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ABSTRACT

Simulation of wave propagation in an anisotropic viscoacoustic medium is an impor-
tant problem, for instance within Q-compensated reverse-time migration. Processes of
attenuation, dispersion, and anisotropic influence all aspects of seismic wave propagation,
degrading resolution of migrated images. We present a new approach of the viscoacoustic
wave equation in the time domain to explicitly separate amplitude attenuation with phase
dispersion and develop a theory of viscoacoustic reverse time migration (Q-RTM) in tilted
TI media. Because of this separation, we would be able to compensate the amplitude loss
effect, the phase dispersion effect, or both effects. In the Q-RTM implementation, the
attenuation-compensated operator was constructed by reversing the sign of amplitude at-
tenuation. Using the TI approximation and ignoring all spatial derivatives of the anisotropic
symmetry axis direction leads to instabilities in some area of the model with the rapid vari-
ations in the symmetry axis direction. A solution to this problem is proposed that involves
using a selective anisotropic parameter equating in the model to reduce the difference of
Thompson parameters in areas of rapid changes in the symmetry axes. The scheme is tested
on a layer model and a modified acoustic Marmousi velocity model with a 2-4 staggered
grid. We validate and examine the response of this approach by using it within a reverse
time migration scheme adjusted to compensate for attenuation. The amplitude loss in the
wavefield at the source and receivers due to attenuation can be recovered by applying com-
pensation operators on the measured receiver wavefield. After correcting for the effects
of anisotropy and viscosity, numerical test on synthetic data illustrates the higher resolu-
tion images with improved amplitude and the correct locations of reflectors, particularly
beneath high-attenuation layers.

INTRODUCTION

Attenuation is an increasingly indispensable component of wavefield simulation in seis-
mic exploration and monitoring applications. It is a key element in many recent instances
of data modeling, reverse time migration (RTM). To consider the anisotropic media, the
isotropic acoustic assumption for seismic processing and imaging method is not useful
and affected the resolution and placed images of subsurface structures (Zhou et al., 2006).
Therefore, it is necessary to focus on the anisotropy and viscosity for complex media to
obtain a significant improvement in image resolution and positioning. There are to way to
consider the anisotropic medium, the pseudo-acoustic wave equation and the pure acous-
tic wave equation. Alkhalifah (1998, 2000) derived the pseudo-acoustic wave equation
from the dispersion relation by setting the shear-wave velocity along the anisotropy sym-
metry axis to be zero. Although the VTI wave equation is used to image structures which
have similar properties with a VTI media (Crampin, 1984), but may not be satisfied in
anisotropic dipping layers. The TTI equations have been derived from VTI equations by as-
suming the symmetry axis is non-vertical and locally variable (Fletcher et al., 2008; Zhang
and Zhang, 2008). The TI wave equations with the zero value of SV wave’s velocity on
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the axis symmetry can’t remove the effect of the residual shear wave, so the instability
occurs. Fletcher et al. (2009) proposed the equations by adding non-zero S-wave velocity
terms to solve the problem. To stabilize wave propagation and reduce shear wave artifacts
the parameters models of anisotropy can be smoothing before numerical simulation, and
setting ε = δ in the regions around source and areas with the high symmetry axis gradient
(Zhang and Zhang, 2008; Yoon et al., 2010). However, to investigate the RTM images in
anisotropic viscoelastic medium, generally, the focus is on the anisotropy or viscosity. In
this work, we focus on both anisotropy and viscosity to obtain the accurate RTM images.
To avoid the difficulty of stabilising the wave propagation, Fletcher et al. (2012) proposed
the separate amplitude and phase filters to twice-extrapolated source and receiver wave-
fields to compensate for amplitude and phase effects. Dutta and Schuster (2014) adopted
a least-squares RTM (LSRTM) approach for attenuation compensation based on an stan-
dard linear solid (SLS) model and its adjoint operator (Blanch and Symes, 1995) with a
simplified stress-Strain relation. Zhu and Harris (2014) introduced a constant-Q viscoa-
coustic wave equation with separate fractional Laplacians, and applied it to the problem of
Q-compensated RTM. Although RTM based on two-way wave equation is considered as
a standard migration tool to image complex geologic regions, we try to formulate a time-
domain viscoacoustic wave equation with attenuation correction in RTM(Q-RTM).
In this paper, we present a new approach of anisotropic viscoacoustic wave equation for
attenuating media in the time domain based on SLS model. This equation describes the
constant-Q wave propagation and contains independent terms for phase dispersion and am-
plitude attenuation. The attenuation effects compensate in the reconstructed wavefield by
reversing the sign of amplitude loss operator and unchanged sign of dispersion operator.
The new approach of viscoacoustic wave equation in TTI media develops a methodology
of Q-RTM that can compensate amplitude attenuation and phase dispersion effects in the
migrated images. We use two synthetic examples to test the accuracy of the proposed the
method in application to imaging and demonstrate that Q-RTM compensates for amplitude
attenuation and phase dispersion in the receiver wavefields when using the crosscorrelation
imaging condition. This article is organized as follows. In the second section, we derive the
viscoacoustic wave equation in TTI media. Next, we propose the formulation of Q-RTM
and discuss the compensation of attenuation effects. Numerical results on 2D synthetic
data are presented in the last section.

VISCOACOUSTIC WAVE EQUATION IN TTI MEDIA

In 2D case, the first order viscoacoustic wave equations of TTI media is expressed as
follow (Fathalian and Innanen, 2017)

∂tux =
1

ρ
(cos θ cosϕ∂x − sin θ∂z)σH , (1)

∂tuz =
1

ρ
(cosϕ sin θ∂x + cos θ∂z)σV , (2)
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∂tσH = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)
[(cos θ cosϕ∂x − sin θ∂z)ux)]− rH

]
+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)uz]

]
, (3)

∂tσV = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ux]

+

(
τε
τσ

)
[(cosϕ sin θ∂x + cos θ∂z)uz+]− rV

]
, (4)

where ux(x, t) and uz(x, t) are the particle velocity components in the x- and z-directions
respectively. σH and σV represent the horizontal and vertical stress components respectivel,
P (x, t) is pressure wavefield, ρ(x) is density, r is a memory variable, ε and δ are Thomsen
parameters, K represents the bulk modulus of the medium, and θ represent the tilt angle
and ϕ represent the azimuth of tilt for TTI symmetry axithe. rH`, and rV `, which are re-
ferred to as memory variables of horizontal and vertical stress components (Carcione et al.,
1988), satisfy

∂trH` = −
1

τσ`
rH` + ρV 2

p ((cos θ cosϕ∂x − sin θ∂z)ux)
1

τσ`

(
1− τε`

τσ`

)
, (5)

∂trV ` = −
1

τσ`
rV ` + ρV 2

p ((cosϕ sin θ∂x + cos θ∂z)uz)
1

τσ`

(
1− τε`

τσ`

)
.1 ≤ ` ≤ L,

The stress and strain relaxation parameters, τε and τσ, are related to the quality factor Q
and the reference angular frequency ω as (Robertsson et al., 1994)

τσ =

√
1 + 1/Q2 − 1/Q

ω
, (6)

τε =
1

ω2τσ
.

where ω is the central frequency of the source wavelet.
In attenuation media, there are two main visible effects, reduced amplitude and phase shift
due to dispersion. Therefore, the simulation of wave propagation includes three cases, i.e.,
the amplitude loss effect, the phase dispersion effect, or both effects. In this paper, we
present a new approach for the solution of the viscoacoustic wave equation in the time
domain to explicitly separate phase dispersion and amplitude attenuation. We first apply
the Fourier transform to the first-order linear differential equations 1, 2, 3, 4, and 5 in the
time domain to obtain the frequency domain viscoacoustic wave equation:

ũx =
1

ρ
(cos θ cosϕ∂x − sin θ∂z)σ̃H , (7)

ũz =
1

ρ
(cosϕ sin θ∂x + cos θ∂z)σ̃V , (8)
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iωσ̃H = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ

)
[(cos θ cosϕ∂x − sin θ∂z)ũx]− r̃H

]
+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)ũz]

]
, (9)

iωσ̃V = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ũx]

+

(
τε
τσ

)
[(cosϕ sin θ∂x + cos θ∂z)ũz]− r̃V

]
, (10)

iωr̃H` = −
1

τσ`
r̃H` + ρV 2

p ((cos θ cosϕ∂x − sin θ∂z)ũx)
1

τσ`

(
1− τε`

τσ`

)
, (11)

iωr̃V ` = −
1

τσ`
r̃V ` + ρV 2

p ((cosϕ sin θ∂x + cos θ∂z)ũz)
1

τσ`

(
1− τε`

τσ`

)
.1 ≤ ` ≤ L, (12)

From equations 11 and 12, the memory variable in the frequency domain can be calculated
as a function of the particle velocity and the relaxation time

r̃H` = ρV 2
p ((cos θ cosϕ∂x − sin θ∂z)ũx)

τ−1
σ (1− τετ−1

σ )

(iω + τ−1
σ )

, (13)

r̃V ` = ρV 2
p ((cosϕ sin θ∂x + cos θ∂z)ũz)

τ−1
σ (1− τετ−1

σ )

(iω + τ−1
σ )

). (14)

By substituting the equations 13 and 14 into equations 9 and 10 respectively, the memory
variable equations are removed. Therefore, a set of first-order differential equations in-
cludes now only four equations, resulting in less computational time. The new first-order
viscoacoustic wave equation in the frequency domain is

iωσ̃H = ρV 2
P

[
(1 + 2ε)

[(
τε
τσ
−

1
τσ
( τε
τσ
− 1)

iω + 1
τσ

)
[(cos θ cosϕ∂x − sin θ∂z)ũx]

]
+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)ũz]

]
, (15)

iωσ̃V = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ũx]

+

(
τε
τσ
−

1
τσ
( τε
τσ
− 1)

iω + 1
τσ

)
[(cosϕ sin θ∂x + cos θ∂z)ũz]

]
, (16)
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After some algebra manipulation, the viscoacoustic TTI wave equations in the frequency
domain are simplified as

iωσ̃H = ρV 2
P

[
(1 + 2ε)

[(
(ω2τετσ + 1)

ω2τ 2σ + 1
+ i

(ωτε − ωτσ)
ω2τ 2σ + 1

)
[(cos θ cosϕ∂x − sin θ∂z)ũx]

]
+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)ũz]

]
, (17)

iωσ̃V = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ũx]

+

(
(ω2τετσ + 1)

ω2τ 2σ + 1
+ i

(ωτε − ωτσ)
ω2τ 2σ + 1

)
[(cosϕ sin θ∂x + cos θ∂z)ũz]

]
, (18)

Equations 17 and 18 are transformed back to the time domain to derive the viscoacous-
tic TTI wave equation that maintains the approximate constant-Q attenuation and disper-
sion behaviours during wave propagation. To apply these equations on RTM, we write the
viscoacoustic wave equation in TTI media for the forward and backward extrapolation as:

∂tσH = ρV 2
P [(1 + 2ε) [(a1(2/A) + ia2(2/AQ)) [(cos θ cosϕ∂x − sin θ∂z)ux]]

+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)uz]

]
, (19)

∂tσV = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ux]

+ (a1(2/A) + ia2(2/AQ)) [(cosϕ sin θ∂x + cos θ∂z)uz]] , (20)

where A =
√

1 + 1/Q2 − 1/Q)2 + 1. 2/A and 2/AQ are dispersion-dominated and
amplitude-attenuation-dominated operators, respectively. The coefficients a1 and a2 are
constants equal to 1. The sign of these coefficients is important for the forward and back-
ward extrapolation. Note that when Q�, the dispersion-dominated operator goes to 1 and
the amplitude-loss-dominated operator disappears, i.e., the viscoacoustic case approaches
to the acoustic case. To show the decoupled velocity dispersion and amplitude loss, we
consider a homogeneous model with a background velocity of 2500 m/s and quality fac-
tor Q=10. The source is located in the center of the model, and the source signature is a
zero-phase Ricker wavelet with a central frequency of 25 Hz. The grid spacing in the x
and z directions is 4 m, and the Thomsen anisotropic parameters ε = 0.2 and δ = 0.05.
Figure 1 corresponds to an axis of symmetry tilting at 45. The compressional P wavefront
is approximately ellipsoidal, and the shear wave artifacts generated in an elliptic media is
suppressed at the source by design a small smoothly tapered circular region with ε = δ
around the source. However, to avoid the numerical computation instability in TTI media,
we applying the viscoacoustic equation and simply setting the shear wave velocity along
the tilted symmetry axis to zero (pure P wave equation). The snapshot of the acoustic refer-
ence wavefield is shown in Figure 1a. The dashed yellow line indicates the wavefront. The
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a) b)

c) d)

FIG. 1: 2D wavefield snapshots using (a) acoustic, (b) amplitude loss, (c) dispersive, and
(d) viscoacoustic in a TTI medium with ε = 0.2, δ = 0.05, and θ = 45.

amplitude-loss simulation (imaginary part of equations 19 and 20) is shown in figure 1b.
Compared with the acoustic case, the amplitude is attenuated, but the phases are the same.
In figure 1c the phase dispersion simulation (real part of equations 19 and 20) is shown.
The phase has a shift, and the amplitude is similar to the acoustic case. In figure 1d the vis-
coacoustic wavefield using equation 1-5 is displayed. The reduced amplitude and shifted
phase are visible compared with the acoustic reference wavefield. Thus, using the viscoa-
coustic wave equation in TTI media with decoupling attenuation and dispersion terms, we
can compensate the amplitude loss and dispersion in images separately, which is explained
in the RTM section.

VISCOACOUSTIC REVERSE TIME PROPAGATION

Reverse-time migration reconstructs the receiver wavefield by backwards propagating
the measured seismic data at the receiver. The amplitude of the back propagation waves
in attenuation media is reduced, and it needs to be amplified. The positive sign of the
a2 constant refers to the amplitude attenuation in extrapolating forward propagation. By
reversing the sign of the amplitude attenuation term (a2 = −1) in the viscoacoustic TTI
wave equation, we can compensate for the amplitude loss. Also, the viscoacoustic wave
equation contains the dispersion term that affects the phase during wave propagation, but
the sign of this term (a1 = 1) is not changed.
For the backward modelling, the viscoacoustic TTI wave equations with compensation of
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attenuation effects (a1 = 1 and a2 = −1) can be written as

∂tσH = ρV 2
P [(1 + 2ε) [(a1(2/A)− ia2(2/AQ)) [(cos θ cosϕ∂x − sin θ∂z)ux]]

+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)uz]

]
, (21)

∂tσV = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ux]

+ (a1(2/A)− ia2(2/AQ)) [(cosϕ sin θ∂x + cos θ∂z)uz]] , (22)

Using the phase dispersion part, the phase only viscoacoustic TTI wave equation will
be

∂tσH = ρV 2
P [(1 + 2ε) [(a1(2/A)) [(cos θ cosϕ∂x − sin θ∂z)ux]]

+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)uz]

]
, (23)

∂tσV = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ux]

+ (a1(2/A)) [(cosϕ sin θ∂x + cos θ∂z)uz]] , (24)

To compensate for the amplitude attenuation effect only, we keep the imaginary part of
equation 19 and 20, so that the viscoacoustic TTI wave equation for back-propagation will
be

∂tσH = ρV 2
P [(1 + 2ε) [(−a2(2/AQ)) [(cos θ cosϕ∂x − sin θ∂z)ux]]

+
√
1 + 2δ [(cosϕ sin θ∂x + cos θ∂z)uz]

]
, (25)

∂tσV = ρV 2
P

[√
1 + 2δ [(cos θ cosϕ∂x − sin θ∂z)ux]

+ (−a2(2/AQ)) [(cosϕ sin θ∂x + cos θ∂z)uz]] , (26)

Combining equations 1, 2, 19 and 20 (with t replaced by −t), we obtain the viscoa-
coustic backward modeling equation, i.e., the solution of ux,z(X,−t) , X refer to x and z
for 2D, is the time-reversed version of the solution ux,z(X, t) of the forward propagation
equations 8, 9, and 20. For the backward modeling, we solve equation 21 to extrapolate
the receiver wavefield by flipping in time the measured data R(Xr, t) at the receivers with
a boundary condition.

2D SYNTHETIC EXAMPLES

We examine the new approach of Q-RTM using a layered model and then apply this
approach to the complex Marmousi model using a time-space domain FD method. Fig-
ures 2a and 2b show the true and migration velocity models with a Q anomaly for the
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a) b)

c) d)

FIG. 2: (a) True velocity model, (b) True Q model, (c) migration velocity model, and (d)
migration Q model.

a) b)

FIG. 3: Transversely isotropic layered velocity model. a) Thomsen’s ε model, b) Thom-
sen’s δ model.
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FIG. 4: Reference snapshots of the source wavefield, the receiver wavefield, and the RTM
image at 0.5, 0.62, and 0.79 s. The acoustic data in TTI media are extrapolated for the
receiver wavefield using the acoustic RTM.

layered model. The model grid dimensions are 401×501, the grid size is 4 m×4 m, and the
Thomsen anisotropic parameters are shown ion figures 3. The sampling interval is 0.8 ms,
and the recording length is 1.5 s. As the source we use a zero-phase Ricker wavelet with
a center frequency of 25 Hz. Perfectly matched layer (PML) absorbing boundary condi-
tions are used to attenuate the reflections from an artificial boundary. The front wave of the
P wave presents an elliptical shape because of the anisotropic effect. There is a problem
due to shear wave that generated by the source, which for the acoustic and viscoacoustic
medium have to regarded as artifacts(Alkhalifah, 2000; Grechka et al., 2004).

The shear wave artifacts generated in an elliptic media (ε 6= δ), and they can suppress at
the source by design a small smoothly tapered circular region with ε = δ around the source.
To show the application of Q-RTM approach, we present the snapshots of the source wave-
field, the receiver wavefield, and RTM images in attenuation media and compare with the
reference one. Figure 4 shows the reference snapshot results using acoustic RTM at differ-
ent time step. To obtain the RTM image the acoustic data are extrapolated for the receiver
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FIG. 5: Snapshots of the source wavefield, the receiver wavefield, and the RTM image at
0.5, 0.62, and 0.79 s. The viscoacoustic data are extrapolated for the receiver wavefield
using acoustic RTM.
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FIG. 6: Snapshots of the source wavefield, the receiver wavefield, and the RTM image at
0.5, 0.62, and 0.79 s. The viscoacoustic data are extrapolated for the receiver wavefield
using Q-RTM to compensate for the amplitude during extrapolating.
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a)

b)

c)

FIG. 7: Comparison among from (a) acoustic RTM (reference), (b) acoustic RTM with
viscoacoustic data, and (c) Q-RTM with viscoacoustic data. The compensated case agree
with the reference image very well.
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wavefields. The anisotropy affects the wavefront of the P wave. Figure 5 shows the acous-
tic RTM using the viscoacoustic data. There are two main attenuation effects, reduced
amplitude and shifted phase due to velocity dispersion. The receiver wavefield shows re-
duced wave amplitude while the source wavefield is comparable to the reference result.
Hence, the RTM images at different time step show poor illumination. To improve image
resolution, we test the new approach of Q-RTM on viscoacoustic data. Figure 6 shows
the snapshots of source wavefield, receiver wavefield, and RTM image. Results show the
amplitude of the source wavefield and receiver wavefield are amplified while the receiver
wavefield is still weaker than the reference result because of incomplete compensation.
However, the Q-RTM images are compensated and comparable to the reference images.
To demonstrate the effect of attenuation, we apply viscoacoustic RTM to the viscoacoustic
data set to generate the RTM image shown in Figure 7 and compare with the acoustic RTM
image as the reference. The velocity and Q models are first smoothed from true models
and then used for migration. In acoustic RTM with viscoacoustic data (noncompensated
RTM) (Figure 7b), there is one reflector in the RTM-image with amplitude loss. The high-
attenuation anomaly causes a reduction in wave amplitude, so migrating the attenuated data
produces the weak reflectors. To solve the poor illumination problem of viscoacoustic RTM
images, we apply for attenuation compensation during wave propagation using the new Q-
RTM approach (equations 19 and 20). The compensated image using Q-RTM approach is
shown in Figure 7c. The result indicates improved RTM image with recovered amplitudes
of the reflectors at the dip depths compared with the reference image in Figure 7a. After
compensation, the events have corrected amplitudes and corrected phases.

In the second example, we consider the more complex Marmousi model to verify the
accuracy of the Q-RTM approach in TTI media. Figure 8 shows the actual and migration
velocity models and the corresponding true and migration Q models. In the Q model, there
are some regions that attenuate waves travelling through them and creating reflections with
weaker amplitudes for the deeper layers, especially beneath strongly attenuating layers.
Two anisotropy distributions are shown in Figure 9. By setting the tilt angle to be 45 de-
grees, the synthetic viscoacoustic TTI dataset is produced using equations 19 and 20. To
avoid shear wave artifacts, we set a small smoothly tapered circular region with ε = δ
around the source (Duveneck et al., 2008). The model grid dimensions are 281×701, and
the grid size is 10 m×10 m. Perfectly matched layer (PML) absorbing boundary conditions
are used to attenuate the reflections from the model boundaries. We set 50 sources posi-
tioned at a depth of 30 m and a zero-phase Ricker wavelet with a centre frequency of 15 Hz.
The sampling interval rate is 0.4 ms, and the recording length is 3 s. To remove the effect of
S-wave that generated at the source the source is located in the isotropic part of the model,
i.e., ε = δ. The RTM images represented in Figure 10, which includes the acoustic RTM
without attenuation (reference case), the acoustic RTM with viscoacoustic data (noncom-
pensated case), and the compensated RTM using Q-RTM approach. The reference RTM
image (Figure 10a) has similar artifacts and amplitudes in the shallow layers compared
with the noncompensated RTM image, but the non-compensated case in Figure 10b has
very weak amplitudes in the deeper layers especially beneath the layers with strong atten-
uation. The attenuation affects the amplitudes and the phases of the propagating waves,
effects which are not taken into account in the acoustic RTM image. The Q-compensated
RTM image is shown in Figure 10c. The result indicates improved RTM image with re-
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a)

b)

c)

d)

FIG. 8: The Marmousi models: (a) true velocity model, (b) true Q model, (c) migration
velocity model, and (d) migration model.
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a) b)

FIG. 9: Transversely isotropic Marmousi velocity model. a) Thomsen’s ε model, b) Thom-
sen’s δ model

covered amplitudes of the reflectors at the dip depths compared with the reference image
in Figure 10a. To verify that the reflectors migrated to the correct position we compare the
image traces at the same offset. Right panels of Figure 10 show comparisons traces from
the RTM images at offset 4.2 km. The non-compensated trace (solid red line) have a shifted
phase and reduced amplitude. The compensated traces (solid green line) is more correct
in amplitude and phase compared to the reference one (solid blue line). Both of these ex-
amples show that the proposed Q-RTM approach in TTI media is useful to compensate the
amplitude loss and shifted phase due to attenuation effects.

CONCLUSIONS

We have presented a viscoacoustic RTM imaging algorithm in tilted TI media based
on the time-domain constant-Q wave propagation involving a series of standard linear solid
mechanisms that can mitigate the attenuation and dispersion effects in the migrated images.
The wave equations have been extended from isotropic media to tilted TI media. The am-
plitude loss and phase dispersion in the source and receivers wavefields can be recovered by
applying compensation operators on the measured receiver wavefield. The phase dispersion
and amplitude attenuation operators in Q-RTM approach are separated, and the compen-
sation operators are constructed by reversing the sign of the attenuation operator without
changing the sign of the dispersion operator. It is clear that TTI Q-RTM can produce a
more accurate image than isotropic RTM, especially in areas with anisotropy, attenuation
and strong variations of dip angle. Numerical tests on synthetic data illustrate that this Q-
RTM approach in TTI media can improve the image resolution, particularly beneath areas
with strong attenuation.
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a)

b)

c)

FIG. 10: Comparison among from (a) acoustic RTM (reference), (b) acoustic RTM with
viscoacoustic data, and (c) Q-RTM with viscoacoustic data. The right panels show the
reference trace (blue line), non-compensated trace (red line), and compensated trace (green
line)at the horizontal 4.2 km. The compensated case agree with the reference image very
well.
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