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ABSTRACT

Reflection-based waveform inversion is a set of strategies for updating the long-wavelength
part of a velocity model through the use of reflection data in a full waveform inversion ap-
proach. Two analytical formulations of this type are proposed in this paper. A migration-
based version uses a migration as the model of seismic reflectivity and directly calculates
the effect of velocity model changes on this reflectivity. This approach is computationally
intensive, and may estimate reflectivity poorly. The second approach considers only verti-
cal shifts to a fixed reflectivity model. This reduces cost and allows for a better initial reflec-
tivity model, but has the drawback of simplifying the effects of velocity model changes on
the reflectivity. Neither approach uses demigration, instead using a long-wavelength model
parameterization to ensure that reflectivities are not directly modified in the inversion.

INTRODUCTION

Full waveform inversion is a strategy for recovering a model of the subsurface which
best describes the full information content of a seismic experiment (Tarantola, 1984). This
approach has been highly successful in a number of applications, but often relies on mea-
surements of diving waves to recover long wavelength features of the model (Virieux and
Operto, 2009). Below the penetration depth of the diving waves, FWI often struggles to
recover these longer wavelengths. While reflection events do carry information about the
long wavelength structure of the subsurface, they are much more strongly influenced by
the short wavelength structure of the earth. Because of this dominance of shorter wave-
lengths, conventional FWI struggles to recover accurate long wavelength models deep in
the subsurface. A number of approaches have been developed to make better use seismic
reflections in a waveform inversion approach. These are generally referred to as reflection-
based waveform inversion (RWI)(Xu et al., 2012).

The strategies used in RWI usually hinge on using moveout information to recover long
wavelengths. While a velocity-depth ambiguity exists when considering one dimensional
seismic data, in two or three dimensions the depth of seismic reflectors is constrained. If
the long wavelength velocity model is incorrect, a reflection will not be able to match both
the short and long offset arrival times simultaneously. In RWI, these errors are used to
drive the long wavelengths of the model toward the correct values. If the reflectors are
not modified, changing only the long wavelengths of the model will generally not improve
the data fitting, as the reflectors will not be in the correct position in the modified model.
In order to successfully implement RWI then, two conditions need to be fulfilled. Firstly,
the changes applied in an RWI update should not introduce new reflectors, only alter the
background velocity. This is usually achieved by using a demigration process for forward
modeling the data in the inversion and treating the migration velocity model as the inverted
property (Almuteri, 2017). Secondly, the long wavelength changes in the model should
cause the reflectors in the model to change position. This is usually achieved by treating
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the reflectors in one of two ways: either the reflectivity is a fixed model which is shifted
based on the background velocity (Xu et al., 2012), or it is the result of a migration, which
changes as the migration velocity is changed in the inversion (Brossier et al., 2015).

In this report, we provide analytic formulations for two different RWI strategies. One
approach models reflectivity by migration at each iteration, the second applies spatial shifts
to a starting reflectivity model. In both strategies we prevent the creation of reflectors
through variable restriction. This allows for finite difference forward modeling without
demigration assumptions.

THEORY

The FWI problem is typically posed as an optimization problem, wherein a scalar ob-
jective function measuring the mismatch between measured and numerically modeled data
is minimized with respect to the model considered (Virieux and Operto, 2009). In the RWI
strategies we suggest here, the objective function is defined as the square of the L, norm of
the difference between measured and modeled data, given by

1
5llBu— DI, (1)

where D is the measured data, v is the modeled pressure field, and R is a matrix repre-
senting the receiver sampling. The modeled data are calculated by frequency domain finite
differences, with the forward modeling satisfying the equation

S(m+m,)u = f, (2)

where f is a source term, S is the Helmoltz operator containing the finite difference ap-
proximation of the frequency domain wave equation, m is the model considered in the
inversion, and m, is a model of short-scale features. In effect, the forward modeling uses
a subsurface model which is the sum of a long wavelength model m that is the goal of the
inversion and a short wavelength model m,.. The two strategies discussed differ in how m,,
is calculated.

RWI with iteratively recalculated reflectivity

In the first approach, the short scale model m, is calculated using one iteration of the
LSM-type approach described in Keating and Innanen (2018a), and is given by

m, = —aPZwQU*)\, 3)

Tg,w

where alpha is a chosen scalar, P is a matrix applying a high-pass filter, x, are the source
locations, w is angular frequency, u,,tg is the pressure field satisfying

S(m7 wi)vi = f7 4)
and \,,ig is the pressure field satisfying

S(m,w;)'\; = RT(Rv; — D). (5)
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The short scale model m,. is closely related to a migrated image, it is calculated in equation
3 by frequency domain multiplication of a forward propagated wavefield v with a back
propagated A, followed by application of a high-pass filter. With this choice for m,., the
inversion problem considered becomes

) 1
mninz §HRu—D||§, (6)

Ts,w
subject to the constraints in equations 2, 4 and 5.

To calculate the gradient of the objective function for this problem, we consider the
adjoint state method (e.g Metivier et al., 2013). The Lagrangian of this problem is

1
L = S||Ru = DI+ < S(m+m,,w,)u - f.a >
—i—; < S(m,w;)v; — f,b; > (7

‘|‘Z < S(m,wj)T)\j — RT(R'Uj — D),Cj >,

J

where a, b;, and c¢; are Lagrange multipliers, and <, > denotes an inner product. If this
function is evaluated at @, o, and \, defined as the u, v and Amig Which satisfy equations 2,
4 and 5, it is equal to the objective in equation 1. The gradient of the objective function is
then equal to

dp(wp)  dL(w,0, Apig) _ du OL  dv* OL = dX OL

dm dm _%%_‘— dm Ov* +%ﬁ
+ < OnS(m + mp,wy)u, a >

+Z < O S(m,w;) vl by > ()

+Z < 8S(m,Wj)TXj,Cj >,

J

where L = L(u, v, A;n-g). Because the derivatives of the pressure fields relative to the model
parameters are computationally expensive to calculate, we choose the Lagrange multipliers
such that the first three terms on the right-hand side are zero. For the first term,

oL g T

F:R (Ru— D)+ S(m+m,,w,)'a =0, )

U

so a can be solved for by back-propagating the data residuals. Setting the second and third
terms to zero yields the equations

S(m,wj)e; = awi(P < O, S(m + my, wy,)t, a >)v; (10)

and
S(m,w;) by = RTRe; + aw? (P < O, S(m + my,wp)i, a >)\;. (11)

CREWES Research Report — Volume 30 (2018) 3



Keating, Li and Innanen

Equations 9, 10, and 11 can be solved for the Lagrange multipliers by performing wave
propagations. When the Lagrange multipliers satisfy these equations, the gradient reduces
to

dg(wn)
dm

=< OpS(m + m,,w,)u, a >
+Z < 0pS(m,w;) vk, b; > (12)

+Z < 8S(m,wj)TXj,cj >

J

This approach faces several challenges for the RWI problem. To begin with, it is dif-
ficult to choose a value for the short-scale amplitude term «. The o which gives the best
result with the starting model will typically not be the best « for the true long-scale model.
A poor choice of o may lead to false or local minima in the optimization precedure, harm-
ing the inversion result. Another concern may be the accuracy of the short scale model
estimate, which is estimated with just one iteration of a LSM-type FWI approach at each
FWI iteration.

Another concern is the large computational cost of gradient evaluation. A conven-
tional, frequency domain FWI requires two forward modeling calculations per frequency
per source. Because the Helmholtz matrix does not change for different sources, the for-
ward modeling for all source terms at a given frequency can be calculated simultaneously
at relatively small cost. This means that gradient calculation for the FWI problem has a
cost of approximately two wave propagations per frequency. The RWI approach discussed
here requires the calculation of one wave propagation per frequency per source for the cal-
culations of each u, v, A, and a. It requires a further cost of one wave propagation per
frequency per frequency per source for the calculation of the b and ¢ terms. This causes the
total cost of this approach to be substantially larger than that of the FWI problem.

RWI with spatial shifting of reflectivity

The high cost of gradient calculation in the approach discussed above motivates a less
expensive strategy. A large cost in that approach was the calculation of the reflectivity
model at each iteration. A much less expensive approach is to modify a starting reflectivity
model at each iteration based on the long-scale model changes. In an approach based on
vertical shifts, the short-scale model could be defined as

mr(z) = mro(zl(zvm))7 (13)

where z represents the depth, and 2’ is the equivalent depth in the initial short-scale model
m.,. Several functions could be considered for 2’ but we consider here

7 = / dtvg(7), (14)
0
where v, represents the initial model,
“d
Tmazx = / © X (15)
o v(m)
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and v(m) is the P-wave velocity given by the current model. The derivative of the objective
function in equation 1 with this definition for m, can again be calculated by the adjoint
state method. The optimization problem becomes

. 1
min » _ ||Ru = DIf3, (16)

Ts,w

subject to the constraints in equations 2, and 13. The derivative of this function can be

expressed as
d¢ _ do dm,

dm  dm, dm’

(17)

The derivative d‘i‘f can be shown to be equivalent to the conventional FWI gradient. The

other term can be expressed as

dm, dm,, dz' dv,

dm - dz' dv, dm’

(18)

dmr0
dz'

can be calculated directly from m,,,, and ‘Cllim" is dependent on the model parameterization
used, discussed in the next section. The remaining term can be reduced to

where v,, describes the P-wave velocity of the model over a range Az,. The value of

/ / _
dz dt dz _ 00(Tmae) H (Timaz T(Azn))7 (19)

Qo don dt 2

where H is the Heaviside step function.

This approach has several advantages. The gradient calculation requires no extra for-
ward modeling problems to be solved, so the computational cost of this algorithm is much
less than that of the approach discussed in the previous section. Because the starting short-
scale model m,, 1s fixed instead of being recalculated at each iteration, it can be estimated
more accurately at the start of the inversion. As in the previous approach, however, the
amplitude of the short scale model may be difficult to choose at the start of the inversion.
The major drawback of this approach is the simple relation assumed between the long and
short-scale models. In reality, the relation between the two is more complicated than a
simple vertical shift, and this may prove an obstacle to the approach in complex geologic
environments.

Parameterization

Demigration is often used as the forward modeling process in RWI (Almuteri, 2017).
This process involves assumptions about the reflectivities and frequencies considered, and
is not strictly based on a finite-difference approximation of wave propagation. The RWI
strategy proposed here does not use a demigration approach. Instead of using a reflectivity
estimate, the short scale model m,. is assumed to introduce most of the observed reflections.
In RWI, the goal is to recover the long-scale features of the model. The gradient of the ob-
jective function in equation 1 with respect to m will typically include short-wavelength
features if conventional FWI variables are used. For reflection data, these features will
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FIG. 1: Left: Real part of frequency domain radiation pattern. Center: Amplitude of
frequency domain radiation pattern. Right: Variables considered in inversion. The red
stars mark the source location. Changes in variables like this introduce limited reflections,
allowing for the RWI strategy to be used without demigration. This should also allow for
the natural treatment of diving waves simultaneously.

dominate over the desired long-wavelength features. To prevent this problem, we consider
an alternate parameterization of the problem, in which the model m consists of the co-
efficients of long wavelength perturbations of v% If the variable a describes the squared
slowness at each point of the finite difference grid,

a= Pm, (20

where P is a matrix whose columns are the long wavelength variables. The FWI problem
with variables of this type is described at length in Keating and Innanen (2018a,c,b). An
example of the variables used is shown in figure 1 (left). This choice of variable is made
because long-scale changes in the model have the capacity to change the travel times of the
modeled reflections, but do not have the capacity to introduce reflctions. This behaviour can
be observed by studying radiation patterns, the derivative of the wave field with respect to
a model variable. A numerically calculated radiation pattern for a 15 Hz source is shown in
figure 1. The red star in this figure denotes a source position. Significant changes in can be
observed at transmissive scattering angles, but there is almost no change at reflection-type
scattering angles, making these parameters ideal for the RWI problem.

Another support for this variable choice can be observed in the form of the gradient. As
shown by Keating and Innanen (2018b), the derivative of the objective function with respect
to model variables of this type, expressed in the finite difference grid space defining a, is
given by

g= PPy, Q1)
where g, is the gradient with respect to the variables a. This expression shows that the
gradient with respect to m is effectively equal to applying the low-pass filter defined by
PPT to the conventional FWI gradient g,. Consequently, any short-scale features in g, are

effectively suppressed in g through appropriate choice of P. This allows for the derivative
of the long-scale model to be calculated without the use of demigration.

CONCLUSIONS

Reflection-based waveform inversion is a set of waveform inversion strategies that use
measured seismic reflections to recover information about the long wavelength structure of
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the subsurface
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