo-depth (depth in the reference medium), and z1, z2, z3 satisfy the
lower-higher-lower relationship, i.e., z1 > z2 and z2 < z3. kIxM and kIyM are x and y

components of wavenumber, νIM is the vertical component of wavenumber. The subscript
M ∈ {g, s, 1, 2} means the source or receiver side for a specified ray-path, i.e., kIxM is the
x component of wavenumber corresponding to location (xM , yM , zM). cI0 is the velocity
depending on the wave mode I , and I = (i, j, k, l) ∈ {P, SH, SV }. The input bij1 is a
mode-decomposed and weighted version of seismic data related:
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where, Dij(kixg , k
i
yg , k

j
xs , k

j
ys , z) are data associated with downgoing j-mode and upgoing

i-mode with i, j ∈ {P, SH, SV }, mapped to pseudo-depth.

The prediction using equation 1 requires that all events of the inputs were sorted into the
corresponded and appropriate pseudo-depth because the same pseudo-depth is utilized in
all wave-types inputs. Specifically, all reflections generated by the same reflector must be
mapped into the same pseudo-depth no matter what wave-mode conversions are. To keep
the data-driven property of the inverse scattering series prediction algorithm, Matson and
Weglein (1996) mentioned that Dij(kixg , k

i
yg , k

j
xs , k

j
ys , z) can be obtained using an elastic

stolt migration with respect to decomposed components of shot profiles. However, no
application was performed to at that moment. In this paper, we perform an elastic stolt
migration in prospective of wavenumber to achieve the inputs for wavenumber pseudo-
depth domain prediction.

To benefits from the constancy characteristics of the size of subevents across horizontal
slowness spectrum, equation 1 can also be transferred into horizontal-slowness pseudo-
depth domain and multidimensional plane wave domain in a similar way of acoustic cases
(Sun and Innanen, 2017a). For (p, z) domain multicomponent prediction algorithm, it can
be simply obtained by switching the wavenumber into horizontal slowness, delineated as,
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where, the input bij1 (pixg , p
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corresponded vertical slowness. Dij(pixg , p
i
yg , p

j
xs , p

j
ys , z) can be obtained similarly by rear-

ranging data into horizontal slowness instead of wavenumber, or by performing an elastic
stolt migration in perspective of horizontal slowness.

In acoustic cases, the implementation of internal multiple prediction in plane wave do-
main has some advantages (Sun and Innanen, 2016c), such as the constancy distribution
of each subevent in input data, allows a relative constant search parameter, fast computa-
tion. The multicomponent internal multiple prediction can also be benefited from the plane
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wave domain implementation. The multicomponent internal multiple prediction in mul-
tidimensional plane wave domain can be achieved from (p, z) domain formulation using
the one-to-one mapping between pseudo-depth and vertical travel time. The mathematical
form is,
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corresponded vertical slowness, and Dij(pixg , p
i
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j
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j
ys , τ) is the shot gather with the

adapted τ − p transformation related to five-coordinate: two lateral source coordinates
(xs, ys) → (pxs , pys), two lateral receiver coordinates (xg, yg) → (pxg , pyg), and intercept
time t→ τ .

Equation 6 requires the vertical travel time of P-P and P-SV waves are sorted into same
manner, i.e., P̀ Ṕ , P̀ Ś, and S̀S̀ have the same vertical traveltime. This can be done by
stretching traditional τ − p transformed data in time dimension with appropriate factors.
The input preparation for equation 1, 4, and 6 require the interpolation procedure which
may increase the risk of generating aliasing.

ELASTIC MONOTONICITY CONDITION OF
PSEUDO-DEPTH/VERTICAL-TRAVELTIME AND ACTUAL DEPTH

The criteria of inverse scattering series in internal multiple prediction is to combine
those events which in lower-higher-lower relationship of actual reflector depth in spec-
ified wavenumber/horizontal slowness. Therefore, the monotonic projection of pseudo-
depth/vertical travel time and actual depth is essential requirement both for equation 1,
equation 4, and equation 6. In this section, we will discuss the input preparation for
three-different domain prediction (k − z, p − z, p − τ) using elastic stolt-migration, time-
stretching method, and best-fitting velocity model generated by high resolution hyperbolic
radon transform.

Elastic stolt migration

Matson (1997) indicated that the elastic slot migration with two constant background
velocity may be utilized to preparing the input for pseudo-depth domain algorithm. How-
ever, this approach has never been examined. To perform it on shot gather, we need a
prestack stolt migration scheme, which can be accomplished by stolt change (regridding)
of variables in Fourier domain and followed by inverse transformation Stolt (1978). And
the elastic prestack stolt migration of two component data (P- and SV-) was presented by
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Etgen (1988). The image of P-P and P-SV components can be written as,
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∫
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is the dispersion relation for upcoming SV waves due to a P wave source, written as
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and km, kh are the wavenumbers related to mid-point and offset; ks, kg are wavenumbers
related to source and receiver coordinates. The relations between them can be described by
the following formula,

ks =
km − kh

2
(10a)
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2
(10b)

After the Fourier transformation, the first step we need is a regridding of the ω axis to
the kz axis, which usually be performed by the interpolation of known grid values. The
regridding requires the evaluation of ω as a function of kz. For P-P stolt migration, ω(kz)
is given by van Trier (1948), written as,
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For P-SV stolt migration, ω(kz) is introduced by Etgen (1988), and its formulation is de-
lineated as,
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where,
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Using equation 7, the image of P-P and P-SV reflections in a variant velocity medium
can be computed by performing the elastic stolt migration with a constant velocity for
P- and SV-waves separately. The elastic stolt migration is employed to be performed on a
decomposed shot profile, to generate the input for prediction algorithm both in wavenumber
pseudo-depth domain and in horizontal slowness pseudo-depth domain.

Vertical time stretching

FIG. 1. Elastic waves propagating in perturbation mode in the reference medium. (a) P-wave
source only, (b) S-wave source only.

For elastic plane wave prediction algorithm, due to the velocity difference between
P- and SV-waves, the monotonicity condition of pseudo-depth and vertical travel time is
broken. For example, Figure 1 describes ray-paths of PP-, SS-, and PS/SP-waves propa-
gating in a reference medium through one perturbation at the same depth. However, P-P,
P-SV/SV-P, and SV-SV waves have the different vertical travel time. Take a P-wave source
as an example, the intercept times for PP- and PSV-waves can be calculated as,

τPP = 2τP =
2z cos θP

α
(15a)

τSP = τP + τS = z

(
cos θP
α

+
cos θS
β

)
(15b)

where, z denotes the pseudo-depth in the reference medium, α and β are the reference
velocities in background, which is usually assumed to be the velocities in the top layer of
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the model. Therefore, a modification needs to be made to meet the one-to-one projection
of pseudo-depth and elastic vertical travel time. Considering Snell’s law, the relationship
between τPP and τSP (or τPS) at the same pseudo-depth can be expressed as,

τSP = τPS =
α + β

2β
τPP (16)

Time stretching is required using equation 16 to hold the monotonic relationship be-
tween pseudo-depth and elastic vertical traveltime when the elastic internal multiple pre-
diction is performed in multidimensional plane wave domain. In other words, the vertical
travel time of input bSP1 has to be stretched into the same scale of bPP1 , when predicting P-P
mode internal multiples; the vertical travel time of input bPP1 needs to be transferred into
the scale of bSP1 while the prediction of P-SV mode is on. Stretching inputs in time axis
also needs to interpolating the grid points using known values.

To avoid the effect of interpolation, instead of stretching the time axis of inputs, we can
change the integral limits of equation 6 since the aim of time-stretching is searching com-
binations satisfy lower-higher-lower relationship. This leads to, keeping the simplicity of
discussion, the 2D plane wave domain elastic internal multiple algorithm, which is written
as,
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Note, we recommend performing the elastic internal multiple prediction with modified
integral limits to hold the lower-higher-lower criteria shown as equation 17. However, to
compare with the input generated by elastic stolt migration, we also created time-stretched
input data in the next section.

Pseudo-depth with best-fitting velocity

One of the major problem in elastic input preparation is how to handle the conver-
sion of P- and SV-waves in lower layers while satisfying the lower-higher-lower relation-
ship. However, both the elastic stolt migration with a constant velocity and time stretching
method assume only one wave-mode conversion happened at the reflection point. Due to
the elastic-isotropic-homogeneous background assumption, all wave-mode conversions at
transmission points are neglected.
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For example, in Figure 2, we have four primary events reflected by the second inter-
face in P-component of shot profile, i.e., P̀ P̀ Ṕ Ṕ , P̀ S̀Ṕ Ṕ , P̀ P̀ ŚṔ , P̀ S̀ŚṔ ; another four
primary events reflected by the same reflector received in SV-mode, i.e., P̀ P̀ Ṕ Ś, P̀ S̀Ṕ Ś,
P̀ P̀ ŚŚ , P̀ S̀ŚŚ.

In the scheme of elastic stolt migration and time stretching method, these eight pri-
mary events both in P-P and P-SV components are treated as separated sub-events and
will be migrated into different depths as long as they have variant pseudo-depths. P̀ P̀ Ṕ Ṕ
and P̀ S̀Ṕ Ś/P̀ P̀ ŚŚ are migrated into a similar depth with elastic stolt-migration and time-
stretching because of the approximate vp/vs ratio in layers. Other primary events will be
migrated into different depths.
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FIG. 2. Ray paths of all primary events in multicomponent reflected by the two interfaces. (a) P-P
component. (b) P-SV component.

The solution of this issue is to find a special velocity related to each sub-event in the
input space, which requires sub-events of inputs are separate from each other. The interval
velocity is the perfect solution to this, however, it cripples the data-driven superiority of
inverse scattering series prediction algorithm. Besides, it’s difficult to obtain the exact
velocity model and applied them to each event. The next best option for this issue is that
how to find an approximate velocity for each sub-event? As we known, each sub-event in
offset-time domain has a specified velocity vs, which is the velocity parameter defines the
best fit hyperbola to the actual data traveltime curve, written as

t2 = t20 +
x2

v2
s

(19)

Therefore, the "best fit" velocity is kind of searching parameter which depends on the
maximum offset in the analysis. And in variant cases, the best-fit velocity has different
meanings. vs equals to the vrms (root-mean-square velocity) if the model is layered; vs
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represents the stacking velocity for dipping reflector beneath a constant velocity overbur-
den. Take the 1.5D case as example, the sub-events of input for prediction algorithm are
sorted in horizontal slowness, and are separated completely in vertical traveltime without
any overlapping. Namely, an unique velocity can be obtained for each sub-event of the
input as long as we have the appointed velocity for each hyperbola in offset-time domain.

Hyperbolic radon transform, a widely used technique, is the process of remapping a
hyperbola curve into a single point located at its vertex. The traditional way for hyperbola
transform is reconstruct the data in radon space with offset-time domain data and given a
range of velocity. Its mathematical form is written as,

m(τ, v) =

∫ hmax

hmin

d(t =
√
τ 2 + h2/v2, h)dh (20)

where, h indicates offset, and τ is the two-way zero-offset travel time. v is the best fit
velocity for the hyperbola curve. d(t, h) is the data in offset-time domain. m(τ, v) is
mapping data in radon space. With appropriate discretion and rearrangement, equation 20
can be rewritten into the matrix form as

d = Lm (21)

The traditional way to reconstruct the radon panel m from equation 21 is using the
transpose or adjoint operator LT . The retrieve data in radon space is given by

m = LTd (22)

It’s clear to say that transformation in equation 22 is not the inverse process of mapping
using equation 21 since L is not a unitary operator. Amplitudes of reconstructed traces from
radon space using equation 21 are different with the original data, which could damage ei-
ther the amplitude analysis or multiple prediction, if the radon panel was obtained using
the adjoint operator in equation 22. Thorson and Claerbout (1985) proposed a high reso-
lution time domain radon transform in inversion scheme using stochastic technique. Since
then, the inversion scheme radon transform, both in time, frequency, and time-frequency
domain, has been introduced and applied in practical seismic processing, such as multiple
attenuation, offset-time space data reconstruction (Sacchi and Ulrych, 1995; Trad et al.,
2002, 2003).

In the procedure of inversion, radon panel is treated as the model space, L is the forward
operator to reconstruct the data in offset-time domain using "model" parameter. A widely-
used method to solve the sparse inversion is the least square method. The cost function for
least square problem is written as,

J =‖Wd(Lm− d) ‖2 + ‖Wmm ‖2 (23)

where, Wd is a matrix of data weights, often a diagonal matrix containing the inverse stan-
dard deviation of the data. Wm is a matrix of model weights to enhance one’s preference of
the model, for example, sparseness or smoothness. The model weight matrix is essential to
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resolve a sparse model, which is utilized to penalize large elements contained in the model
space. The chosen of model weight for high resolution radon transform is well illustrated
in the paper by Trad et al. (2003). We will not go into details in this paper.

A left preconditioning conjugate gradient method is employed to solve the cost func-
tion in equation 23. The full-procedure of high-resolution radon transform is solved by
Re-weighted Least Square with Conjugate Gradient (RLSCG) performed as two iteration
loops, external iteration and internal iteration. The external iteration is to update the model
weight. The internal iteration is to solve the sparse model with current model weights by
conjugate gradient.

After obtained the radon panel using hyperbolic transform, the best-fit velocity for each
hyperbola can be achieved at the velocity-axis for corresponded "bright spot". The retrieve
velocity model needs to be transferred into input space of prediction algorithm. Here,
take the 1.5D case as an example, the input of the prediction for a single shot gather is
the weighted data in linear radon space. Therefore, the velocity model retrieved from the
hyperbolic radon space can be transferred into the linear radon space using elliptical radon
transform, shown as,

d̂(τ, p) =

∫ vmax

vmin

m(τ0 =
τ√

1− p2v2
, v)dv (24)

where, p is the horizontal slowness; τ is the vertical travel time, i.e., time axis in linear
radon space; τ0 is the two-way zero-offset travel time, i.e., time axis in hyperbola radon
space; v is the best-fit velocity for hyperbola events. Then, the pseudo-depth can be ob-
tained by velocity model multiplying with vertical travel time in linear radon space, i.e.,
z = vτ/2.

DISCUSSION

To examine approaches described previously, in this section, we will compute the ana-
lytical solution using each method with the model illustrated in Figure 2. The pseudo-depth
of stolt migration in acoustic cases is calculated by multiplying the constant background
velocity with one-way vertical traveltime i.e., zs = v0τ/2, which has been verified in the
paper (Sun and Innanen, 2017b). For elastic cases, it is apparent that the pseudo-depth
by stolt migration is equivalent to one-way stretching-vertical time with the constant back-
ground velocity. Therefore, we will only compare the pseudo-depth of time-stretching
method and the best-fitting velocity by hyperbolic radon transform. Using model parame-
ters illustrated in Figure 2, we analytically modeled the ray-path of each event (hyperbola
curves) and computed the corresponded best-fitting velocity (Table 1). Then, both of hy-
perbola curves and best-fit velocity was transferred into linear radon space using linear and
elliptical radon transform separately, shown in Figure 3a.

Figure 3a indicates that the mapping best-fit velocity is well matched with the all sub-
events in linear radon space except at the large value of horizontal slowness. These little
mismatch at large value of p can be ignored and will not damages the following process in
prediction because the amplitudes of sub-events at large p value in input for practical data
are close to zero.
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Ray-path in P-P model Best-fitting velocity vs (m/s)
P̀ Ṕ 2000

P̀ P̀ Ṕ Ṕ 2646
P̀ P̀ ŚṔ /P̀ S̀Ṕ Ṕ 2306

P̀ S̀ŚṔ 2000

Ray-path in P-SV model Best-fitting velocity vs (m/s)
P̀ Ś 1549

P̀ P̀ Ṕ Ś 2314
P̀ P̀ ŚŚ/P̀ S̀Ṕ Ś 2026

P̀ S̀ŚŚ 1756

Table 1. The best fitting velocity for each ray-path.

FIG. 3. Comparison between time-stretching and pseudo-depth with best-fitting velocity. (a) solid
line: all ray-path in linear radon space; dot line: mapping best-fitting velocity into linear radon
space using equation 24. (b) pseudo-depth obtained by multiplying a constant velocity with one-
way vertical travel time, i.e., zs = v0τ/2. (c) pseudo-depth computed by multiplying the best-fitting
velocity with one-way vertical travel time, i.e., z = vτ/2.

In figure 3b, two solid black lines denote the actual depth of two interfaces; the pseudo-
depth is computed by constant velocity (depend on wave-mode) multiplying with one-way
vertical travel time. It is clear that two primary events reflected by the 1st interface are
matched precisely at p = 0 and the mismatch increases as the growing of horizontal slow-
ness. However, those primary events reflected by the 2nd reflector, which should be mi-
grated at the same pseudo-depth, have a very large gap either at small or at large value of
horizontal slowness. These errors of pseudo-depth can misleads the lower-higher-lower re-
lationship when the selected search parameter is smaller than them. This is also the reason
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we implemented multicomponent internal multiple prediction with very aggressive inte-
gral limits in the report of last year. And the pseudo-depth with time-stretching method
is equivalent to the pseudo-depth migrated by elastic slot migration with a constant back-
ground velocity, which will be testified later in the application section.

Using the best-fitting velocity illustrated in Table 1, we also calculated the pseudo-depth
by multiplying them with one-way vertical traveltime (Figure 3a). The result is shown in
Figure 3c. With the estimated unique velocity, the pseudo-depth of primary reflected by 1st
reflector has a small constant gap as the horizontal slowness increasing. For those primaries
reflected by the 2nd interfaces, the largest gap was located at p = 0, but is much smaller
compared to the pseudo-depth obtained by the constant velocity. In this case, the largest
gap in pseudo-depth using best-fitting velocity is around 150m, which equals to 37 grid
sizes if we have 4ms for time interval. It leads to a relative larger search parameter to
treat all those reflections as a single sub-event and to avoid the false lower-higher-lower
relationship during selecting combination.

Based on this, we may conclude that, comparing to elastic stolt-migration and time-
stretching method, the internal multiple prediction with the best-fitting velocity model may
has a better solution to monotonicity condition for identifying lower-higher-lower relation-
ship, but still cannot handle the short-leg internal multiples, i.e., generated by thin layers. It
seems like that the advantage of plane-wave prediction algorithm in allowing a small rela-
tive stationary search parameter is weaken by the best-fitting velocity model. To solve this,
a detail needs to be noted that most of these primary events generated by 2nd interface are
sorted in an opposite (ascending or descending) order in Figure 3b and 3c. Therefore, we
can make use of this property to filter the combination selected using best-fitting velocity
model, i.e., only combinations satisfy the intersection of time-stretching and best-fitting
velocity in lower-higher-lower relationship will be selected to reconstruct internal multi-
ples. The intersected comparison in pseudo-depth will allows us to select a common-wide
search parameter, i.e., ε in grid points is the width of source wavelet, in the implementation
of plane-wave domain internal multiple prediction. In Part II, we will use a simple syn-
thetic application to verify and examine the comparisons and conclusions we summarized
previously.

CONCLUSION

The wave-model conversion in multicomponent data is a hazard of input preparation
for inverse scattering series internal multiple prediction, which misleads the lower-higher-
lower relationship of sub-events. To better understand the mechanism of each approach
for multicomponent input preparation, we modeled ray-path of each primary sub-event
and computed the corresponded pseudo-depth analytically using elastic stolt-migration,
vertical traveltime stretching method, and best-fitting velocity model generated by high-
resolution hyperbolic radon transform. Analytical comparison indicated that, theoretically,
elastic stolt migration sorted the input in pseudo-depth as the vertical traveltime stretching
method does. Both of them can migrated events by first interfaces from multicomponent
shot profile into the same pseudo-depth as expected. However, events reflected by lower in-
terfaces are failed to be shifted into the same pseudo-depth, which may produce suspicious
combinations satisfying lower-higher-lower relationship. The best-fitting velocity model
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gives an approximate solution for identifying lower-higher-lower relationship, which re-
quires a large constant search parameter. However, the pseudo-depth of those events using
time-stretching and best-fitting velocity are sorted in an opposite order. Taking advantage
of that, the cross-validation of time-stretching and best-fitting velocity may leads to a con-
stant smaller search parameter.
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