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ABSTRACT

The obstacle of cycle-skipping in full-waveform inversion has led to the development
of many non-L2 objective functions with better convexity properties. While these are ef-
fective in their goal of mitigating cycle skipping, they are typically investigated only with a
single-parameter inversion formulation. If simultaneous multi-parameter inversion is to be
an effective technology, it is important to understand how these objective functions behave
when more than one medium property is considered. Here, we investigate the behaviour
of one such strategy, wavefield reconstruction inversion, in the case of simultaneous vis-
coacoustic inversion. We find that prohibitive cross-talk between inversion variables is
recovered when adopting this approach.

INTRODUCTION

Full waveform inversion (FWI) has been successfully used as a tool for intermediate
scale velocity-model building in recent years (e.g. Virieux and Operto, 2009). The potential
uses of FWI go far beyond velocity-model building however, and FWI has shown promise
as a workable inversion strategy for viscoelastic and anisotropic medium properties (e.g.
Tarantola, 1986; Hicks and Pratt, 2001; Barnes et al., 2008; Choi et al., 2008; Alkhalifah
and Plessix, 2014). At present, there are a few major obstacles limiting the potential of
FWI, cycle-skipping and inter-parameter cross-talk being two of the most significant.

Cycle-skipping occurs when the inversion becomes caught in certain local minima of
the objective function. The problem arises when the modeled and measured data differ
by an integer number of cycles, leading to a partial reduction of the data residuals. Better
models can correctly align measured and modeled data, but an incremental step toward
such a model will actually cause the objective function to decrease when the model is
cycle-skipped. This prevents convergence to a desirable inversion result.

Cycle-skipping can be avoided in FWI through the use of multiscaling strategies (e.g.
Bunks et al., 1995), but these suppose access to sufficiently low frequencies. When low
frequencies are unavailable, it can be necessary to consider objective functions other than
the conventional L2 norm of data residuals to prevent cycle skipping. Many appropriate
objective functions have been proposed. Some re-state the objective function in forms that
enlarge the convex region around the minima associated with correct data fitting (Bozdağ
et al., 2011; Engquist and Froese, 2014). Others allow for the data to be optimally matched
even with poor models, by introducing new inversion parameters designed to enable this
matching (van Leeuwen and Herrmann, 2013; Guanghui and Symes, 2015; Warner and
Guasch, 2016). These approaches consider both a measure of data residuals and a term
penalizing the data-matching variables in the inversion, aiming to eliminate the latter by
the end of the inversion. Each of these strategies has shown significant improvement over
conventional FWI in preventing cycle-skipping.
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A little-studied case in FWI is that of cycle-skipping in simultaneous, multi-parameter
inversion. Multi-parameter inversion (e.g., Operto et al., 2013; Plessix et al., 2013; Pan
et al., 2016) is important in achieving the potential of FWI because accurate models of
seismic wave propagation involve multiple physical properties; P-wave velocity alone is
insufficient. Cycle skipping is as significant a problem in multi-parameter inversion as it
is in the single-parameter case, and for the same reasons. An additional consideration in
multi-parameter inversion, however, is the potential for inter-parameter cross-talk (‘cross-
talk’ hereafter). Cross-talk occurs when data residuals caused by an error in the estimate
of one physical property cause the estimate of another property to be changed in the in-
version. This behaviour can be seriously detrimental to inversion results as it can greatly
slow convergence, and can call into question the accuracy of inversion outputs. Cross-talk
is a major concern even when cycle-skipping is not a risk, so the effects of cycle-skipping
avoidance techniques on cross-talk are of considerable significance.

In this report, we investigate visco-acoustic inversion using the wavefield reconstruc-
tion inversion (WRI) technique (van Leeuwen and Herrmann, 2013). In WRI, the modeled
seismic wavefield is considered as an additional inversion parameter, and the objective
function penalizes both data misfit and the extent to which the modeled wavefield violates
the wave equation. This approach allows for the data to be matched even when the subsur-
face model is poor, so it has been proposed as an effective way of avoiding cycle-skipping.
It also frames the optimization problem driving the inversion in a way that makes the ex-
plicit dependence of the objective function on the subsurface model much simpler than in
conventional FWI, which might help to mitigate cross-talk. These features make multipa-
rameter WRI an interesting case for studying the relation between cycle-skip prevention
and cross-talk.

THEORY

Acoustic wavefield reconstruction inversion

The optimization problem driving full waveform inversion can be expressed as

min
m,u

∑
i,k,ω

1

2

(∑
j

Rijujk − dik

)2

, subject to
∑
j,k,ω

Aij(m)ujk = fik, (1)

where m is the subsurface model, u is the pressure wavefield throughout the model, R is
a matrix representing receiver sampling, d are the measured data, f is a source term, A is
the Helmholtz matrix containing the finite-difference approximation for wave propagation
(visco-acoustic in this case), the indices i, j, and k represent receiver number, spatial posi-
tion and source number, and there is an overall sum over frequencies ω, which we omit for
simplicity in later equations. In conventional FWI, we require that the constraint is always
satisfied:

min
m,u

∑
i,k

1

2

(∑
j,h

RijA
−1
jh (m)fhk − dik

)2

, (2)

which results in an optimization problem highly nonlinear in m due to the strongly nonlin-
ear dependence of A−1 on m. In the WRI approach (van Leeuwen and Herrmann, 2013),
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we instead allow violation of the constraint during intermediate steps to achieve a more
linear problem, given by

min
m,u

∑
i,k

1

2

(∑
j

Rijujk − dik

)2

+
∑
i,k

v∗ik
∑
j

(Aij(m)ujk − fik), (3)

where vi,k are Lagrange multipliers. While this formulation is appealing, it requires calcu-
lation and storage of both u and v, which is typically prohibitive. A similar formulation
which avoids this obstacle is

min
m,u

φ(m,u) =
∑
i,k

1

2

(∑
j

Rijujk − dik

)2

+
λ2

2

∑
i,j,k

(Aij(m)ujk − fik)2 , (4)

where λ is a penalty term which increases as the inversion proceeds, and φ is called the
objective function. This objective function can be split into a data misfit penalty term, φD,
and a wave-equation enforcing term, φu:

φ(m,u) = φD(u) + λ2φu(m,u), (5)

where

φD =
∑
i,k

1

2

(∑
j

Rijujk − dik

)2

, (6)

and
φu =

1

2

∑
i,j,k

(Aij(m)ujk − fik)2. (7)

While there is conceptual appeal to inverting for both m and u simultaneously, this is not
generally practical due to the necessity for the storage of u. Instead, a sequential minimiza-
tion of φ is considered in WRI, alternating minimization with respect to u and m. In the
acoustic case, this can be achieved without storage of u as a whole. The derivative of the
objective function with respect to the wavefield for source k, uk, is given by

dφ

duk
= RT (Ruk − dk) + λ2A†(Auk − fk). (8)

When the derivative is zero, we have[
λA
R

]
uk =

[
λfk
dk

]
(9)

When minimizing the objective with respect to u, we set u to the value minimizing the
objective, with constant m:

uk =

([
λAT RT

] [λA
R

])−1 [
λAT RT

] [λfk
dk

]
. (10)
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On alternate iterations, we minimize the objective with respect tom, holding u constant.
The derivative of the objective with respect to the nth model variable, mn, is given by

dφ

dmn

=
∑
k

(
dA

dmn

uk

)†
(Auk − fk) . (11)

In the original formulation of WRI (van Leeuwen and Herrmann, 2013), acoustic wave-
propagation was considered, and the variables were chosen such that mn represents the
squared slowness of the medium at the nth defined location in the medium. For an acoustic
medium, A is a matrix approximating the partial differential operator ω2

v2
+∇2, where v is

the vector of wave speeds in the model. The elements Ai,j can be defined as

Ai,j = δ(i, j)
ω2

v2i
+Ki,j, (12)

where K represents the finite-difference approximation of ∇2. For this particular choice
of problem (acoustic wave propagation and variables representing squared slowness), the
derivative in equation 11 can be re-written as

dφ

dmn

=
∑
k

(
ω2ukδ(n, l)

)† (
ω2muk + [Kuk − fk]

)
l
. (13)

Equivalently,
dφ

dm
=
∑
k

ω4u†kukm+ ω2u†k [Kuk − fk] . (14)

The optimal choice of m at fixed u can be found by setting this derivative to zero:

m = −
∑
k

u†k [Kuk − fk]
ω2u†kuk

. (15)

Because this expression involves a sum over frequencies and sources, only the wavefield
for a single source at one frequency uk is needed at any given step of this calculation. This
means that u as a whole does not need to be stored in this approach: it can be calculated on
the fly.

Iterations of acoustic wavefield reconstruction then consist of two key steps. First, there
is a minimization with respect to u through equation 10. Solving this equation is similar in
cost to solving a forward modeling problem (u = A−1q) provided the number of rows in R
is much less than the number of rows in A, or equivalently the number of model variables
is much larger than the number of receivers. Notably, equation 10 holds even if a different
model of wave-propagation or choice of variables is used in the inversion. The second step
is a minimization with respect to m through equation 15. This equation holds only for
acoustic wave propagation and variables describing squared slowness each at one cell in
the finite-differences grid. To employ WRI with different wave physics or other variable
choices, another solution must be found for this second step.
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Viscoacoustic wavefield reconstruction inversion

In this report, we seek to formulate WRI for the viscoacoustic problem. For this type
of wave propagation, we can define A by

Ai,j = δ(i, j)
ω2

si
+Ki,j, (16)

where
s = sc(1− sqγ), (17)

sc is the squared slowness of the medium at reference frequency ω0, sq is the reciprocal of
the quality factor, and

γ = i+
2

π
log
(
ω

ω0

)
. (18)

Attempting to reproduce an expression for the model update in viscoacoustic WRI in anal-
ogy to equation 15, we must first determine the derivative of the objective function with
respect to each variable. Starting from the general result in equation 11, it can be shown
that

dφ

dscn
=
∑
k

ω4(u†kuk)
[
scns

2
qn(γ

†γ) + scnsqn(γ
† + γ) + scn

]
+
[
ω2sqnγ

†u† + u†
]
(∇2uk−qk),

(19)
and

dφ

dsqn
=
∑
k

ω4(u†kuk)
[
s2cnγ

† + scnsqn(γ
†γ)
]
+ ω2scnγ

†u†(∇2uk − qk). (20)

Unfortunately, the system of equations defined by equations 19 and 20 is not amenable
to direct solution as equation 13 was. This is problematic, as the number of systems of
equations which must be solved is the same as the number of velocity and Q variables in
the model, which places a major additional computational burden on the inversion. This
problem is not specific to the viscoacoustic problem, it will also occur in the elastic case, or
even the constant-density acoustic case when variables with spatial extent are considered.
In some multi-parameter cases, the associated systems of equations can be quite large, or
very nonlinear. Because of this obstacle, we consider an iterative, approximate minimiza-
tion with respect to m rather than a direct, exact solution, as outlined in van Leeuwen and
Herrmann (2015).

To find the m which minimizes the objective function at fixed u, we consider the opti-
mization problem

min
m

φm(m) =
∑
i,j,k

(Aij(m)ujk − qik). (21)

In this report, we solve equation 21 through the L-BFGS optimization strategy (Nocedal
and Wright, 2006). The derivatives required within the L-BFGS procedure are given in
equations 19 and 20. Iteratively minimizing φm(m) is inefficient in that it requires ei-
ther storage of u, which is generally considered unfeasible in WRI, or evaluation of the
appropriate u at each iteration of the L-BFGS procedure. In this sense, the approach we
explore here is not practical, but represents a scenario in which some of the obstacles to
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FIG. 1. Model used to generate data in the synthetic test. Left is P-wave velocity at the reference
frequency ω0, right is 1

Q .

multi-parameter WRI have been removed. The numerical example investigated in the next
section highlights that this does not alter our assessment of the approach: the WRI method
fails even in this simplified case.

NUMERICAL EXAMPLES

Due to the requirement for storage of u in solving equation 21, we consider a relatively
small example, where such storage is feasible. A toy model is used for sythetic generation
of the ‘measured data’ to be inverted, shown in figure 1. The key feature of this model
for our purposes are that the vP and QP features do not overlap, making identification of
some cross-talk modes easier. For these examples we consider five frequencies, evenly
spaced from 1 to 20 Hz. The variables considered in the inversion are scri, parameterizing
the squared slowness at each finite-difference grid point used in the wave propagation, and
ŝq(ri), which defines Q through

1

Q(ri)
= αŝq(ri), (22)

where α is a fixed scale factor, chosen to make the gradients with respect to ŝq and sc
similar in amplitude. The initial model used in the examples was a uniform velocity of
2500 m/s, and Q of 80; the background values of the true models.

Before investigating the inversion as a whole, it’s valuable to verify that our strategy
for solving equation 21 provides a reasonable approximation of the exact solution. For this
check, we solve equation 21, using the u corresponding to the true model, but initializing
the model with the constant background described above. In this test, and in the inversion
later, we consider 20 iterations of L-BFGS optimization in the solution of 21. Figure 2
shows the difference between the model recovered using this approach and the true model.
The difference between this result and the true model is extremely small, suggesting that
our approach is a good approximation to exact solution.

In the inversion, the variable λ plays an important role. This term controls the trade-off
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FIG. 2. Difference between true model and recovered model using L-BFGS for solution of equation
21. Left is P-wave velocity at the reference frequency ω0, right is 1

Q . Note the change in scale from
figure 1

between data-fit and physics violation (equation 4). This term should be very large at the
end of the inversion to ensure that the inversion output is linked to the wave equation con-
sidered in the inversion. Ideally, however, it should not be so large early in the procedure,
because if the wavefields considered never violate the wave equation, the WRI procedure
simply reproduces conventional FWI. These requirements suggest that λ should start small,
but grow substantially throughout the inversion. We consider a λ that increases by 5% of
its previous value at each iteration.

For WRI inversion of the modeled data, we considered all the frequencies of the avail-
able data simultaneously. A total of 300 iterations of m updates were used in the inversion.
The output of this approach is shown in figure 3. Unfortunately, this result is very poor
in several ways. Extremely strong cross-talk seems clearly evident here; the recovered Q
model, for instance, is strongly affected by the geometry of the true velocity model, with the
upper ball being the main identifiable feature in the output. Additionally, there is negligible
recovery of the deeper parts of the model.

The inversion result is dependent in part on the choice of the objective weighting term
λ. To verify that a reasonable choice of λ was made throughout the inversion, we examine
the objective function history of the inversion for data residual term φD, and wave equation
enforcing term φu. These are plotted in figure 4. In this case, φD starts very close to
zero - suggesting that the wavefield is chosen to minimize data misfit without regard for
the physics constraints, as desired in the WRI procedure. As the number of iterations
increases and more weighting is given to φu, penalizing wave equation violation, φD begins
to increase, while φu is reduced to negligible values by the end of the inversion - meaning
that u and m effectively satisfy the wave equation by the end of the inversion, and the
data misfit is not completely reduced in consequence. These starting and ending objective
function criteria display exactly the type of behaviour we would hope to see in WRI. In
keeping with this observation, it is unlikely that a different choice of λ schedule would
result in a substantially better inversion output.
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FIG. 3. Model recovered using visco-acoustic WRI approach. Left is P-wave velocity at the refer-
ence frequency ω0, right is 1

Q .

FIG. 4. Data penalty term φD and wave-equation enforcing term φu as a function of inversion
iteration.
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DISCUSSION

How well does this method extend to multi-parameter inversion in general?

One interesting feature of the visco-acoustic WRI problem is the difficulty in reproduc-
ing the very simple wavefield-model relation defined in equation 15 for the acoustic case.
The visco-acoustic problem is not unique in lacking an analog for this simple relation; most
multi-parameter problems will require that nonlinear systems of equations be solved to de-
termine the model exactly corresponding to the wavefield. To avoid solving such a system,
we instead considered approximate solutions of the problem defined in equation 21. This
approach is generally applicable to a multi-parameter problem, but requires knowledge of
u at each step of an iterative optimization. Here we stored u, but this is not practical for
problems on the scales of interest. Re-assessment of u at each iteration of the optimization
is also impractical in general. In this sense, the strategy used here to implement multi-
parameter WRI is impractical. Expressions like equation 15, exact expressions for model
parameters in terms of the complex wavefield from a single source, cannot constrain more
than two parameters simultaneously. This means that extensions of equation 15 to most
multi-parameter problems cannot be formulated. Overall, there are serious concerns about
the practicality of extending WRI to multi-parameter inversion, which exist in addition to
concerns about the quality of the results.

Do cycle-skip beating methods always become prone to cross-talk?

Methods for cycle-skipping avoidance generally have lower spatial resolution than the
conventional L2 objective. An intuitive explanation for this is that these approaches all
seek to make the objective function more sensitive to large shifts in travel times, and less
sensitive to local minima associated with small travel-time changes. This results in a strong
sensitivity to large wavelengths in the velocity model and weak sensitivity to shorter wave-
lengths. This focus on long wavelengths makes it easy for inversion variables describing
the p-wave velocity of the medium at two nearby points to be confused - strong cross-
talk exists between such variables. When considering multi-parameter inversion with these
cycle-skipping motivated methods, an important question is whether this variable confu-
sion extends to inter-parameter cross-talk. At first glance it seems unlikely that that this
confusion should extend to the inter-parameter case; emphasizing larger travel-time shifts
does not have an obvious connection to the relation between different physical properties in
the same way that it connects variables at different locations in space. The results presented
here, however, strongly suggest the opposite, at least in the case of WRI. Further analysis
of the behaviour of cycle-skip preventing multi-parameter FWI algorithms should be done
to better establish the effect of cross-talk in these techniques.

CONCLUSIONS

In this report, we developed a technique for extending wavefield reconstruction in-
version (WRI) to the constant-density viscoacoustic case. The sequential optimization ap-
proach, inverting for first the objective-minimizing wavefield, then the objective-minimizing
model, was used, as in the original acoustic algorithm. Direct calculation of the objective-
minimizing wavefield was viable in this formulation, but direct solution for the minimizing
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model could not be pursued through the original strategy. Instead, an iterative approach
was proposed, though this necessitated storage of the calculated wavefield. Synthetic tests
using this inversion approach were able to navigate from small data residual, largely wave-
equation violating initial models to larger data residual, largely wave-equation enforcing
final models, as desired in WRI. These results were strongly contaminated with cross-talk,
with the Q model in particular being very poorly recovered. These results raise interesting
questions about the viability of FWI approaches designed to mitigate cycle-skipping in the
multiparameter case.
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