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ABSTRACT

In this report, we add a hybrid Radon transform to the inversion-based deblending
method. Deblending methods that use sparsity constraint relies on the similarity between
the primary signal and the transform basis. This similarity results in the focusing of the
coherent primary signal while simultaneously attenuating the incoherent blending noise.
However, seismic data contains mixtures of signals with different travel time trajectories.
Therefore, using hyperbolic functions to model seismic data that contains non-hyperbolic
events will reduce sparsity (signal focusing) and thereby reduce the efficiency of the de-
blending algorithm. To overcome this issue, we expand the transform basis to account for
more types of signals contained in the seismic data. In this report, we a hybrid of linear and
hyperbolic Radon basis functions to match the moveout patterns of reflections and direct
arrivals. Synthetic data examples show that this transform can efficiently deblend seismic
reflections and direct arrivals.

INTRODUCTION

Blended seismic acquisition is becoming a more appropriate technique to increase seis-
mic illumination of the subsurface without increasing survey cost (Berkhout et al., 2008).
We can group the deblending methods in literature into three main categories. The first
category uses a conventional seismic processing sequence for blended data without sepa-
ration. These passive deblending methods utilize the power of stacking in the traditional
processing sequence to suppress source interferences. The second category of deblend-
ing methods, treat interferences as noise, and use a denoising algorithm to remove them
(Trad et al., 2012; Ibrahim and Sacchi, 2014). The third category of deblending meth-
ods, interpret interferences as a signal and cast the deblending problem as an inversion
problem. In either denoising-based and inversion-based deblending methods, the choice
of the sparse transform can be critical to the success of deblending algorithms. Therefore,
designing transforms that can represent seismic data by a few (sparse) coefficients is an
important research topic. Inversion algorithms that are constrained by sparsity have proved
to be a powerful tool in seismic data processing, especially for denoising and interpolation
(Ibrahim et al., 2018) applications. The ability of a transform to represent the data as a
sparse summation of weighted basis functions is directly related to the similarity between
the transform basis functions and the main components of the data. For this reason, it is de-
sirable to tailor the transform basis functions to resemble the main components of seismic
data as close as possible.

In general, we can divide sparse transforms into two broad categories, model-driven
transforms, and data-driven transforms (Zhu et al., 2015). Model-driven transforms use
a formulated mathematical model of the data, which leads to pre-defined basis functions
(dictionary). For example, the mathematical model for the Fourier transform assumes that
the data are composed of sinusoidal basis functions. Several model-driven transforms have
been commonly used for sparse inversion of seismic data such as Fourier (Sacchi et al.,
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1998), Radon (Thorson and Claerbout, 1985), wavelet (Sinha et al., 2005), curvelet (Her-
rmann and Hennenfent, 2008), seislet (Fomel and Liu, 2010), contourlet (Shan et al., 2009)
and focal transforms (Berkhout and Verschuur, 2006). On the other hand, data-driven trans-
forms learns the basis functions from the data and do not have pre-defined basis functions.
Data-driven transforms learn its basis functions from the data which tailor the transform
basis functions for sparse representation. Therefore, data-driven transforms can be more
adaptable to changes in the structure of observed seismic data than the model-based trans-
forms. Recently, data-driven transforms have been used in seismic data processing for
denoising (Chen and Sacchi, 2015), interpolation (Yu et al., 2015), and source separation
(Cheng and Sacchi, 2015). However, data-driven transforms have a high computational cost
and require the storage of the transform basis functions learned from the training data sets
used in dictionary learning. Therefore, it is desirable to design computationally efficient
model-based transforms with pre-defined basis functions that match the main components
of seismic data (Ibrahim, 2015; Ibrahim et al., 2018).

THEORY
Radon transforms

To derive the general formulation for Radon operators, let us assume that d(¢, ) denote
the two dimensional seismic data and m(7, ) denote the Radon model (Sacchi and Ulrych,
1995). We first define the forward Radon operator, ., and its adjoint operator .#' as
follow

)= Zmr&) = [ mlr = o(0.2.0).6) de. W
M e) = 2 dt z) = / Tt = 3 (r2,6),7) da, 2)

where m(7, ) is the Radon model estimated by the adjoint operator. The parameter & is
the Radon parameter (or parameters) that define the Radon operator integration path by the
function ¢(7,x,&). Radon transform operators are adaptable, and they can use many dif-
ferent geometrical curves as their integration path. Popular variants of the Radon transform
operators are linear (LRT), parabolic (PRT) and hyperbolic Radon (HRT) operators. Table
I lists the different forward and adjoint Radon operators used in seismic data processing.
In table 1, p represents the ray parameter and v represents velocity.

Table 1. Common Radon transforms.

Operator o (1,2,8) ¢ (t,z,8)

LRT (slant stack) t=74+px | T=t—px

PRT t=7+qz® | T=t—qa?

HRT (velocity stack) |t = /72 + % |7 = /12 — &
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HYBRID RADON TRANSFORM

The conventional hyperbolic Radon operator assumes that the minimum two-way travel
time for seismic reflections is located at zero offset and the data can be modelled as a
superposition of reflection hyperbolas as,

d(t, h) = / T = 2= . 3)

)
'U2

Umin

However, this is not generally true, especially in common shot or common receiver gathers,
Therefore, the HRT operator should be expanded to include scanning for travel time apexes

Gmax Umax _ 2
d(t,h) = / / m(r =\/t% — u,v) dv da, 4)

V2

and the adjoint operator will be

hmam
m(7,v,a) = / d(t =/ 4+ ———,h) dh, 5
hmin

where a is the apex location of the travel-time hyperbola. These operator pair can be written
as

d =Lym, (6)
m =L/d. (7)
However, not all signals in seismic data follow a hyperbolic (or apex shifted hyperbolic)

travel times. For example, direct waves and surface waves can have a linear move-out
pattern and the data can be modelled as follow

d(t,h) = /Umaz m(rt =t —hv,v) dv, (8)

Umin

Again, expanding the modelling operator to allow for apex shifting, we get
d(t,h) = / / m(r = (t — (h—a)v,v) dvda, 9)
and the adjoint will be
hmaz
m(T,v,a) = / d(t =(t+ (h—a)v,h) dh. (10)
hmin

Again, these operator pair can be rewritten as

d =Lm, (11)
m =L7d. (12)
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Since seismic data can be assumed to be composed of both linear and hyperbolic events
(Trad et al., 2001) , we can assume that the data can be modelled as follow

d = Lim, + Lymy, (13)

where my, is the Radon model for the linear events and m;, is the Radon model for the
hyperbolic events. The linear and hyperbolic modeling operators can be combined into
one hybrid operator similar to the hybrid operators introduced by Nemeth et al. (2000) and
Trad et al. (2001) to separate coherent noise. The hybrid Radon modelling operator can be
represented by

d = (L Ly) (mf) -

Then, the adjoint operator can be written as

m,\ (L}
(o) = (£1) ¢
We can let the hybrid Radon operator be represented by
L= (Lf Lh) 5

and the hybrid Radon model be represented by

m = (g) .

We can formulate an inversion-based deblending cost function to estimate the hybrid model

as follow,
J = |b —TLm|; + p[ml|j, (14)

where L and m are the Radon hybrid operator, and Radon hybrid model of all common
receiver gathers, I' is the blending operator, and b is the blended data, and D is the separate
shots data cube. The deblended shots can be estimated from the hybrid Radon model m by
the forward modeling operator. The inversion cost function is minimized using Iteratively
Re-weighted Least Squares (IRLS) algorithm. For more details regarding IRLS, please
refer to Daubechies et al. (2010); Trad et al. (2003); Ibrahim and Sacchi (2014).

EXAMPLES
Synthetic Example

To test our deblending method using hybrid Radon transform, we use a numerically
blended synthetic data set. The synthetic data were modeled using finite-difference mod-
eling of the marmousi model using a Ricker wavelet of the central frequency of 15H z as
a source. The acquisition scenario represents two source boats firing near simultaneously.
The source firing times are dithered using random time delays to make the source interfer-
ences appear incoherent, Figure 1 shows the sources firing times for both conventional and
blended acquisitions. The results of the inversion based deblending are shown in Figure 2.
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FIG. 1. Seismic sources firing times for Marmousi data example. (a) Firing times of conventional
(blue) and simultaneous seismic sources (red). (b) Time delay between successive sources for
conventional (blue) and simultaneous sources (red).

CONCLUSIONS

We implemented a hybrid Radon transform that combines apex shfited hyperbolic and
linear basis functions in order to match seismic data more closely. The new hybrid trans-
form is used in an inversion-based deblending algorithm. Results show that the new trans-
form can be an efficient tool for accurately deblending seismic data that contain direct
arrivals. Future work entails testing the hybrid transform for deblending land seismic data
and separating surface waves.
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FIG. 2. Marmousi data example deblended using inversion approach. (a) Pseudo-deblended com-
mon receiver gather. (b) Inversion-based deblended common receiver gather. (c) Deblending error
of common receiver gather. (d) Pseudo-deblended common source gather. (e) Inversion-based
deblended common source gather. (f) Deblending error of common source gather.
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