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ABSTRACT

Severe injuries, such as fractured body parts and amputations, are always on the top
list of mitigation importance in any kind of job. In this work, we use the incident/accident
description of the severe injuries’ reports from the Occupational Safety and Health Admin-
istration of the United States Department of Labor to create a machine learning model that
standardizes the class of the incident classification. We used natural language processing to
convert each description of an injury to numerical features and applied the TF-IDF method-
ology to remove words that are not important to the classification of an injury. Models such
as “Extremely Randomize Trees” and “Multinomial Logistic Regression” were trained and
applied on the oil & gas industry’s reports to test their accuracy, and we came to the fol-
lowing conclusions: predictions are improved when binary input features are used; the
Extremely Randomized Trees tends to predict the most frequent classes with accuracy over
80%; the Logistic Regression works better for the other classes with balanced accuracy of
54% if implemented with balanced class weights.

INTRODUCTION

Natural Language Processing (NLP) is the use of text and/or speech data to analyze and
predict specific goals of the research. We can find examples in our daily life, as for speech
recognition in our phones (Weber 2002).

For health and safety, NLP has been used with impressive results during the last years.
Dublin et al. (2013) use NLP to identify pneumonia from radiology reports, where it could
classify with high accuracy 75% of the reports (the remaining 25% required manual re-
view). Yetisgen-Yildiz, Bejan, and Wurfel (2013) use free-text chest X-ray reports to ex-
tract unigram, bigram, and trigram features to help in the prediction of acute lung injury,
with precision higher than 80%. More on the injuries prevention side, Tixier et al. (2016)
use injury reports from construction sites to extract valuable information and insights from
a poorly structured data set and with difficult manual analysis capabilities. Chokor et al.
(2016) propose the use of NLP and unsupervised learning on the construction sites injuries
from the Arizona Occupational Safety and Health Administration of the United States De-
partment of Labor (OSHA) to divide the injuries sources into main clusters (as fall and
electrocution) to help in the prevention of incidents and in the improvement of the safety
regulations.

In this work, our proposal is to use the severe injury reports from the Occupational
Safety and Health Administration of the United States Department of Labor to create a
NLP classification system that can standardize the injury classification for the oil & gas
industry, as each company, region, and employee can write and classify the incident based
on local language standards. We start the project doing the analysis of the data from all the
industries and discriminating the oil & gas industry reports, and than show how to convert
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an incident description into numerical features, ending up with the classification of the
injury.

DATA DESCRIPTION

According to the Occupational Safety and Health Administration of the United States
Department of Labor, the data contains severe injury reports information from January 1st,
2015, to February 28th, 2019. It is a CSV file with the following information about each
incident (Table 1):

Table 1: Data description.
Name Description
Identification Number Incident identification number
UPA Local agency number
EventDate Date of the incident
Employer Employer name
Address1 Address
Address2 Address
City City of the incident
State State of the incident
Latitude Latitude of the incident location
Longitude Longitude of the incident location
Primary NAICS NAICS industry identification number
Hospitalized 0 means no and 1 means yes
Amputation 0 means no and 1 means yes
Inspection Inspection number
Final Narrative Incident description
Nature Code of the type of injury
NatureTitle Type of injury
Part of Body Code for the part of the body injured
Event Code for the event
EventTitle Title of the incident
Source Code for the source of the incident
SourceTitle Source of the incident
Secondary Source Code for the secondary source of the incident
Secondary Source Title Secondary source of the incident

The data is fairly organized and well standardized, however some cleaning and fixing
was necessary for addresses and coordinates. Apparently, some of the incidents had city,
State, and coordinates mixed up. To fix that, we assumed that the zip code of each incident
is correct, and we force all other address information to match the zip code.

With the data fixed, Figure 1 presents the location of severe injuries from 2015 for all
the industries contained in the data (in orange), summing a total of 41541 injury reports,
and for the companies classified as Oil&Gas (in red), with a total of 1351 reports. Most
of the injuries are concentrated on the East side of the United States, as this is the most
populated area of the country. The injuries related to the Oil&Gas industry seem to have
less dispersion when compared to all industries, and are located in bigger centers for the
industry. Another observation is that some states at the East coast have less injuries reports
than the surrounding states. This could be the reality of the incidents, or it could be different
regulations for report submissions.

2 CREWES Research Report — Volume 31 (2019)

https://www.osha.gov/severeinjury/index.html
https://www.osha.gov/severeinjury/index.html


Natural Language Processing and Machine Learning for severe injuries

Figure 1: Map of all the severe injuries from 1/1/2015 to 2/28/2019, for all industries
(orange) and for the Oil and Gas industry (red).

Figure 1 can give us a brief idea of the injuries around the country. But we can extract
even more insights of the injuries behavior by simply making different plots.

10 most dangerous cities to work in

One of the analysis (and a straight forward one), would be to identify the 10 most
dangerous cities to work in (in absolute numbers), divided by Oil&Gas and all industries,
and by hospitalization and amputations.

Figure 2: Number of reports of the 10 most dangerous cities (by hospitalization) for all the
industries (left) and for the Oil and Gas industry (right).
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Figure 2 shows an interesting insight: when looking at all industries combined, Houston
is the most dangerous one (622 injuries, by hospitalization), but it goes down to the 8th

for the Oil&Gas industry. Actually, the most dangerous city for the Oil&Gas industry is
Midland (51 injuries). That is curious as Houston is the the largest Oil&Gas center in
the US, so anyone could expect Houston to be the most dangerous city for the industry.
The explanation could be that Houston is more an office city. As this is a severe injuries
dataset, the accidents are more related to the use of heavy machinery, which are usually
located well away from those larger centers, or on production sites.

Figure 3: Number of reports of the 10 most dangerous cities (by amputation) for all the
industries (left) and for the Oil and Gas industry (right).

When looking into amputations in Figure 3, for both plots, the behavior is similar to
hospitalization, with small changes on the order of the top ranked cities, with some cities
entering the top 10 rank (like Atlanta), and some leaving (like Philadelphia).

10 most dangerous states to work

After checking the most dangerous cities for workers, it is time to analyse the most
dangerous states for workers. We expect that the behavior should be similar to the cities.

In Figure 4 is shown the 10 most dangerous states for workers when considering only
hospitalization, for all the industries (left) and the Oil$Gas industry (right). In both scenar-
ios, Texas is the most dangerous state. For the Oil&Gas industry, Texas has more hospi-
talization than the other 9 states combined. This analysis is not surprising, as most of the
oil and gas exploration and production in the US is in Texas. Most of the companies are
located in this Southern state, hence, most of the accidents will be there.

Figure 5 presents the 10 most dangerous states for workers when considering amputa-
tions. The analysis is similar to the one for Figure 4, with Texas at the top of the list for
both situations (all and Oil&Gas industries). Only for all industries we see Ohio going to
2nd place. But in general there are just smaller fluctuations in positions in both plots.

As a last observation, in both cases (hospitalization and amputation), Texas is still the
most dangerous state of the US if we remove the Oil&Gas industry. Probably some safety
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Figure 4: Number of reports of the 10 most dangerous states (by hospitalization) for all the
industries (left) and for the Oil and Gas industry (right).

Figure 5: Number of reports of the 10 most dangerous states (by amputation) for all the
industries (left) and for the Oil and Gas industry (right).

measures will need to be taken in the state to improve those indicators.

10 most dangerous companies to work

Now, let’s take a look on the 10 most dangerous companies (employers) to work for in
US. Again, the analysis is done separated for all industries and for the Oil&Gas industry,
for both hospitalization and amputations.

First for hospitalization, Figure 6 shows the top 10 most dangerous companies to work
for all industries (left), and for the Oil&Gas industry (right). For all the industries, there is a
tendency of mailing employers (USPS in 1st place and UPS in 3rd place) to have more hos-
pitalizations than any other employer (exception for Walmart, which is 2nd place). Mailing
employers are generally large companies, as well as Walmart, and work with storage, de-
livery, commute, and heavy machinery. It makes sense for them to be on the top of the list.
And let’s remember that those are absolute numbers, and not a proportion by the size of
the employer. Bigger companies will tend to have higher numbers of injuries. There is, of
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Figure 6: Number of reports of the 10 most dangerous companies (by hospitalization) for
all the industries (left) and for the Oil and Gas industry (right).

course, also a correlation to the kind of work done.

Still in Figure 6, looking at hospitalizations, the top 10 employers are led by compa-
nies with drilling services, such as Halliburton, Basic Energy Services, and Patterson UTI
Drilling. Halliburton is one of the largest offshore drilling companies, as Basic Energy Ser-
vices and Patterson UTI Drilling are focused on onshore drilling. For Halliburton, we are
confident to say that most of the injuries happen on the offshore rigs, at the Gulf of Mexico.
The map in Figure 1 probably shows injuries located in the headquarters of the companies,
so most of the injuries must have moved in-land, in Texas. Drilling services involve high
peril, and the top 10 list points to this.

Figure 7: Number of reports of the 10 most dangerous companies (by amputation) for all
the industries (left) and for the Oil and Gas industry (right).

Now, looking at amputations in Figure 7, for all the industries (left), the mailing em-
ployers are on the same position as for hospitalizations, but Walmart dropped to 4th as
Tyson Foods got the 2nd place. This may be related to the type of work done at the em-
ployers location. Walmart has machinery to move heavy products, and an accident in this
facility may not necessarily lead to amputation. However, dealing with food, there may
have a larger number of cutting machines, and the resulting type of accidents can lead to a
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larger number of amputations.

For the Oil&Gas industry in Figure 5 (right), drilling companies are still on the top of
the list, with some fluctuation in the positions. But Halliburton continues as the top one.

Top 10 injuries

So far, the most dangerous cities, states, and employers were analyzed by counting the
number of hospitalizations and amputations (specified columns of the dataset) for each
group. Next follows an analysis of the top 10 types of injuries for all industries and
Oil&Gas industry.

Figure 8: Top 10 injuries types for all industries.

Figures 8 and 9 show, respectively, the top 10 injuries for all industries and for the
Oil&Gas industry. In both scenarios, the top 2 injuries are fractures and amputations,
however, in different order for each case. For all the industries, fractures are the top injury
type, and for the Oil&Gas industry, amputation looks to be more common (the difference
is not large). Remember that for the top 10 employers for all industries, the main industry
for injuries is the mailing one. The type of accident more common can be the ones related
to traffic and impact accidents, leading fractures to the top of the list. For the Oil&Gas
industry, the main employers in the list are the ones for well drilling, which machines have
lots of moving parts and an accident can cause amputations.

Looking from the 3rd to the 10th positions in Figures 8 and 9, there are lots of similar-
ities. The differences are the intracranial injuries that appear in a relatively high position
(6th) for all the industries, but is missing in the Oil&Gas list. We believe the use of PPEs
(Personal Protective Equipment), such as helmets, may take a more important position in
oil&gas safety regulation than in some others industries. For Oil&Gas, the most notable
injury in the top 10 is the poisoning, toxic, noxious, or allergenic effect one. That makes
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Figure 9: Top 10 injuries types for the Oil and Gas industry.

sense, as Oil&Gas companies involved in drilling and refining can be in contact with toxic
materials.

NATURAL LANGUAGE PROCESSING

One question we can ask to the severe injuries dataset is: "Can the dataset be used to
create a ML model to standardize the injure type classification?". In other words, can we
use the description of the incident to predict in which injury type class it belongs? Well,
first, let’s understand the importance of this question. Having a standardized dataset is help-
ful for data analysis, where all the incidents are classified with the same class name/number.
Non-standardized data come from each company (or group of companies) having its own
classification for an injury type. For example, let’s say there is an incident classified as
fractured arm. Some companies can classify it as fractured arm, others can classify it as
a broken arm. Both have the same meaning, but from the data analysis point of view, the
algorithm can interpret them as different classes, if no pre-processing is done. Looking at
data sets with a large number of classes, the pre-processing becomes harder and misinter-
pretations are likely to happen.

One way simple but powerful way to do this classification is to use an approach similar
to sentimental analysis (Shahana and Omman 2015). The idea is to count the words used
in each incident description (converting the string to a numerical variable, or feature), and
then giving weights to each word. However, some words may appear in every or most
descriptions, such as the, an, he/she, etc. Luckily, there is a method that helps eliminating
these common words in the analysis, only keeping important words. The method is called
term frequency–inverse document frequency, or simply TF-IDF (Aizawa 2003). The idea
is quite simple: weight the word count by the inverse of its frequency over different doc-
uments. A word that appears on every document will have a small weight, as a rare word
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will have a larger weight. It can be understood in two parts: the common locally part (word
count in a single document, or a single incident description), or the TF part, and the global
rarity (the rarity of the word usage over all documents), or the IDF part. For a document d,
the TF term of a word t is its count ft,d, as shown in equation 1:

TF(t, d) = ft,d (1)

For the same word t, the IDF term over all N documents is:

IDF(t) = log

(
N

1 + nt

)
(2)

where nt is the number of documents the word t appears in. Then, the TF_IDF is calculated
as:

TF-IDF(t, d) = TF(t, d) · IDF(t) = ft,d · log
(

N

1 + nt

)
(3)

MODELING

After applying the TF-IDF in the data, we end up with a table containing weights of
each word for each one of the entries (injury reports). In the total, after some filtering, we
have 267 words (that are our features). However, the target (injury classification), contains
168 classes, which is very high, and correctly classifying them will be challenging. There
are some of the injuries that happen just once in the whole data set, while fractures and
amputations (the most common injury types), happen more than ten thousand times. This
imbalance in the data is too uneven, and we decided to remove the less frequent injuries.
Our criterion was to remove classes with low counts, but still keep 95% of the data. This
happened when we chose classes with frequencies equal or larger than 100, ending up with
a total of 32 classes (Table 2).

Table 2: All injuries classes used for modeling and their frequency.

Injury Abbreviation Frequency

Fractures Frct 12547
Amputations Ampt 11134
Soreness, pain, hurt-nonspecified injury Sphi 3420
Cuts, lacerations Ctsl 2068
Traumatic injuries and disorders, unspecified Tiadu 1249

Intracranial injuries, unspecified Iniu 897
Crushing injuries Crsi 847
Heat (thermal) burns, unspecified Htbu 764
Internal injuries to organs and blood vessels of the trunk Iitoabvott 684
Puncture wounds, except gunshot wounds Pwegw 631

Fractures and other injuries, n.e.c. Faoin 456
Effects of heat and light, unspecified Eohalu 367
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Table 2: All injuries classes used for modeling and their frequency. (continued)

Injury Abbreviation Frequency

Electrical burns, unspecified Elbu 365
Bruises, contusions Brsc 350
Effects of heat and light, n.e.c. Eohaln 344

Second degree heat (thermal) burns Sdhtb 323
Concussions Cncs 308
Electrocutions, electric shocks Eles 298
Avulsions, enucleations Avle 256
Chemical burns and corrosions, unspecified Cbacu 248

Fractures and dislocations Frad 247
Poisoning, toxic, noxious, or allergenic effect, unspecified Ptnoaeu 230
Third or fourth degree heat (thermal) burns Tofdhtb 223
Heat exhaustion, prostration Htep 178
Cerebral and other intracranial hemorrhages Caoih 160

Dislocation of joints Dsoj 148
Other respiratory system symptoms-toxic, noxious, or allergenic effect Orssnoae 148
Major tears to muscles, tendons, ligaments Mttmtl 131
Fractures (except skull fractures) and concussions Fesfac 114
Hernias due to traumatic incidents Hdtti 113

Multiple effects of heat and light Meohal 109
Gunshot wounds Gnsw 107

Predictions using the TF-IDF weights

The idea is to use the TF-IDF weights to predict the injury classes of Table 1. But our
goal is to focus on the predictions in the Oil & Gas industry, by separating it as the testing
set, and use all the other industries to train a classification model. The training and test sets
contain the remaining 32 classes of the original data.

Our first step to find a good model is to define a baseline. We want to make sure that
the models tested are better than random guesses, so we trained a dummy classifier model,
which is a pseudo-random guess model. The “pseudo” derives from the classifier having
its randomness weighted by the classes{’} imbalanced distribution (as shown in Table 2).
Figure 10 shows the confusion (a crossplot with normalized counts of each observation
real classification versus its prediction) for the dummy classifier. A perfect model would
generate a confusion matrix with diagonal of 1 and the other elements 0. The dummy
classifier shows no pattern in the confusion matrix, and its accuracy is 19.4%. However, any
model, in an imbalanced data set, will have higher accuracy if it predicts the most frequent
classes more often. A better metric in this case is the balanced accuracy, where the final
value is the sum of each class accuracy multiplied by a weight inversely proportional to its
frequency. And the dummy classifier model balanced accuracy is only 3.4%.

Now that we know the “worst” a model can do, let’s start to train classification mod-
els. As the data has imbalanced classes, we will rather train models that behave better in
these situations. The first model we trained was an ensemble classification method called
extremely randomized trees (Geurts, Ernst, and Wehenkel 2006), which is a step further
of random forests (Breiman 2001) relative to the randomness. Random forests divide the
train set into several subgroups and train a different decision tree for each one. In the end
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Figure 10: Confusion matrix for the dummy classifier model.

Figure 11: Confusion matrix for the random forest model.

they apply a vote system over all the trees to compute the prediction. The extremely ran-
domized trees also has random splits inside each decision tree (the criterion to split a leaf
into other leaves), which provides a more robust model, with lower variance (how much a
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model change when trained on different data sets), but that can slightly increase the bias
(the ability of the model to match training set. The higher the bias is, lower is the match).
Figure 11 shows the confusion matrix for the extremely randomize trees model. It is appar-
ently accurate, with accuracy of 80.4%. However, for the oil & gas industry, amputations
and fractures (only) are the most frequent classes, representing 59% of the total of the test-
ing set. So, accurately classifying these two classes will push the accuracy up (look at the
balanced accuracy at 41.7%). But the model also worked well for other classes as well, or
the accuracy wouldn’t reach 80%, like concussions (CNCS), for example, whose classifi-
cation was 100% accurate. However, the model failed when classes were similar, as the
in the case of fractures family, which tended to be classified simply as fractures (FRCT),
with the exception of fractures (except skull fractures) and concussions (FESFAC), that
were sent 100% to concussions. A curious case are the effects of heat and light, unspecified
(EOHALU) and multiple effects of heat and light (MEOHAL). Those look to be very sim-
ilar classes (if not the same), and they are easily misjudged by the model. Maybe another
pre-processing of the data should be applied to unify classes which are too similar.

Figure 12: Confusion matrix for the logistic regression model with balanced class weights.

Another model tested was the logistic regression (Böhning 1992), which gave us the
ability to balance the classes during modeling by applying weights that are proportional
to the inverse of their frequency. Figure 12 shows its confusion matrix and it appears to
have a better defined diagonal. The accuracy decreased to 60.8% when compared to the
extremely randomized trees model, but the balanced accuracy increased to 52%, meaning
the logistic regression model is working better for less frequent classes, but is failing to
predict properly the most common classes. It is clear when we look at fractures (FRCT),
where its predictions were separated into several different classes (but around 65% are
still inside the fractures family). However, cases like concussions (CNCS) and fractures
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(except skull fractures) and concussions (FESFAC) are not being confused by the model.
Another curiosity are that gunshot wounds (GNSW) are being totally missclassified: half
went to intracranial injuries, unspecified (INIU) and half to puncture wounds, except gun-
shot wounds (PWEGW), exactly to what it should not be classified as. Probably the word
wound played an important role for this misclassification. Also other respiratory system
symptoms-toxic, noxious, or allergenic effect (ORSSNOAE) is easily confused with poi-
soning, toxic, noxious, or allergenic effect, unspecified (PTNOAEU), as both look to be the
same class in a level.

Predictions using binary input features

For a new approach, instead of using the TF-IDF weights for each word as the numerical
representation of them, we will use a binary representation. This means that it will not
matter how many times a word appears in a description, it will filled as 1 if present, and
0 otherwise. We want to see if the binary approach balances the features importance and
avoid some of the misclassifications.

Figure 13: Confusion matrix for the random forest model for binary features.

Figure 13 is the confusion matrix generated using the extremely randomized trees
model with the new binary strategy. The accuracy remained almost the same, but the bal-
anced accuracy increased to 44.9%, as the model started to differentiate the least frequent
classes better. But the same analysis for the previous approximation is still valid here in
an overall scenario. We still need to improve the classification for this model for similar
classes.

Going back to the balanced logistic regression, its confusion matrix (Figure 14) shows
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Figure 14: Confusion matrix for the logistic regression model with balanced class weights
and binary features.

significant improvements for both the accuracy (63.4%) and balanced accuracy (54.1%).
Amputations (AMPT) and fractures (FRCT) have improved accuracy. Apparently, the lo-
gistic regression is a more robust model in an overall scenario.

Changing to the binary input features approximation improved the performance of both
models. However, the extremely randomized trees model works better for the most frequent
classes (more specifically fractures) while the logistic regression works much better for the
least frequent classes (actually, for the most frequent classes, only fractures showed to be
challenging for this model). We actually believe that the logistic regression can be the most
accurate model if we work better with the features, instead of using only single words as
features, we could implement the pairs of sequential words (bi-gran) from descriptions.

Another observation to keep in mind is that that we removed the reports from the oil
& gas industry to train the models, then tested their performance on the oil & gas industry
data. It would be interesting in a continuing project to do the analysis of the type of lan-
guage used in different industries. Are the descriptions in the oil & gas industry data the
same as for others industries? Or does each industry have its own terminology, and models
are failing to recognize this? We believe these are questions that need to be answered in
future projects.

CONCLUSIONS

In this work, we studied severe injury reports from the Occupational Safety and Health
Administration of the United States Department of Labor, where we analyzed the incidents
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locations, and most frequent injuries by location and type, and worked on a project to
predict the injury classification from its description, with the goal to create a model that
can standardize the classification for the government department.

One of the main steps of the project was the “conversion” of the descriptions into nu-
merical variables by using the count of each word in the descriptions as initial features, and
then removing stop words (common words) using the TF-IDF algorithm. It creates a ma-
trix of weights where the columns are the words and the rows are the observations (injury
reports). The data are then separated into testing (all the oil & gas industry reports) and
training (the remaining industries) sets.

The trained models presented different performances for the imbalanced dataset. The
extremely randomized trees have results of higher accuracy over the most frequent classes,
more specifically for fractures, while the logistic regression showed a better overall perfor-
mance, with higher accuracy for the least frequent classes, but failing to properly classify
fractures.

By changing the input features from the TF-IDF weights to only binary values, both of
the models showed improved performance. But we came to the conclusion that we need
to improve more the feature engineering before modeling, and also understand better the
language used by each industry and, whether it is an important characteristic of the data.
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