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ABSTRACT

Distributed acoustic sensing (DAS) has garnered significant interest as a seismic acqui-
sition technology, especially in borehole deployments. Using non-invasive optical fibres,
DAS can be placed in producing wells, abandoned wells, and horizontal wells during hy-
draulic fracture treatments. This powerful property of DAS fibres allows for the dual pur-
posing of wells without shutting in production and offers a unique opportunity to densely
sample the long wavelength transmission portion of the wavefield. A lingering question
is how to best utilize DAS data to estimate reservoir properties. Elastic full waveform
inversion is a robust means of estimating elastic subsurface parameters, but it is conven-
tionally formulated to incorporate particle velocity data supplied by geophones. In contrast
to geophones in conventional surveys which provide measurements of three orthogonal
components of particle velocity, DAS supplies a single measurement of tangential strain
or strain rate along the fibre. We reformulate the conventional least-squares FWI objective
function to incorporate the strain data supplied by distributed acoustic sensing fibres. The
method developed in this paper can incorporate strain data from straight and shaped DAS
fibres, and because it utilizes the conventional FWI formulation is capable of inverting
displacement data from geophones and DAS fibre simultaneously. We explore the effect
that shaping DAS fibres has on the quality of parameter estimations from a toy model by
comparing inversion results from a straight DAS fibre in a horizontal well and three helical
fibres with varying wind rates. A simultaneous inversion of reflection geophone data and
DAS data from horizontal well is examined and provides enhanced parameter estimations
over either dataset alone. The simultaneous inversion is then tested on a portion of the
Marmousi 2 model.

INTRODUCTION

Pioneered by Tarantola (1984, 1986, 1988) full waveform inversion (FWI) is a pow-
erful method that provides an estimate of subsurface properties by iteratively minimizing
the discrepancies between observed data from a seismic survey and modeled data from a
postulated model. Most of the initial success in FWI focused on single parameter optimiza-
tion in which acoustic wave physics and constant density were assumed. Wave propagation
in the earth is generally more complex and requires multiple independent parameters for
modeling. Multiparameter inversion frameworks allow for simultaneous and independent
updates of multiple parameters. A form of multiparameter inversion, elastic full waveform
inversion assumes an isotropic elastic medium whose characterization requires three inde-
pendent elastic parameters. Elastic FWI seeks estimates of these three parameters, com-
monly p-wave velocity, s-wave velocity, and the density. While a theory for elastic FWI
has existed for decades (Tarantola, 1986), its successful application to land datasets was
hampered by the computational overhead and nonlinearity of multiparameter inversion.
However, in recent years, strategies to reduce this nonlinearity in the objective function
have lead to more success.
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Conventionally, FWI minimizes the L2 norm of the sample-by-sample difference be-
tween the observed and modeled data. If the observed and modeled data are out of phase
by more than one half cycle then this type of objective function will erroneously update
the model to match adjacent cycles of the observed and modeled data, a situation known as
cycle skipping (Virieux and Operto, 2009). Many methods exist for the mitigation of cycle
skipping, most of which focus on expanding the convexity of the objective function over
some region (van Leeuwen and Mulder, 2010; Luo and Sava, 2011; Warner and Guasch,
2016; Metivier et al., 2018). However, the most sucessful methods for mitigating cycle
skipping involve using data with low frequency information and ray paths containing long
wavelength information about the model. Using the least-squares misfit function, cycle
skipping can be avoided by starting the inversion at a sufficiently low frequency such that
the modeled and observed data are within a half cycle. As the inversion progresses and
the modeled data begins to agree with the observed data, the frequency band expands to
improve the resolution of the inversion. Originally proposed by Bunks (1995) this method
is known as the multiscale approach. For the multiscale approach to be effective the data
must contain significant amplitude at a sufficiently low frequency so that the observed and
modeled data are within a half cycle at that frequency. Typical geophones used for seismic
acquisition have a natural corner frequency of approximately 10 Hz resulting in data that
is rich in high frequency but poor in very low frequency content. Using the approach of
Bunks (1995), success has been achieved on data from a model simulating land seismic
data over a complex target, however, frequencies of 1.7 Hz were required to mitigate cy-
cle skipping (Brossier et al., 2009). Frequencies this low may not always be available in
geophone data. In order for inversions of this kind to be successful we require a means of
recording these low frequencies.

Recent advances have created a novel technology for seismic data acquisition known
as distributed acoustic sensing (DAS). Based on coherent, phase sensitive, optical time do-
main reflectometry (ϕ-OTDR) (Posey Jr. et al., 2000; Masoudi et al., 2013), DAS utilizes
phase changes in Rayleigh backscattered light traversing an optical fibre to sense seismic
strain. Since its adoption in the early part of this decade, distributed acoustic sensing has
experienced rapid growth and development finding applications in microseismic monitor-
ing (Karam et al., 2013; Karrenbach et al., 2018), vertical seismic profiling for reservoir
monitoring (Mestayer et al., 2012; Daley et al., 2013; Mateeva et al., 2014), near surface
monitoring (Dou et al., 2017), and time-lapse monitoring (Dou et al., 2016). From an FWI
perspective, DAS technologies open the door for some interesting opportunities. Most en-
couraging, is the well documented ability of distributed acoustic sensing to provide very
low frequency information, down to millihertz in some cases (Jin and Roy, 2017; Becker
et al., 2018; Becker and Coleman, 2019). The access to low frequency data that DAS pro-
vides, could help bring elastic FWI to the reservoir. Additionally, DAS provides a low cost,
noninvasive, alternative to geophones allowing them to be readily deployed in the borehole.
In this configuration, they provide access to dense sampling of transmitted ray paths further
increases the long wavelength information provided by DAS.

Due to the relatively high rigidity of the silica glass used in optical fibres, DAS is only
sensitive to the components of the wavefield producing strain along the tangential direction
of the fibre core (Kuvshinov, 2015). Distributed acoustic sensing is inherently a single
component recording system, commonly described in the literature as having a broadside
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insensitivity to strain (Kuvshinov, 2015). The sensitivity of the fibre can be improved by
increasing the complexity of the fibre geometry so that is samples many tangent directions,
a common choice of geometry being a helical fibre. In practice, to improve the signal
to noise ratio the strain from many scatters over a spatial distance known as the gauge
length is averaged (Dou et al., 2017). This means that a shaped fibre does not supply point
measurements of the strain in a given tangential direction, but rather supplies the average
of the strain in many tangential directions over the gauge length.

Three component geophones and DAS can be viewed as supplying complementary
datasets. Distributed acoustic sensing holds the potential to supply the low frequency con-
tent that geophones cannot, whereas geophones provided a richer multicomponent dataset.
Using the two together provides a more complete dataset that may improve inversions for
subsurface parameters. In order to realize this goal a framework for the inversion of the
strain data supplied by DAS must developed. Early work in applying FWI to DAS was
shown by Podgornova et al. (2017) and Egorov et al. (2018) with encouraging results.
Most applications of FWI to DAS data have only considered a straight fibre in a VSP, and
therefore only consider the z-component of displacement in the modeling of the DAS strain
data. While this approach is correct for straight DAS fibre deployed in perfectly vertical
wells it is not a flexible approach for deviated wells, horizontal wells, or shaped fibres.
The goal of this paper is to develop a flexible means of computing the FWI gradient for
DAS data, and exploring the role of shaped fibres in multiparameter inversion. Addition-
ally, the complementary aspects of DAS and 3C geophones will be explored from an FWI
perspective.

FORWARD MODELING OF DAS DATA

The forward modeling of distributed acoustic sensing data begins with a geometric
model that at a minimum contains the position vector for the fibre axis, arc-length along
the fibre, and the fibre tangent direction (Innanen, 2017; Eaid et al., 2018). The most
important result of the geometric model is the transformation from an orthonormal basis
in the field coordinates to an orthonormal basis in fibre coordinates containing the tangent
(t), normal (n), and binormal (b) unit vectors of the fibre (Pressley, 2012). It is along the
tangent direction (t) that the optical fibre senses the seismic strain.

The definition of an orthonormal basis for the fibre coordinates allows for the compu-
tation of the strain sensed by the fibre. To begin, the frequency domain 2D inhomogeneous
isotropic elastic wave equation is solved using the system of equations presented by Pratt
(1990),
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where ux = ux(x, z, ω) and uz(x, z, ω) are the frequency domain particle displacements
in the x and z directions, sx and sz are the horizontal and vertical source components,
ω is the angular frequency, λ = λ(x, z) and µ = µ(x, z) are the Lamé parameters, and
ρ = ρ(x, z) is the density. Solving equations (1a) and (1b) using the finite difference
methods of Pratt (1990) provides the frequency domain wavefields for the horizontal and
vertical displacements. The strain fields can then computed using the definition of the strain
tensor,

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2)

which in the 2D case can be solved using finite differences for ϵxx, ϵxz, and ϵzz. Care-
ful analysis of equations (1a) and (1b), shows that the computation of the displacements
involves strain terms like those contained in equation (2). The strain in equation (2) is
therefore computed in an equivalent manner to the displacements in equations (1a) and
(1b).

FIG. 1. Grid used for wavefield propagation and strain field computation. The blue circles represent
grid points at which values of the displacement field are computed. The red square indicates the
position of the receiver location used for strain field computation.

In practice, for greater stability, the strain fields in equation (2) are solved on a grid
that is spatially staggered in x and z from the grid used for the displacement propagation
as shown in figure 1.The blue circles are at grid points on the displacement grid and con-
tain values of the horizontal and vertical components of displacement. Let ux(xn, zn) and
uz(xn, zn) be the values of the x and z displacements in the northwest cell of figure 1, the
strain values on the spatially staggered grid are then given by,

ϵxx =
1

2

(
ux(xn+1, zn+1)− ux(xn, zn+1)

∆x
+
ux(xn+1, zn)− ux(xn, zn)

∆x

)
(3a)
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ϵzz =
1

2

(
uz(xn+1, zn+1)− uz(xn+1, zn)

∆z
+
uz(xn, zn+1)− uz(xn, zn)

∆z

)
(3b)
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Fibre sensitivity

Once the strain field is computed it must be transformed from the coordinate system
used in modeling into the orthonormal basis of the fibre through projection of the strain
field onto the fibre. The projection of the strain tensor can be computed using the formula
for the rotation of a rank 2 tensor (Krebes, 2019)

ϵtnb = PϵxyzPT (4)

where ϵxyz is the strain tensor in Cartesian coordinates, ϵtnb is the strain tensor in the coor-
dinates of the fibre, and P is the rotation matrix taking the strain tensor from the modeling
coordinate system to the fibre coordinate system. The matrix P is the standard rotation
matrix, formed through the projection of the Cartesian unit vectors (1̂, 2̂, 3̂) onto the fibre
unit vectors (̂t, n̂, b̂) through the dot product,

P =


t̂ · 1̂ t̂ · 2̂ t̂ · 3̂

n̂ · 1̂ n̂ · 2̂ n̂ · 3̂

b̂ · 1̂ b̂ · 2̂ b̂ · 3̂

 . (5)

Distributed acoustic sensing is only sensitive to the tangential (ϵtt) component of the
fibre strain tensor (ϵtnb) in equation (4). Expanding equation (4) with the definition of the
rotation matrix in equation (5) and extracting the ϵtt component yields the strain sensed by
an arbitrary fibre geometry,

ϵtt = (̂t·1̂)2ϵxx+2(̂t·1̂)(̂t·2̂)ϵxy+2(̂t·1̂)(̂t·3̂)ϵxz+(̂t·2̂)2ϵyy+(̂t·2̂)(̂t·3̂)ϵyz+(̂t·3̂)2ϵzz. (6)

In 2D wavefield simulations the components of strain with particle motion in the y-direction
are zero, reducing equation (6) to,
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ϵtt = (̂t · 1̂)2ϵxx + 2(̂t · 1̂)(̂t · 3̂)ϵxz + (̂t · 3̂)2ϵzz. (7)

Equation (7) shows that the strain sensed by the fibre is a weighted sum of the Cartesian
components of the wavefield. The weights are geometry dependent and express the sensi-
tivity of a given fibre geometry to each component of the Cartesian strain field.

Straight fibres in vertical wells are the most commonly deployed fibre geometry. In this
case the tangent direction of the fibre is constant over the length of the fibre and only has a
vertical component, resulting in a fibre geometry that is only sensitive to the vertical (ϵzz)
component of strain. Clearly, fibres of this type are incapable of measuring a potentially
large portion of the wavefield. Research has focused on shaping fibres in more complex
geometric shapes to increase the quantity of sampled tangents, providing a more complete
subset of the wavefield (Innanen, 2017; Ning and Sava, 2018).

The Gauge Length

In practice DAS systems utilize an unbalanced Mach-Zehnder interferometer (MZI) to
delay the signal scattered from one portion of the fibre (Masoudi et al., 2013). To achieve
this, one arm of the interferometer is made longer than the other so that the interference
pattern is composed of the light backscattered from two separated portions of the fibre. The
separation of the two scattering centers is directly related to the length of the delay fibre
in the MZI, and is known as the gauge length. All of the strain perturbations in the fibre
between the two scattering centers affect the phase of the light scattered from the second
scattering center. The interference pattern is therefore in a sense a function of the average
strain between the two scattering centers, giving the average strain over the gauge length.
While gauge lengths have been reported down to one meter (Daley et al., 2013), commonly
gauge lengths on the order of ten meters are used to enhance the signal-to-noise ratio.

Fibre Geometries

Fibres are attractive for their ability to be deployed in wells without disrupting the pro-
duction from the well. Inversions could benefit from additional information provided from
downhole fibre as opposed to surface geophones alone. In this paper we consider various
fibre geometries deployed in horizontal wells and investigate the effect of the geometry on
the inversion result.

Fibres are often shaped to enhance the sensitivity of the fibre to a larger portion of
the wavefield. Most of the commonly proposed fibre shapes are wrapped around a central
core in well-defined geometric shapes. Let dℓ be a small increment of fibre, ĉ∥ be the
direction tangent to the core, and ĉ⊥ be a direction normal to the fibre core. We assume that
the geometric shape chosen for the fibre is periodic, and that the gauge length (L) is long
enough to include an integer number of periods. The gauge length averaged strain sensed
by the fibre is then,
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ϵtt(ℓ) =

∫ L

0

(
(t̂(ℓ) · ĉ∥)2ϵc∥c∥ + 2(t̂(ℓ) · ĉ∥)(t̂(ℓ) · ĉ⊥)ϵc∥c⊥ + (t̂(ℓ) · ĉ⊥)2ϵc⊥c⊥

)
dℓ. (8)

Assuming the wavelength is much larger than the gauge length, which is common at
seismic wavelengths, then the wavefield is approximately constant within the gauge length.
The projection of the shear strain in this coordinate system, ϵc∥c⊥ , onto the fibre tangent,
t̂(ℓ), is given by the second term of equation (8). Let this term be defined as,

ψ = 2ϵc∥c⊥

∫ L

0

c′∥(ℓ)c
′
⊥(ℓ)dℓ. (9)

where c′∥(ℓ) is the projection of the core tangent onto the fibre, and c′⊥(ℓ) is the projection
of the core normal onto the fibre. Suppose the chosen fibre is symmetric in the sense that
for each segment L−

p to L+
p on which c′⊥(L

−
p ) = c′⊥(L

+
p ) = c′⊥(0) there exists a δp such that

L−
p + δp > 0, L+

p + δp < Lp, c′∥(ℓ+ δp) = c′∥(ℓ), and c′⊥(ℓ+ δp) = −c′⊥(ℓ), independent of
the choice of coordinate system. In words, this definition of symmetry states that for every
point on the fibre, ℓ, there exists a point, ℓ + δp, such that the direction of the projection
of the fibre core onto the fibre tangent is preserved, and the projection of the normal to the
fibre core onto the fibre tangnet points in the opposite direction. Using this definition of
symmetry in the integral of equation (9) results in

ψ = 2ϵc∥c⊥
∑
p

∫ L+
p

L−
p

(
c′∥(ℓ)c

′
⊥(ℓ) + c′∥(ℓ+ δp)c

′
⊥(ℓ+ δp)

)
dℓ (10)

which reduces to,

ψ = 2ϵc∥c⊥
∑
p

∫ L+
p

L−
p

c′∥(ℓ)

(
c′⊥(ℓ)− c′⊥(ℓ)

)
dℓ = 0. (11)

Periodic fibres with this type of symmetry and gauge lengths much longer than the pe-
riod are therefore insensitive to the ϵc∥c⊥ component of strain. In the 2D experiments we
consider, fibres of this type are insensitive to the ϵxz component of strain. This definition
encompasses many commonly proposed fibre geometries including helical wound fibres,
and chirped helical fibres in which the wind rate is allowed to ramp up and down over the
period. Any fibre of this type is fully characterized by its ratio of sensitivty to ϵxx and ϵzz,
given by the ratio of (̂t · 1̂)2 to (̂t · 3̂)2. Helical fibres can characterize any fibre of this
type because any ratio (̂t · 1̂)2 : (̂t · 3̂)2 can be formed through careful consideration of the
helix wind rate. In this paper the gauge length is implemented by taking the average of the
sensitivity to ϵxx and ϵzz over each grid cell.
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FIG. 2. One period of a helical fibre in red wrapped around a central axis. The cylinder can be
unwrapped into a rectangle with dimensions of the circumference (2πr) and the cylinder height.
The angle γ is referred to as the lead angle and describes the rate of the helix wind. Modified from
Kuvshinov (2015).

Figure 2 shows the basic geometry for a helical wrapped fibre, where h is the distance
advanced by the helix in one revolution, r is the radius of the helix, and the lead angle γ is
given by γ = tan(h/2πr). Any periodic fibre that is symmetric according to the definition
above can be characterized by a helical fibre with the appropriate sensitivity to ϵxx and ϵzz,
controlled by the lead angle. This study compares the parameter estimations from helical
DAS fibres of varying lead angles and a straight DAS fibre in horizontal wells. Varying the
lead angle produces different sensitivity ratios, well a straight fibre in a horizontal well has
only ϵxx sensitivity. Combining equations (7) and (8), a fibre whose core is oriented in the
x-direction, has a ratio of ϵxx and ϵzz sensitivities given by

ϵxx
ϵzz

=

∫ L

0
(̂t(ℓ) · 1̂)2dℓ∫ L

0
(̂t(ℓ) · 3̂)2dℓ

. (12)

For a helical fibre with lead angle γ whose central axis is in the x-direction (see figure 2),
the expression in equation (12) becomes,

∫ L

0
(̂t(ℓ) · 1̂)2dℓ∫ L

0
(̂t(ℓ) · 3̂)2dℓ

=
sin2 γ

cos2 γ ⟨cos2 θ⟩
= 2

sin2 γ

cos2 γ
(13)

where ⟨cos2 θ⟩ = 1/2 is the expectation of the z-component of the tangent direction as the
helix winds about the central axis.

Fibres with a lead angle of γ = arctan (1/
√
2), or approximately 35 degrees, represent a

special case of a fibre equally sensitive to ϵxx and ϵzz. Careful review of equation (7) shows
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that when this criteria is met the strain response is given by,

ϵtt = ϵxx + ϵzz = ∇ · u. (14)

While fibres of this type benefit from data sufficiency, equation (14) shows they are shear
wave blind. Fibres of this type are wave mode discriminatory, sensing only the compres-
sional component of wave motion. Later we explore the effect of shear blindness on the
inversion results of vp, vs, and ρ. Figure 3 (a) shows a fibre of this type, while figures 3
(c)-(d) show the sensitivity in blue and the gauge length averaged sensitivity in red.

We also consider three additional fibre geometries, a straight fibre, a 4:1 fibre, and a 1:4
fibre, where the ratios indicate the relative sensitivity of a fibre in ϵxx : ϵzz. Straight fibres
are commonly deployed, and it is important here to understand their efficacy in inversion.
While straight fibres are data deficient, sensing only one of the three 2D components of
strain, they benefit from having absolute certainty about what portion of the wavefield
they measured. Horizontal straight fibres only record ϵxx, and will only back propagate
ϵxx components in FWI. Based on the survey geometry, the equal sensitivity helical fibre
discussed above might record more ϵzz but will back propagate equal weightings of ϵxx and
ϵzz potentially creating a mismatch between forward and back propagated wavefields. The
next geometry we consider is a fibre with a gentle wind such that its response is dominated
by ϵxx. For this we choose a fibre with a 54.7 degree degree wind so that it is four times
more sensitive to ϵxx than it is to ϵzz. This case provides insight into how the inversion
is effected by adding additional data sensitivity. We also consider the opposite case of a
fibre with a lead angle of 19.5 degrees being four times more sensitive to ϵzz than it is to
ϵxx. For horizontal fibres, assuming small offsets, the majority of the wave propagation is
in the vertical direction, and the 19.5 degree fibre should have the greatest sensitivity to
the propagating wavefield. Later we explore how the choice of wrapping angles effects the
successful estimation elastic subsurface parameters.

It is important to note that every fibre meeting the symmetry criteria above is insensi-
tive to shear strain (ϵxz) components, restricting the data they can record. Realistic fibre
geometries can be constructed that violate this definition of symmetry allowing for en-
hanced strain sensitivity, an example of which is shown in figure 4. This fibre consists of
segments of four and half winds of a 19.25 degree helical fibre connected by a half wind of
59.5 degree helical winds. This geometry is specifically designed to violate the definition
of symmetry above and produces a fibre that has a 2:1:2 sensitivity ratio of ϵxx : ϵxz : ϵzz.
This example shows that asymmetric fibres can be designed to have significant sensitivity
to ϵxz, increasing the portion of the wavefield that is recorded. Geometries of this type will
also be tested for their efficacy in FWI for parameter estimation.

Scattering Radiation Patterns

Radiation patterns provide information about the wavefields scattered by a model pa-
rameter through the partial derivative of the wavefield with respect to that model parameter.
The effect perturbing a model parameter has on the wavefield can be examined through
analysis of scattering radiation patterns, computed from the partial derivative wavefields
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FIG. 3. Effect of gauge length on the senstivites from 35 degree helix. (a) Helical fibre in black.
Sensitivites of the helical in blue and the average sensitivity over the gauge length in red to the ϵxx
component of the strain field (b), ϵxz (c), and ϵzz (d).

FIG. 4. Fibre senstivities for an asymmetric fibre contstucted from segments of a 19.25 degree
helix connected by half periods of a 59.5 degree helix. Fibre geometry (a), sensitivites of the helical
in blue and the average sensitivity over the gauge length in red to the ϵxx component of the strain
field (b), ϵxz (c), and ϵzz (d).

with respect to that model parameter. They are an important tool for understanding the
effect perturbing a certain model parameter has on the scattered wavefield at varying scat-
tering angles. Numerically they are computed by taking the difference of the wavefields in
a reference medium and a perturbed medium.

Scattering radiation patterns provide insight into the resolution of model parameters
at different scattering angles. Large amplitudes at a given scattering angle indicate the
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model parameter has a large effect on the wavefield at that angle, while small amplitudes
indicate the model parameter does not affect the wavefield for those scattering angles. If
two model parameters produce similar scattering patterns over the same range of scattering
angles, then the two parameters have a similar effect on scattered wavefields and are hard
to distinguish from each other at those angles. This results in an FWI phenomenon known
as cross-talk in which data residuals caused by one parameter are attributed with another.
When this occurs a parameter update can occur in the incorrect variable at locations of
perturbations in the parameter causing the scattering.

Figure 5 shows scattering radiation patterns of displacement wavefields for perturba-
tions in vp, vs, and ρ. The top row shows the z-component of the radiation patterns for vp,
vs and ρ in (a)-(c) while the bottom row shows the x-component of the radiation patterns
for vp, vs and ρ in (d)-(f). These radiation patterns show a snapshot of the displacement
wavefield scattering from a model perturbation at the location of the green dot at a given
time. In the radiation patterns for the z-component of displacement we can imagine a 1C,
vertically oriented, geophone located at each grid point. The scattering radiation patterns
then shows the displacement each of these geophones would sense. Similarly, the scatter-
ing radiation pattern for the x-displacement shows the response of 1C geophones oriented
horizontally.

FIG. 5. Displacement scattering radiation patterns for vp, vs and ρ. Panels (a)-(c) show the z-
component scattering radiation patterns for perturbations in vp, vs, and ρ respectively. Panels (d)-(f)
show the x-component scattering radiation patterns for perturbations in vp, vs, and ρ respectively.
The red star indicates the source location for wavefield modeling while the green circle indicates
the location of the model perturbation.

Strain radiation patterns for vp, vs and ρ can be computed by applying the spatial deriva-
tives in equation (2) to the displacement radiation patterns in figure 5. The strain radiation
patterns calculated in this way are shown in figure 6. The top row shows the ϵxx radia-
tion patterns for vp, vs, and ρ in panels (a)-(c). Panels (d)-(f) show the same for the ϵxz
components, and panels (h)-(i) for the ϵzz components.

We can also construct fibre strain radiation patterns to understand the sensitivity of a
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given fibre geometry to the strain radiation patterns. To interpret the fibre strain radiation
patterns we begin by imagining a sheet that is placed over the the radiation patterns in
figure 6. Every point in this sheet contains a small segment of straight or helical DAS fibre
with a wind that produces the correct ratio of sensitivity to ϵxx and ϵzz. The fibre strain
radiation pattern at each point then shows the response of a fibre segment at that point to
a wavefield generated by a perturbation in the model parameter of interest. They provide
insight into the sensitivity of a given fibre geometry to each model parameter at varying
scattering angles and are an important tool in understanding the inversion results in the
numerical examples below.

Using equation (7), the fibre strain radiation patterns for a given model parameter can
be calculated through the weighted sum of the ϵxx, ϵxz, and ϵzz strain radiation patterns for
that model parameter, where the weights are dependent on the fibre geometry. For example,
the vp fibre strain radiation pattern for a fibre with equal sensitivity to ϵxx and ϵzz can be
computed by summing the radiation patterns in figure 6(a) and 6(g) with equal weights on
both panels. The fibre strain radiation patterns for straight, 4:1, 1:1, and 1:4 fibres in a
horizontal well are shown in figure 7 (a)-(c), (d)-(f), (g)-(i), and (j)-(l) respectively, where
the ratios indicate the relative fibre sensitivity to ϵxx and ϵzz.

Figure 7 highlights some important characteristics of the scattering patterns for the four
symmetric fibre geometries selected in this paper. Figure 7 (g)-(i) represents the scattering
radiation patterns for a fibre that has equal sensitivity to ϵxx and ϵzz. Earlier in the discus-
sion we indicated this fibre geometry was only sensitive to the dilatational component of
the wavefield, and was therefore blind to shear waves. Examining the radiation patterns
in figure 7 (g)-(i) confirms this, as the scattering patterns for all three variables lack shear
modes. Additionally, the vp and vs scattering patterns are similar over a large range of
scattering angles, indicating they may cross talk into each other. Figure 7 (a)-(c) shows
the radiation patterns for a straight fibre while figure 7 (d)-(f) shows the radiation patterns
for 4:1 fibre. Comparing these panels indicates that adding a small amount of information
about ϵzz by gently winding the fibre does not significantly alter the radiation patterns, ex-
cept at near normal reflection and transmission angles. This tells us that we might expect
a straight fibre to produce comparable inversion results to a gently wound fibre. The radi-
ation patterns for the 1:4 fibre in figure 7 (j)-(l) show that a tightly wound fibre provides
significantly different information than the straight or 4:1 fibres. First it is more sensitive
to vertical components of p-wave scattering, indicating that it might perform better than
the other fibres when inverting data with the majority of wave motion in the vertical direc-
tion. Second, figure 7(j) and (k) indicate a strong decoupling between p-wave and s-wave
scattering in vp and vs due to the lack of similarity in panels (j) and (k). Fibres of this type
may be more immune to vp and vs cross talk than the other fibre geometries discussed here.
All of the fibres presented here lack significant sensitivity to density perturbations at trans-
mission scattering angles indicating that fibres deployed in horizontal wells may struggle
with inverting for density. Although fibres are not commonly deployed for use in reflection
seismology, the radiation patterns in figure 7 indicate tightly wound fibres would have the
greatest sensitivity to wavefields at reflection scattering angles.

We will also consider the asymmetric fibre geometry shown in figure 4 (a), which has a
sensitivity ratio of 2ϵxx : ϵxz : 2ϵzz. The radiation patterns for a fibre of this type are shown
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FIG. 6. Strain scattering radiation patterns for vp, vs and ρ. Panels (a)-(c) show the ϵxx-component
scattering radiation patterns for perturbations in vp, vs, and ρ respectively. Panels (d)-(f) show the
ϵxz-component scattering radiation patterns for perturbations in vp, vs, and ρ respectively. Panels
(g)-(i) show the ϵzz-component scattering radiation patterns for perturbations in vp, vs, and ρ re-
spectively. The red star indicates the source location for wavefield modeling while the green circle
indicates the location of the model perturbation.

in figure 8.

These radiation patterns reveal important properties of asymmetric fibres. In this case the
sign on the ϵxz sensitivity is negative, producing an asymmetry and preferred direction in
the radiation patterns. Additionally, fibres of this type provide near-complete sensitivity of
both p and s-wave modes as shown by the large amplitudes at nearly all scattering angles
for p-wave energy in (a) and s-wave energy in (b). This fibre has better sensitivity to density
perturbations over the helical fibres. The impact of this one the inversion quality will be
assessed with examples later in the paper.

FULL WAVEFORM INVERSION

We begin the discussion of full waveform inversion by reviewing conventional least
squares FWI of 3C geophone data, as it is closely tied to our method. The objective function
in least squares FWI is formulated to minimize the L2 norm of the difference between
observed data, and modeled data from a predicted model,
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FIG. 7. Strain scattering radiation patterns for vp, vs and ρ. Panels (a)-(c) show the scattering
radiation patterns for a straight fibre, for perturbations in vp, vs, and ρ respectively. Panels (d)-(f)
show the scattering radiation patterns for a 4:1 fibre, for perturbations in vp, vs, and ρ respectively.
Panels (g)-(i) show the scattering radiation patterns for a 1:1 fibre, for perturbations in vp, vs, and
ρ respectively. Panels (j)-(l) show the scattering radiation patterns for a 1:4 fibre, for perturbations
in vp, vs, and ρ respectively. The red star indicates the source location for wavefield modeling while
the green circle indicates the location of the model perturbation.

ϕ =
1

2
||Ru − d||22 (15)

where R is a receiver matrix, which in the case of geophones samples the wavefield at the
receiver positions, u is the modeled wavefield from equations (1a) and (1b), and d is the
observed data. Equation (15) can be written as a constrained optimization problem in the
following way:
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FIG. 8. Strain scattering radiation patterns for vp, vs and ρ in (a)-(c) respectively for a 2ϵxx : ϵxz : 2ϵzz
asymmetric fibre. The red star indicates the source location for wavefield modeling while the green
circle indicates the location of the model perturbation.

min
m

1

2
||Ru − d||22 subject to Su = f (16)

where S is the wave equation operator, m are the model parameters, and f is the source
function. The model parameters used in this paper are the p-wave square slowness (1/v2p),
s-wave squared slowness (1/v2s ), and density (ρ). Equation (16) can be solved using the
method of Lagrange multipliers with the Lagrangian,

L(m, u, λ) = 1

2
||Ru − d||22 +

⟨
S(m)u − f, λ

⟩
(17)

where < . . . > represents the inner product and λ is the Lagrange multiplier hereafter
referred to as the adjoint variable.

The Lagrangian in equation (17) can be solved for the gradient of the objective function
ϕ with respect to the model parameters m using the adjoint state method. Metivier et al.
(2013) give the gradient from the adjoint state method as,

∂ϕ

∂m
=

⟨
∂S
∂m

u, λ
⟩

(18)

where the adjoint variable λ can be computed from,

S†λ = RT(Ru − d). (19)

The gradient in equation (18) can be seen to be formed by the correlation of a forward
propagated wavefield and a back propagated adjoint wavefield.

Newton optimization methods find descent directions by solving the system of equa-
tions,
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H∆m = −g (20)

where g is the gradient of equation (18), ∆m is the model update, and H is the Hessian
matrix of second derivatives. For typical seismic waveform inversion, the Hessian is too
large to directly compute. Instead approximations to the Hessian are computed, sacrificing
per iteration accuracy, but improving efficiency. In this paper the truncated Gauss-Newton
method (TGN) is used to solve for the model updates, where the Hessian is iteratively
approximated in an inner loop using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm. A detailed discussion of TGN, and BFGS algorithms are provided in (Nocedal and
Wright, 2006). Let Bk be the approximate Hessian computed from the BFGS algorithm, αk

the step length at the current iteration found through line search algorithms, and ∇ϕ(mk)
the gradient at the current iteration. The model update is then given by,

mk+1 = mk + αkB−1
k ∇ϕ(mk). (21)

Inverting fibre strain data

Inverting DAS data requires an objective function that is a measure of the residual be-
tween modeled and observed fibre strain data. In the development of FWI for 3C geophone
data the matrix R samples the displacement wavefield at the locations of the receivers.
However, it is important to note that no assumptions were made about the form of R in the
previous discussion. If an appropriate form of this matrix can be developed, such that the
matrix-vector product Ru produces the fibre strain data, then equation (15) is a viable ob-
jective function for DAS data. In this paper, R computes the Cartesian strain at the receiver
locations using equations (3a)-(3c), projects these strains onto the fibre coordinates using
equation (7), and invokes the gauge length by computing the average of the sensitivities in
equation (7) over the length of fibre in the cell containing the receiver. Each point on the
receiver grid which contains a receiver results in one data measurement of the fibre strain,
as shown in figure 9. In the field, DAS fibres have dense trace spacing, on the order of less
than one meter. At each trace, a measure of the average strain over a gauge length centered
on that trace is recorded. To match field conditions our implementation should more cor-
rectly compute the strain data in each cell through the average of many measurements with
overlap between adjacent cells. However, if the wavefield is approximately constant over
a grid cell, which is true at seismic frequencies, then these extra measurements are highly
redundant, so we neglect their consideration here. Figure 9 shows a representation of the
matrix equation required to compute the fibre strain,

The receiver matrix also appears in the gradient through the back propagated adjoint
wavefield. The correct formulation of matrix R to compute fibre strain data, then also pro-
vides the gradient required for FWI of DAS fibre data. The BFGS algorithm uses the dif-
ference between gradients at the current and previous iteration to approximate the Hessian,
and therefore also relies on the receiver matrix. Through proper handling of the receiver
matrix to compute fibre strain data from the displacement wavefield, standard algorithms
for FWI with 3C geophones can be used to invert DAS data. The approach presented
here is readily adaptable to many FWI algorithms already in service. A powerful result
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FIG. 9. Structural representation of the matrix equations required for the computation of fibre data.

of this method is that a receiver matrix may also be developed to simultaneously invert
both geophone and fibre data. A portion of R can be formulated to sample the displace-
ment wavefield at the locations of the geophones, while another portion can be formulated
to compute the fibre strain at the locations of the DAS fibre, as shown in figure 10. For-
mulations of this kind can be used to explore complementary geometries. Geophones are
better suited for reflection experiments, while DAS fibres can be more readily deployed in
horizontal wells. By formulating R to handle surface geophones and buried DAS fibres
we can explore the improvement in inversion results over reflection experiments alone. A
structural representation of this formulation is shown in figure 10,

FIG. 10. Structural representation of the matrix equations required for simulataneous computation
of geophone and fibre data.
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SYNTHETIC EXAMPLE 1: THE ROLE OF THE LEAD ANGLE IN FIBRE
INVERSIONS

To understand the effect that the lead angle has on inversion from shaped fibre data, and
gain insight into the uplift provided by the simultaneous inversion of geophone and fibre
data we begin by examining the inversion results from a toy model specifically designed
to highlight the challenges associated with cross talk and parameter resolution. The true
models for p-wave velocity (vp), s-wave velocity (vs), and density (ρ) are shown in figure
11 (a)-(c) respectively. This model is designed so that vp, vs, and ρ are spatially separated
so that challenges arising from cross talk are evident. The anomalies are also localized to
investigate parameter resolution. The starting models are constant with vp = 3000 m/s,
vs = 1800 m/s, and ρ = 1400 kg/m3.

FIG. 11. Toy model used to test the effect of lead angle on fibre inversions. (a) P-wave velocity, vp
(m/s), (b) S-wave velocity, vs (m/s), and (c) Density ρ (kg/m3).

Thirty-three explosive sources spaced are 30 meters are used for modeling at a depth
of 30 meters. The first source is 20 meters from the left edge of the model, and the last is
20 meters from right edge. Inversions are computed for straight, 4:1, 1:1, and 1:4 fibres
oriented in the x-direction in a horizontal well at a depth of 750 meters. The trace spacing
along the fibre for all four fibres is equal to the grid size of 10 meters. A multiscale Trun-
cated Gauss-Newton optimization is used with one TGN iteration per frequency band. Ten
frequency bands are used with eight equally spaced frequencies per band. The maximum
frequency of each band increases by 2 Hz as the inversion proceeds where the first band
contained frequencies from 1-2 Hz and the final band contained frequencies from 1-20 Hz.
The Hessian is approximated using 20 inner loop iterations of BFGS. Figure 12 shows the
inversion results for vp in column 1, vs in column 2 and density in column 3, for the straight
(a)-(c), 4:1 (d)-(f), 1:1 (g)-(i), and 1:4 (m)-(l) fibres.

Figures 12 (a)-(c) and (d)-(f) show the inversion results for a horizontal straight fibre,
and a helical fibre having four times more sensitivity to ϵxx than to ϵzz. The inversion results
for all three parameters do contain subtle differences, but overall match each other well.
This suggests that wrapping a fibre with a lead angle such that the same overall tangential
direction is preserved, does not provide significant uplift from a straight fibre inversion.
This result can explained by comparing the fibre strain radiation patterns in figure 7 (a)-(c)
and (d)-(f). Comparing these two radiation patterns shows that wrapping the fibre such that
it is four times more sensitive to ϵxx as it is to ϵzz does not greatly alter the sensitivity of the
fibre to the wavefield for any of the three parameters except at near normal transmission
angles. Both fibres maintain similar tangential directions, and provide similar information
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FIG. 12. FWI results for the four fibre types tested in this study. Inversion results for vp (column 1),
vs (column 2), and ρ (column 3) for a straight fibre (a)-(c), 4:1 helical fibre (d)-(f), 1:1 helical fibre
(g)-(i), and a 1:4 helical fibre (j)-(l).

for parameter estimation.

The inversion results for the 1:1 fibre are shown in figure 12 (g)-(i). The inversion
results for vp are comparable to the other three fibres, but the inversion result for vs has
poorer resolution and does not capture the amplitude of the anomalies as well as the other
fibres. Although the inversion result for density from all four fibres are poor due to the
lack of sensitivity to density at transmission angles, the inverted result for density from the
1:1 fibre has the poorest resolution. From previous discussion and analysis of the radiation
patterns in figure 7 (g)-(i), this type of fibre measures the dilation of the wavefield and is
blind to shear waves having a detrimental effect on the inversion of vs and ρ. For the other
three geometries, most of the information about density anomalies at transmission angles
is provided by the shear wave. Because the 1:1 fibre lacks sensitivity to the transmitted
shear wave, it lacks the information required for estimation of the density anomaly. The vs
radiation pattern completely overlays the vp radiation pattern, resulting in challenges with
resolving changes in the wavefield due to vs anomalies. Fibres of this type most likely
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obtain information about vs and ρ from transmission AVO effects. The 1:1 fibre is able to
resolve vp well because it has perfect sensitivity to the changes in the wavefield caused by
vp at all scattering angles.

The inversion results for the 1:4 fibre, which is four times more sensitive to ϵzz than ϵxx
are shown in figure 12 (j)-(l). The results for this fibre type are similar to those obtained
using the straight and 4:1 fibre. This result is somewhat unexpected. The survey geometry
produces wavefields that mostly propagate in the vertical direction. The 1:4 fibre is the most
sensitive wavefields of this type as confirmed by the radiation patterns in figure 7 (j)-(l).
These radiation patterns also indicate a better decoupling between the p and s-wavefields
when comparing the scattering from vp and vs. This should reduce cross talk concerns, and
allow for better resolution of both parameters. The density radiation pattern also shows that
the 1:4 fibre has the best sensitivity to density anomalies at transmission angles, however,
it is not significantly better, and the inversion for density is of similar quality. The similar
quality in inversion results between the 1:4 and 4:1 fibres could be explained by a lack of
noise in data use for the inversion. Without noise the 4:1 fibre provides small amplitude
data at broadside angles that would typically be buried in noise in the field. In an inversion
with noisy data, the 1:4 fibre will provide better data quality than the 4:1 fibre. It is also
possible that the inversion for the 1:4 fibre converges faster and plateaus sooner, and the
inversion from the 4:1 fibre obtains similar quality after more inversions. Both of these
ideas will be tested in future work.

With the quality of the inversion result from DAS fibre, it was important to compare
them to those from geophone data. Data from geophones with a spacing of 10 meters
placed at the top of the model was inverted, the results of which are shown in figure 13 (a)-
(c). The inversion results from the buried 1:4 fibre are repeated in figure 13 (d)-(f). Using
a setup similar to that of figure 10, data from the surface geophones and buried fibre were
simultaneously inverted, the results for which are shown in figure 13 (g)-(i). The result
of simultaneously inverting both datasets produces better results than either dataset on its
own. The amplitude of the anomalies matches the true model better than the inversions
from the geophones, while they are better resolved than the inversion from the DAS fibre.
This result is not entirely surprising as the inversion is better constrained with additional
data, but it motivates the deployment of shaped DAS fibres. It is easier and often cheaper to
deploy fibres in horizontal wells than it is deploy geophones, especially in producing wells.
Geophones are better tuned for reflection data than DAS fibres, and are cheaper to deploy
for surface acquisition. Simultaneous inversion of geophone and fibre data offers a tangible
opportunity for complementary acquisition geometries that lead to more robust inversions.

Inversions for data from the asymmetric fibre presented earlier is shown in figure 14.
The quality of the inversion for vp and vs is similar to the symmetric helical fibres. The
inversion result for density contains a large number of artifacts but is still comparable to
quality in the inversions from the helical fibres which all struggled to resolve density, a
parameter that is typically difficult to resolve from transmission data.
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FIG. 13. Inversion results for vp (column 1), vs (column 2), and ρ (column 3) for reflection geophone
data (a)-(c), strain data from a 1:4 helical fibre in a horizontal well (d)-(f), simultaneous inversion of
reflection geophone data and strain data from a 1:4 helical fibre in horizontal well (g)-(i).

FIG. 14. Inversion results for vp, vs and ρ in (a)-(c) respectively for data from a 2ϵxx : ϵxz : 2ϵzz
asymmetric fibre.

SYNTHETIC EXAMPLE 2: INVERTING FIBRE STRAIN DATA FOR A
SECTION OF THE MARMOUSI 2 MODEL

The encouraging results of inverting DAS data from a toy model motivated tests for
the inversion of fibre data from a more geologically reasonable model. A portion of the
Marmousi2 containing water-wet sand anomalies, a gas charged sand, and a thin oil bearing
formation were chosen for this set of examples. Figure 15(a) shows the true density model
used for this example, while figure 15(b) shows the extracted sand anomalies. The upper
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two anomalies and the far right anomaly represent water-wet sand channels, the middle left
anomaly is a gas charged sand, while the thin lower anomaly is an oil bearing sand (Martin
et al., 2006). These anomalies are thin and localized, providing a good model for testing
the accuracy of simultaneous inversion of DAS and geophone data.

FIG. 15. (a) True density model from a portion of the Marmousi2 model, (b) extracted anomalies of
interest.

To test the quality of inversions using DAS data for estimating parameters from a geo-
logic model, an asymmetric fibre similar to the one in figure 4 is placed in the oil bearing
formation at the bottom of the model. This simulates a DAS fibre in a horizontal well drilled
into a thin oil bearing sand. Data was generated using 30 sources from 20 to 1470 meters
with a spacing of 50 meters at a depth of 20 meters. The data from this fibre is inverted for
11 iterations of TGN, with the Hessian being approximated using 25 inner loop iterations
of BFGS. The frequency bands consist of 5 evenly spaced frequencies with the first band
containing 10-11 Hz data and the final band containing 10-20 Hz data. The high-end of the
bandwidth increases by 1 Hz each iteration. Both the 10th and 11th iterations consist of the
full bandwidth from 10-20 Hz. The starting models were created through linear gradients
of the parameters with depth, ie vp(z) = vp0 + α ∗ z. The intercept of these gradients, vp0 ,
vs0 , and ρ0 were calculated by taking the mean value of each parameter within the upper
layer. The gradients were chosen to match the slope of the true model, and are 0.5 (m/s)/m,
0.5 (m/s)/m, and 0.2 (kg/m3)/m for vp, vs, and ρ respectively.

The results of inverting the DAS data from the fibre in the horizontal well is shown in
figure 16. The inversion, using only DAS data, captures the overall trends of the model for
vp and vs. Specifically, the gas charged channel and oil bearing formation are detected, and
the velocity structure with depth is captured. However, the inversions lack resolution, and
poorly characterizes the higher frequency structure. This is a result of DAS data from a
fibre in the horizontal well recording primarily transmission ray paths, producing data that
lacks information about the higher frequency characteristics of the model. However, with
only DAS data at transmission angles the major features of the model are characterized.
The inversion result for density is less encouraging. While some of the major features of
the model are detected, including the gas channel, oil formation, and water-wet sands, the
inversion contains inaccuracies. There are regions, especially deeper in the model, where
density has increased where it should have decreased. Without access to the true model, it
would be challenging to differentiate real structure from errors in the inversion. From the
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FIG. 16. Starting models for ρ, vp and vs in (a)-(c), true models from a section of the Marmousi 2
model for ρ, vp and vs in (d)-(f), and inversion results using a fibre in a horizontal well for ρ, vp and
vs in (g)-(i).

radiation patterns shown previously, it is evident that significant information about density
is contained in the short wavelength reflected waves. It is therefore not surprising that
inverting DAS data primarily composed of transmission information struggles to invert for
density.

Three profiles were extracted to examine the inversion results in more detail. Figure
17 highlights the location of these profiles. The first was chosen to cross through the far
left water-wet sand, 260 meters from the left edge of the model. The second is taken 550
meters from the left edge of the model and passes through the gas charged channel and oil
bearing formation. The third passes through the lower water-wet sand and the oil bearing
formation, 1100 meters from the left edge of the model. Figure 18 shows the initial (blue
dashed line), true (black solid line), and inverted (red dashed line) profiles using DAS data
for vp (column 1), vs (column 2), and ρ (column 3). These profiles show that inversion
with DAS data at transmission angles can recover long wavelength trends in the model, but
struggles to recover the high frequency characteristics. While DAS data on its own cannot
provide high resolution parameter estimates, this example highlights that it can supply the
long wavelength information that reflection data lacks, providing a complementary dataset
to geophones.

Surface geophones sample the short wavelength portions of the model, associated with
reflection data. When the data lack low frequencies, it can be challenging to recover the
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FIG. 17. Marmousi2 density model with locations of the extracted profiles shown by the black
dashed lines.

deeper trends in the model using surface geophones alone. Most successful applications
of inversion using surface geophone data require very low frequencies. However, when
these frequencies are not available it may be necessary to supplement the geophone data
with buried DAS fibre, such as that in a horizontal well. To test this idea we perform an
inversion of geophone data using the same frequencies as the experiment with only DAS
data. We also simultaneously invert the geophone and DAS data together to examine the
uplift DAS can provide when low frequencies are missing from the geophone data. The
same optimization schedule above is used to invert data from 30 geophones with a spacing
of 50 meters at a depth of 20 meters, ranging from 20 meters to 1470 meters from the left
edge of the model. Data is also inverted simultaneously from the geophones and DAS fibre.
Figure 19 (a)-(c) show the true models, (d)-(f) the inversion from geophone data, and (g)-(i)
the inversion for geophone and DAS data for ρ (column 1), vp (column 2), and vs (column
3). Figure 20 shows profiles similar to those in figure 18 for the true model (black solid
line), inverted models using only geophones (red dashed line), and inverted models using
geophones and DAS (blue dashed line).

Figures 19(d)-(f) and 20 (red dashed line) show the results for inverting using only geo-
phone data. It is evident in the inversion for vp and vs that the geophones struggle to capture
the long wavelength character of the models, especially in the deeper regions. The short
wavelength reflection data supplies information about sharp contrasts at interface bound-
aries. The inversions are able to recover these portions of the model well, but with the
missing low frequencies, inversion with geophone data struggle to capture the long wave-
length velocity changes within layers. Shallower in the model some of the long wavelength
information is provided by diving waves and the inversions are more accurate in these re-
gions. The density inversion matches the true model well, and the important features are
well resolved. The inversion for density using only geophone data is more accurate than for
velocity due to the majority of information about density being carried by reflected waves.
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FIG. 18. Profiles extracted from figure 16 for vp, vs, and ρ for 260 meters (a)-(c), 550 meters (d)-(f),
and 1100 meters (g)-(i) from the left edge of the model. The blue dashed lines indicate the initial
model, the black solid lines the true model, and the red dashed lines the inverted model.

The uplift provided by the inclusion of DAS data is evident in figures 19(g)-(i) and
20 (blue dashed line). With the inclusion of DAS data, the long wavelength character of
the inverted models is a better match to the true models, especially deeper in the model.
Importantly, the character of the oil bearing formation is better resolved with the inclusion
of DAS , and the amplitude of the gas channel is a better match to the true model. Density,
does not benefit as much from the inclusion of transmission DAS data, but some of the
spurious high density errors have been reduced. Both datasets provide complementary
information about the model, and the inclusion of both in the inversion provides significant
uplift over inverting using either dataset alone.
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FIG. 19. True models for ρ, vp and vs in (a)-(c), inversion results using only geophones for ρ, vp and
vs in (d)-(f), and inversion results using a fibre in a horizontal well and surface geophones for ρ, vp
and vs in (g)-(i).

DISCUSSION

The analysis presented here displays the efficacy of using DAS data for high quality
parameter estimation using FWI, and presents an opportunity to supplement conventional
inversions from geophones alone. Analysis of radiation scattering patterns for vp, vs, and
ρ for helical and straight DAS fibres revealed the important differences in wavefield infor-
mation we can record through careful design of fibres geometries. In this paper we looked
at symmetric fibres that lack sensitivity to shear strain components (ϵxz), and presented a
special case of a fibre that is blind to shear waves. Fibres that can discriminate between
wavefield modes could important implications for future studies. In the clean data case
shown here, inverting DAS data for various helical fibres showed that a gentle wind and
tight wind did not greatly alter the inversion results. It is hypothesized that the addition of
noise will harm the inversions from fibres that are less sensitive in the dominant direction
of wavefield propagation due to data deficiency. This is a thread that will be explored in
further research.

We also develop a method for the simultaneous inversion of surface geophones and
downhole DAS data. Geophones are cheaper to deploy for surface acquisition while DAS
fibres can be more readily deployed downhole, especially in producing well, offering com-
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FIG. 20. Profiles extracted from figure 19 for vp, vs, and ρ for 260 meters (a)-(c), 550 meters (d)-
(f), and 1100 meters (g)-(i). The black solid lines the true model, the blue dashed lines indicate
the inverted model using geophones and DAS, and the red dashed lines the inverted model from
geophone data alone.

plementary acquisition of data at both reflection and transmission scattering angles. Si-
multaneous inversion of DAS and geophone data on the toy model provided enhanced
parameter estimations. The resulting inversions seems to borrow positive properties from
the inversion of the individuals datasets. For example DAS provided a closer match to the
amplitudes of the vp and vs anomalies at a cost to resolution. The inversion of geophone
data provided more resolved estimates, at poorer correlation in amplitude and with larger
cross talk artifacts. The combined inversion produced accurate high resolution estimates
with reduced cross talk. These results present an opportunity for DAS data to complement
geophones in FWI. It was mentioned in the introduction that DAS has a lower frequency
floor than geophones, an area of further research is the development of a frequency depen-
dent version of R that can place stronger emphasis on DAS data at lower frequencies and
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include more geophone data as the inversion bandwidth increases.

The results from the toy model encouraged further investigation of the efficacy of invert-
ing DAS data on a more complex geologic model. A section of the Marmousi2 containing
thin hydrocarbon formations and localized channels deposits was inverted with a DAS fibre
in a horizontal well. The resulting parameter estimates recovered the long wavelength com-
ponents of the true model, highlighting the ability of DAS data to supply long wavelength
parameter estimates. Including geophone data with DAS data greatly improved the results
over using either dataset alone. As the use of DAS continues to expand it is important to
develop frameworks to leverage it in parameter estimations and this study offers insights
into the ability of DAS to supply high resolution models.

CONCLUSIONS

In this study we develop a method for inverting DAS strain data from fibres of arbi-
trary geometric complexity, by expanding the reach of conventional FWI algorithms. By
analyzing the sensitivity of fibre geometries to scattering radiation patterns, we have also
provided a tool for survey design in which we can choose the best fibre for a given purpose
prior to deploying it downhole. Our method offers the ability to simultaneously invert DAS
strain data and 3C geophone data providing very high resolution parameter estimates. A
toy model was inverted using four helical fibre geometries with varying lead angles, and the
effect of the lead angle on inversion results was investigated. This model was also inverted
using a simultaneous inversion of surface geophone and downhole DAS data providing im-
proved parameter estimates over inverting either dataset alone. A section of the Marmousi2
model was inverted by using DAS data from horizontal well tracking an oil bearing forma-
tion. The result presented here prove the efficacy of DAS data in providing high resolution
parameter estimates and solidify a place for DAS within FWI. An interesting secondary
development of this study was the realization of fibre geometry that is blind to shear wave
modes, opening the door for research into fibre geometries that can discriminate against
other wave modes, potentially leading to fibres tuned for p-waves, s-waves, and surface
waves.
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