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ABSTRACT

The imaging of seismic reflectors can be iteratively improved by using a least squares
migration (LSM) approach. Full waveform inversion (FWI) is usually posed as an inverse
problem for the long to intermediate scale features of a seismic model, with little contri-
bution from reflectors. Here, we show that full waveform inversion can be formulated to
perform a similar role to LSM by choosing an appropriate choice of model parameteriza-
tion. This approach specifically recovers the small wavelength features of the subsurface
and does not require a complicated objective function or data filtering. Numerical tests
show that this approach can be more effective than conventional FWI in recovering seismic
reflector information.

INTRODUCTION

Full waveform inversion (FWI) is a strategy for estimating the seismic properties of
the subsurface by finding the subsurface model which best reproduces the full information
content of a measured seismic experiment (Tarantola, 1984; Lailly, 1983; Virieux and Op-
erto, 2009). This approach has been very successful in creating high resolution velocity
models, and is rapidly developing as an inversion approach for anisotropic, viscoelastic,
and poroelastic subsurface models (e.g. Tarantola, 1986; Hicks and Pratt, 2001; Choi et al.,
2008; Alkhalifah and Plessix, 2014).

In FWI, the inversion is usually formulated as an optimization problem, where the mini-
mum of an objective function is sought (Virieux and Operto, 2009). This objective function
is a measure of the discrepancy between the observed data and the data predicted from the
current model of the subsurface. The minimization is performed with respect to a set of
variables parameterizing the subsurface model. While the first objective function proposed
was the L2 norm of the difference between these data sets (Tarantola, 1984; Lailly, 1983),
the inversion result can be improved in many problems by considering different choices for
the objective function. For instance, when considering inversion with a poor initial model,
objective functions measuring phase differences (Fichtner et al., 2008), mass transport dis-
tances (Engquist and Froese, 2014), or filter coefficients (Warner and Guasch, 2016) often
improve the inversion result. Other authors have found that emphasizing the contribution of
reflection data in the objective function can improve the long-wavelength inversion results
in deep parts of the model (Yang and Sava, 2011; Xu et al., 2012).

Another key consideration in the FWI optimization problem is the set of variables used
to parameterize the model. Finite difference or finite element techniques are usually used
to simulate wavefield propagation in FWI, and typically the variables defined in the inver-
sion are the variables used in the forward modeling, specifying elastic properties at points
in a grid. Unlike the objective function, this part of the optimization problem is rarely
changed, except when considering different physical properties in the inversion. Studies
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which have experimented with different parameterizations have often been motivated by
efficiency concerns (Bunks et al., 1995; Debens et al., 2015; Datta and Sen, 2016; Keat-
ing and Innanen, 2017). However, parameterization choice may also have the capacity to
change the behaviour of the optimization problem, and this is the key concept explored in
this report. In particular, we investigate the possibility of using an FWI approach to recover
an accurate reflectivity model.

Seismic migration is a procedure for estimating a seismic reflectivity model of the sub-
surface (Claerbout, 1971). Reflectivity is not an inherent property of materials, but instead
depends on property contrasts and wave characteristics, such as frequency and angle of in-
cidence. Migration typically involves the assumption that reflections are caused by abrupt
spatial changes in the subsurface properties that occur on much smaller scales than all seis-
mic wavelengths, while the velocity model used to simulate wave propagation varies on
much longer scales than seismic wavelengths, and thus doesn’t introduce reflections. This
assumption allows for a frequency-independent reflectivity. An angle-independent reflec-
tivity is also usually assumed. While migration is highly effective, it often struggles to
recover an accurate model in regions poorly illuminated by the seismic experiment.

To help mitigate this problem, least-squares migration (LSM) has been proposed (Nemeth
et al., 1999). In LSM, migration is reformulated as an inversion problem in which reflectiv-
ity is recovered. The problem becomes an attempt to find the reflectivity model which best
reproduces the data. Often, this reflectivity is assumed to be angle and frequency indepen-
dent. This limits the effectiveness of LSM, as the measured data can often have significant
angle and frequency dependence in reflectivity. In this report, we investigate the treatment
of least-squares migration as an FWI problem with a specific choice of model parameter-
ization. This may allow us to avoid some of the assumptions in LSM and so improve the
inversion results.

THEORY

Appropriate parameterization for a LSM-type problem

The goal of the FWI procedure is to find an accurate approximation of chosen elas-
tic properties of the subsurface. The best subsurface model is assumed to be that which
most accurately reproduces the measured data in numerical modeling of the corresponding
seismic experiment. At its core, the FWI approach is an optimization problem. Finding
the best model is equivalent to finding the minimum of an objective function quantifying
the data mismatch with respect to a set of variables describing the subsurface. This set of
variables will be referred to as the inversion model. Under the constant density acoustic
approximation, a simple choice for the inversion model is the set of variables ai,j , where
for any point (xn, zm) defined in the subsurface

1

v(xn, zm)2
= an,m, (1)

and v represents P-wave velocity. In effect, each variable a is a coefficient for a corre-
sponding basis function, where the basis consists of delta functions, as in figure 1. The
squared slowness parameterization is often chosen for its simplicity and good convergence
properties (Anagaw, 2014).
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FIG. 1. Example basis function for the conventional FWI approach.

In this report we define the inversion model m such that it relates to a by the equation

a = Pm, (2)

where P is a matrix defining a set of basis functions, and the vector a contains the elements
ai,j for each subsurface location considered. In the conventional FWI approach, P is an
identity matrix, andm = a. In this case the basis vectors in the columns of P , pn, are delta-
like functions (Figure 1) with strong capacity to change both transmissive and reflective
wave behaviour. By altering the matrix P , we will try to formulate a LSM-type problem of
reflectivity recovery, where long wavelength model features are neglected in the inversion.

Ideally, a LSM-type FWI will alter the data only by changing reflectors in the model,
and not by affecting the traveltimes of seismic waves. The effect of altering a model vari-
able on the wavefield can be investigated by studying the radiation pattern of the variable,
the derivative of a modeled wavefield with respect to the variable. If a variable generates
a radiation pattern with negligible amplitudes at scattering angles corresponding to trans-
mission, it has little impact on transmitted waves. Numerical radiation patterns can be cal-
culated by taking the difference between modeled wavefields in a reference and perturbed
medium. The radiation pattern associated with a velocity perturbation like the basis func-
tion in figure 1 is shown in figure 2. The source location is indicated by a red star, and the
result is shown with a frequency domain wavefield at 15Hz with constant-density acoustic
finite difference wave propagation. For this type of model perturbation, the scattered wave-
field is equal amplitude in all directions. This means that changing variables like these
affects both waves transmitting through and reflecting from this part of the model. These
variables are consequently ill-suited for recovering reflectivity if transmission related errors
also exist in the data residuals.

Seismic reflectivity is caused by abrupt changes in the seismic properties of the sub-
surface. Traveltimes are instead determined by a sum of wave slownesses along a path
from source to receiver. This suggests that primarily reflective variables will have sharp
spatial changes, but no low frequency component. An appropriate basis function for in-
troducing reflections with minimal impact on transmission, and its corresponding radiation
pattern are shown in figures 3 and 4. This variable is a Laplacian operator instead of a delta
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FIG. 2. Real part (top) and amplitude (bottom) of the frequency domain numerical radiation pattern
of the variable in figure 1. The red star marks the source location used.
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FIG. 3. Example basis function for the LSM-type FWI approach.

spike, it has sharp changes in velocity, but no zero frequency component. The amplitude
of the wave back-scattered toward the source in figure 4 is still large, but there is almost
no contribution to the radiation pattern from the forward-scattered wave. Perturbations in
variables like this one primarily act to introduce reflections and have limited impact on
travel times. This type of variable may be well suited for a LSM-type optimization. For the
LSM-type FWI approach used here, P is defined such that each column pn is a spatially
shifted version of the basis shown in figure 3.

Gradient calculation

In the FWI problem it is usually necessary to take the gradient of the objective function
with respect to the model m. The gradient with respect to m can be determined from the
conventional FWI gradient with respect to a by using the relation

dφ

dm
=
dφ

da

da

dm
, (3)

where φ is the objective function. Using the relation between m and a defined in equation
2, this simplifies to

dφ

dm
= g = P Tga, (4)

where ga is the gradient of the objective function with respect to the variables a, dφ
da

. Com-
bining equations 2 and 4, the model changes in the model space of a described by the
gradient g are PP Tga. As each column of P is only different from the others by a spatial
shift, the matrix PP T describes a convolution process. In effect, g can be obtained by ap-
plying a filter to ga. If the chosen variables behave as intended, this filter will remove long
wavelength contributions and preserve short wavelength, reflectivity type characteristics.
An appropriate choice of variable can guarantee that the gradient does not include long
wavelength features that are undesirable in a LSM-type problem. This also means that one
iteration of this procedure is simply one iteration of steepest-descent FWI followed by a
high-pass filtering, a process highly similar to reverse time migration.
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FIG. 4. Real part (top) and amplitude (bottom) of the frequency domain numerical radiation pattern
of the variable in figure 3. The red star marks the source location used.
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Regularization

While the gradient can be made safe from any long wavelength contributions, many
optimization strategies make use of second derivative information to determine the update
direction in an FWI procedure. These strategies may not be similarly immune. It is possible
that basis functions which produce a good gradient may still result in a long-wavelength
update when considering second-derivative information. Additionally, it may be possible
that a combination of short wavelength steepest descent updates combine to create a long
wavelength change in the model. Behaviour of this kind will be problematic in a LSM-
type problem, and should be prevented. This could be achieved by choosing a set of basis
functions that cannot be combined to create a low frequency change. Such an approach
might restrict the inversion too severely, however. An alternate approach would be to pe-
nalize or constrain the recovered models in such a way that long wavelength changes are
not produced. This is the approach explored here.

A regularization term penalizing long wavelength changes is given by

φR =
1

2
||msmooth||22, (5)

where msmooth is calculated by applying a spatial smoothing to m. By introducing this
term into the objctive function, reflectivity trends on scales larger than the smoothing can
be penalized in the inversion. This should help to prevent longth wavelength changes from
being introduced by the LSM-type FWI optimization procedure.

Objective function

While the radiation pattern of the LSM-type variable (figure 4) has limited energy in the
forward scattering part, it is not zero in this region. This means that changes in the LSM-
type model variables have some capacity to change transmission behaviour. Transmission
behaviour is important for relatively high energy events in measured data, such as the direct
wave and diving waves. The large amplitudes of these events causes them to be heavily
weighted in an objective function based on the L2 measure of data misfit. Artifacts may
then be introduced in an LSM-type approach corresponding to these events despite the
relatively small capacity of the variables considered to influence them. In order to avoid
such artifacts, an L1 objective function (Brossier et al., 2009) is used here, given by

φ = φR +
N∑
n=1

√
(Dn − (Ru)n)(Dn − (Ru)n)∗, (6)

where D is the measured data, u is the frequency domain forward-modeled wavefield, and
R is a matrix which applies the receiver sampling. This objective puts less emphasis on
large amplitudes than the L2 norm, helping to prevent artifacts caused by non-reflection
events.

NUMERICAL EXAMPLES

To investigate the approach discussed above, a series of numerical tests were performed.
A surface acquisition was simulated, with 99 sources and 49 receivers evenly spaced along
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FIG. 5. True velocity model for the first test.

the top of the model. Wavefield modeling was done in the frequency domain, with 20
frequencies between 5 Hz and 20 Hz used. No noise was added to the synthetic data. Finite
difference modeling was used to generate the data and to perform the inversion. A grid
spacing of ten meters was used for the modeling. The optimization used in the inversions
considered all frequencies simultaneously. To minimize the objective function the BFGS
optimization approach was used (Nocedal and Wright, 1999).

In the first test a toy model was imaged, with a known, constant background velocity.
The model used is shown in figure 5. The result after a single iteration of LSM-type FWI
is shown in figure 6, and that after five iterations is shown in figure 7. These results match
our expectations; the single iteration result, which should be similar to an RTM image,
correctly identifies the strongest reflectors in the model, but fails to image well in areas of
poor illumination, such as near the edges of the model. The reflectivity model is also ringy
due to the imperfect acquisition geometry. After five iterations (figure 7), the recovered
model is substantially less ringy, and the edges of the model are much better imaged. This
result is encouraging, but is little different from what a conventional FWI approach might
produce (figure 8). A more significant test of the approach would be a scenario in which
FWI does not do a good job of recovering an accurate reflectivity model.

If the initial velocity model is incorrect on long wavelength scales, FWI will generally
act to improve it. This behaviour is desirable when trying to obtain an improved velocity
model, but may be prioritized over the accurate recovery of reflectors. In this environment
LSM-type FWI may be able to achieve better imaging than conventional FWI. To inves-
tigate this possibility, we consider numerical simulations on the model shown in figure 9.
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FIG. 6. Velocity change after one iteration of LSM-type FWI with a good starting model.

FIG. 7. Velocity change after five iterations of LSM-type FWI with a good starting model.
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FIG. 8. Velocity change after five iterations of FWI with a good starting model.

While this model has a background velocity which changes with depth, the initial velocity
used in the inversion is still a constant value. In consequence, FWI will work to improve
the long wavelength velocity features of the model. The result after five iterations of FWI
is shown in figure, (10). In this case, the shallow part of the velocity model has been sig-
nificantly improved, but the underlying reflector has been poorly imaged in comparison to
the result with the good starting velocity (figure 8). By contrast, the LSM-type approach
continues to recover just the short scale behaviour of the model (figure 11). This difference
has important implications. Note that the LSM-type approach was able to obtain a good
estimate of the poorly illuminated areas, while the FWI result wasn’t. This suggests that
by removing the ability of the inversion to reproduce the long wavelength behaviour of the
model, the short wavelength characteristics can be more accurately recovered at the same
cost.

DISCUSSION

The numerical examples investigated here indicate that the LSM-type approach ex-
plored offers some potential to recover the short wavelength structure of the subsurface.
This is achieved without restricting the data allowed into the model and without exotic
modifications to the FWI objective function. By appropriate choice of the variables used
in defining the subsurface model, the inverse problem was restricted to describing only
reflection type data.

This approach has several significant challenges, however, which may limit its useful-
ness in its current form. One major obstacle is the imperfect choice of variables. The

10 CREWES Research Report — Volume 30 (2018)



LSM-type FWI

FIG. 9. True velocity model for the second test.

FIG. 10. Velocity change after five iterations of FWI with a poor starting model.
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FIG. 11. Velocity change after five iterations of LSM-type FWI with a poor starting model.

inversion only neglects the transmissive effects of the model because the variables chosen
have no capacity to change them. When the variables only imperfectly represent reflectors,
however, the reflectivity estimate could be impacted by low frequency behaviours as well.
If these artifacts are large enough they could prevent the model from effectively updating.
This issue may be solvable with a more appropriate choice of variables, but is a significant
concern.

In its current form, this strategy suffers from stability issues. When large numbers
of iterations are performed, extreme velocity values are produced by the inversion. This
instability does not occur when the background velocity is known, and could indicate that
more work needs to be done to remove background related artifacts.

The wave propagation modeled here used the constant density acoustic approximation,
but this was not necessary for the concepts explored. Extending these results to elastic or
anelastic models is a topic of future research.

CONCLUSIONS

An inverse problem for the seismic reflectivity of the subsurface can be formulated as
FWI with a specific choice of parameterization. This approach does not require exotic
reformulations of the objective function, or significant data filtering. In this report, an
L1 objective function and smoothness-penalizing regularization were used together with
the reflectivity oriented parameterization to reduce unwanted artifacts. Numerical tests
showed that when long wavelength errors exist in the velocity model, the LSM-type FWI
has the potential to outperform traditional FWI in imaging reflectors. While the constant-
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density acoustic approximation was employed here, LSM-type FWI could conceptually be
applied to more complex models of wave propagation (e.g. elastic). Numerical artifacts
and instability are concerns when large numbers of iterations are performed, this is a topic
of ongoing research.
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