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ABSTRACT

Inversion of surface wave seismic data to aid in the characterization of the near-surface is
a rich and well-explored field. However, several new areas of technology development, both
algorithmic and acquisition-based, have the potential to lead to significant improvements
in the accuracy and availability of near-surface models. To this end, in this study we
apply a trans-dimensional surface wave dispersion inversion, which incorporates jointly
using the multimodal phase velocity information of the Rayleigh wave, and we apply it to
Distributed Acoustic Sensing (DAS) data acquired with a trenched fibreoptic cable. The
joint use of multiple modes, combined in a stochastic sense, is explained in detail in this
work. A thorough spectral analysis and error estimations on DAS data are required, and in
processing the data we have found that a new mode separation method, called dispersion
compensation, permitted clear picking of dispersion curves. Multimodal phase velocity
dispersion curves are extracted from the densely sampled DAS data, and then used as input
to a multimode phase velocity trans-dimensional inversion. We examine the subsurface
phase velocity model recovery, and in particular show that better-resolved models result from
the incorporation of the higher. Both synthetic and field testing are carried out, the latter
involving DAS data acquired at the Containment and Monitoring Institute-Field Research
Station as an offshoot of the CREWES 2018 mulit-offset multi-azimuth VSP experiment.
Synthetic models appear to be consistent with our theoretical expectations, and results of
real data furthermore appears to be in excellent agreement with known geology features. A
better characterization of shallow area is revealed compared with other research results.

INTRODUCTION

CREWES is developing practical elastic and multicomponent seismic waveform in-
version methodologies which are maximally flexible and applicable to monitoring of con-
ventional and unconventional onshore reservoirs (or ocean-bottom monitoring in offshore
settings). In practice these EFWI algorithms when applied to land data require very careful
management of surface wave modes to have been carried out. Furthermore specific appli-
cations of near-surface seismic methods within (e.g.) geohazard assessment will tend to
benefit from an expansion of the toolbox for developing robust models in the shallowest
10-100m of the Earth involving new algorithms and acquisition techniques. Motivated by
all this, in this paper we present results of an application of a global, transdimensional
inversion approach to surface wave data, focusing on use of fibreoptic (DAS) data. In an
associated report, Cova and Innanen (2019) analyze the application of elastic FWI to similar
single- and multimode data. The novelty of this paper is threefold: (1) the application of
the transdimensional inversion, to (2) multimode data, acquired (3) from a fibreoptic/DAS
system.

CREWES Research Report — Volume 31 (2019) 1



Qu et al.

Inversion of surface-wave dispersion inversion

Dispersion of surface waves is observed for both Rayleigh and Love waves in the
presence of stratification with increasing shear-wave velocity as a function of depth (Haskell,
1953; Takeuchi and Saito, 1972). As a result, dispersion curves can be extracted for both
Rayleigh and Love waves and these curves contain information about the subsurface shear-
wave velocity structure. Dispersion curves are commonly inverted to infer shear-wave
velocity information (Xia et al., 1999; Rix et al., 2001). Here, we apply surface-wave
dispersion (SWD) inversion to gain knowledge about the weathering layer. This knowledge
is important for static corrections and prior information for waveform inversion (e.g.,
starting models) in exploration seismology (Dulaijan and Stewart, 2010). However, several
challenges are encountered in SWD inversion which are addressed here by a Bayesian
inversion approach. The quantitative characterization of the model parameters is addressed
by Bayesian inversion approach. The selection of the model size (underground layer
number) is flexibly solved through trans-Dimensional inversion. The influence of data noise
on inversion results and data error estimations are settled using hierarchical error models.
In all these aspects, the trans-Dimensional Bayesian inversion method has performed as a
proper and powerful tool to obtain shear wave velocity structure in shallow sites. Compared
with linear inversion methods, biased and erroneous solutions generated from subjective
regularization and incorrect priors can be avoided. The crucial challenge in stochastic SWD
inversion is the solution non-uniqueness due to the limited information contained in the
dispersion curves, which is also the reason for the difficult characterizations of other model
parameters like P wave velocity and density. Since the non-uniqueness can be reduced
by determination of layer number and layer thickness information, other complementary
data type such as receiver functions and refraction waves helping with stratification can be
incorporated to add more constraints on the solutions. But if there is no other data resource,
higher mode phase velocities and group velocities extracted from the present data can also
be utilized to provide more information about the underground.

The result improvements brought by higher mode dispersion curves are effectively
proved in previous research (Pan et al., 2018; Li et al., 2012; Feng et al., 2005). For the
higher mode dispersion curves, higher frequency coverage range and deeper penetration can
enhance the shallow and deep resolution separately. Finally, the uncertainty at all depths
will be reduced. All these study results and the shortage of other available data types impel
us to conduct a surface wave inversion utilizing multimodal phase velocity. One basic issue
needs to be figured out here is the joint of multimode dispersion curves in the stochastic
sense. In linear inversion, multimode inversion misfits can be the weighted summation
of fundamental mode and higher order modes (Luo et al., 2007). In non-linear inversion,
for example, Bayesian inversion, researches have been done with efficient calculation of
higher mode dispersion curves (Maraschini et al., 2010). But more clear explanations of
how to implement multimode inversion in Bayesian inversion should be given. Another
preliminary problem in multimode inversion is the mode separation. Fundamental mode
is relatively easy to pick as its energy is dominant and continuous, while higher modes
usually couple together. High resolution Radon transform (Luo et al., 2009) has been used
to provide a better display of different modes. However, keeping fundamental mode and
higher modes in the same spectrum and applying normalized display may still interfere
the full presentation of both fundamental mode and higher modes. A new way for mode
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separation named dispersion compensation method is used (Xu et al., 2012), which could
separate multimodal dispersion curves effectively.

DAS data and CaMI site

Distributed Acoustic Sensing (DAS) is a novel technology for collecting geophysically
meaningful data. Since it was born, DAS has drawn abundant attentions in geophysical
exploration due to its great application potentials and salient advantages: nonintrusive,
low-cost and dense sampling. In DAS acquisition, the interrogator unit can record the
small vibrations of imperfections result from the localized acoustic energy through the
backscattering measurements. The measurements of backscattering will be related to
fibre deformation involving the wavefield variations in local regions. Theoretically, the
interrogator is sensitive to the movement of imperfections parallel to the fibre orientation,
but not sensitive to particle movements in other directions. Therefore, in straight line surface
DAS acquisition, this character limits its application for reflection or refraction wave data
processing, but makes it a perfect recording system for surface waves. Daley et al. (2013)
compared the horizontal and borehole geometry records, further confirmed that the signal
to noise ratio is too low for body wave observation as the incidental reflected angle is
comparatively small. However, one problem worth considering in surface DAS data is the
coupling of Rayleigh wave and Love wave in seismograms. When the source is not located
in line with the sensing fibre, the record of the horizontal motion could be the coupling
horizontal components of Rayleigh wave and Love wave. They could be decoupled with
multicomponent receivers or additional information, but there is no way to decouple them
with only one component recording in surface DAS fibre. The field data we use is in an
inline geometry, thus, the coupling of Rayleigh waves and Love waves is negligible. But it
is still an important field for further study.

To date, most geophysical study on DAS has been implemented in boreholes for seismic
profiles, flow monitoring and temperature measurements (Clarke and Sandberg, 1983; Cox
et al., 2012; Daley et al., 2013; Krohn et al., 2014; Mateeva et al., 2014). There are only
several studies on surface DAS acquisitions (Daley et al., 2013; Hornman, 2017). Thus,
a thorough research of surface DAS in active source experiments is needed. The densely
sampled DAS data should be utilized to obtain a better characterization of near surface.

The Field Research Station (FRS) is near the town of Brooks in the Newell County
which is approximately 200km southeast of Calgary. The survey developed by Containment
and Monitoring Institute (CaMI) involved data acquisition of GPS, interferometric synthetic
aperture radar (InSAR), hydrology, microseism, microgravity, electrical resistivity, passive
source seismology, and active source seismology (Lawton et al., 2017). These data were
collected initially to improve understandings and technologies for geological containment
and storage of CO2, monitoring of fossil fuel production and environmental mitigation.
In this study, active source data collected over 1km DAS fibre is used for near surface
investigation through surface wave dispersion inversion. In this study, joint inversion of
multimodal Rayleigh wave phase velocity and group velocity is implemented both on
synthetic data and DAS data. The non-unique solutions inferred by phase velocity and group
velocity are analyzed separately. An advanced mode separation method is adopted on the
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real data. Improved joint inversion results are shown, while the feasibility of DAS data for
SWD inversion is revealed.

THEORY

This part illustrates the principle for dispersion compensation, multimode likelihood
formulation, trans-Dimensional SWD inversion and data error estimation.

Dispersion compensation

To conduct multimode surface wave inversion on real data, one preliminary problem is
mode separation. Sometimes, different mode dispersion curves, especially higher modes are
very close, which may cause error in phase velocity picking. Incorrect observing data then
lead to unreliable inversion results. Therefore, an effective mode separation method should
be used to pick dispersion curves accurately. Here, a method called dispersion compensation
is adopted to conduct mode separation (Xu et al., 2012). The multimodal Rayleigh wave data
can be treated as the response of a broadband source F(ω). The dispersive phenomenon can
be treated as a phase shifting of a constant velocity propagation. Therefore, the multimode
surface wave S(ω) in frequency domain at a certain offset x could be expressed as

S(ω) =
N∑
i=1

AmpiTi(ω)F (ω), (1)

where Ti(ω) = exp(−jki(ω)x),ki(ω) is the dispersion phase shifting from original signal.
Ampi is the amplitude for each mode. The dispersion could be reversed by dispersion
compensation, which is done through a reversed phase shifting. The process can be comple-
mented by multiplying T−1i (ω) = exp(jki(ω)x), which gives

S∗(ω) = T−1i (ω)S(ω) = AmpiF (ω) + T−1i (ω)
N∑

j=1,j 6=i

AmpjTj(ω)F (ω). (2)

S∗(ω) is the frequency spectrum after dispersion compensation. Different velocities ki(ω)
can be used to implement the dispersion compensation. Then, different modes with diverse
dispersive velocities compensated with the same velocity should distribute in different time
zones, possessing different slopes. For example, we could compensate for the fundamental
mode based on an initial measurement of the fundamental mode phase velocity. After
compensation, the fundamental mode will be flatted, and higher modes with different
velocities will be overcompensated to the minus time zone in this case. Thus, the fundamental
mode could be extracted through window selection. Other modes could also be extracted
in the same way. The compensation velocity utilized can be selected from the frequency-
velocity spectrum.

Trans-Dimensional SWD inversion

Based on Bayes’ rule, the posterior probability density (PPD) is defined as

P (m|d) =
P (d|m)P (m)

P (d)
. (3)
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d is the measured data, which is the dispersion curves picked in the spectrum of observed
data. m is a random model containing all the model parameters. P (m|d) is the posterior
probability density, which quantifies the model parameters give data P (d|m) and prior
model information. P (m) is the model prior information, which is bounded, uniform
distributions in a physically reasonable range for all model parameters. P (d|m) is data
occurrence probability given a certain model. With fixed observing data, P (d|m) scaled by
evidence is also known as likelihood function as is shown in Equation 7. In the likelihood
function, data could be treated as the condition of the current model parameters occurrence.
As in dispersion surface wave inversion, the non-uniqueness of solutions not only results
from the variable combination of model parameter values, but also influenced by uncertain
model parameter numbers, which is layer number in SWD inversion. In trans-Dimensional
inversions, model parameter number is treated as unknown, and integrated over in a hier-
archical Bayesian sense (Dettmer et al., 2010). The uncertainty of layer number will be
included in the posterior and examined by the likelihood function. With the incorporation of
variant model parameter number k, the posterior could be transformed into

P (k,mk|d) =
P (k)P (d|k,mk)P (mk|k)∑

k′∈K
∫
G P (k′)P (d|k′,m′k′)P (m′k′ |k′) dm′k′

, (4)

where k is the layer number while k′ is the proposed layer number using birth-death scheme,
P (k) is the prior for this hyperparameter k, which is in a group of fixed dimension spaces
K. As the propagator matrix is used to synthetically generate dispersion curves. A partition
model or layered model is naturally employed. Correspondingly, a similar Metropolis
Hasting acceptance criterion from current model mk to a proposed model m′k′ is

α = min

[
1,
P (k′,m′k′)
P (k,mk)

P (d|k′,m′k′)
P (d|k,mk)

Q (k,mk|k′,m′k′)
Q (k′,m′k′|k,mk)

|J|
]
. (5)

This criterion is utilized to meet the requirement of detailed balance once the model parame-
ter number or values are perturbed. Layer number k is involved in the likelihood P (d|m)
and proposal distribution ratios Q. |J| is the Jacobian of transformation from (k,mk) to a
perturbed state (k′,m′k′). Once a suitable birth-death proposal for k is determined, |J| could
be simplified to 1. Parallel tempering is usually adopted to allow the state exchange between
high temperature and low temperature, so that Markov Chains could explore wider and con-
verge more efficiently. For every Markov chain with the starting temperature of T=1, there
will be several complementary Markov chains running with higher starting temperatures as
assists. Markov chains with higher temperature will explore wider parameter space and have
probabilities to exchange the current statement with a Markov chain that explore locally,
which will improve the dynamic property of inversion and help find a higher probable region
quickly. The acceptance criterion for state exchange of a chain pair is

αPT = min

[
1,

{
P (d|k′,m′k′)
P (d|k,mk)

}βi−βj]
. (6)

βn and βl are annealing parameters. When the Markov Chain starts at temperature=1, β=1.
If the starting temperature is larger than 1, β will be less than 1. i and j are two random
states for this Markov Chain pair.

CREWES Research Report — Volume 31 (2019) 5



Qu et al.

Likelihood formulation for multimode inversion

In linear surface wave inversion, multimode inversion misfit is the summation of the
2 norm residuals. While in Bayesian inversion, the multimode inversion should not be
summation, as the misfit is the likelihood in essence. In statistics, the probability of two
independent events occurring together equals to the multiplication of their likelihoods. As
there is no explicit relation between the fundamental mode and the higher modes, we will
treat them as independent. Therefore, the likelihood of the model that meets both the
fundamental and higher modes of phase velocity dispersion curves is the product of the
model likelihoods which fit all those dispersion curves (Li et al., 2012), expressed as

L(m) =
S∏
i=1

1√
(2π)Ni |Cdi|

exp

(
−1

2
rTi C−1di ri)

)
. (7)

i could be the mode index for phase velocities which are used in the inversion process with
a total number of S. ri is the data residuals between the measured data and the synthetic
data. Cdi is the data covariance matrix for a specific dispersion curve and m represents all
the the model parameters.

Data error treatment

To guarantee the accuracy of inversion, a rigorous estimation of data error must be
considered. Ignoring biases and correlations of data error can lead to biased, incorrect model
parameter estimations. Therefore, an iterative and nonparametric data error estimation is em-
ployed to include the non-stationary error and correlated data errors in the inversion (Dettmer
et al., 2007). For a preliminary inversion, the data covariance matrix Cd is not known. Thus,
an independent Gaussian distributed data error with unknown standard deviation can be
assumed, which simplifies the data covariance matrix to δ2I . Next, a more accurate data
covariance matrix could be estimated through the data residuals r. Since the correlated error
has already been included in the off-diagonal terms of the matrix, non-stationary error can
be included by scaling the Toeplitz matrix into a non-Toeplitz one. The data error estimation
procedure for a data with unknown errors is as follows. First, the data error covariance
matrix is calculated as the Toeplitz matrix for auto-covariance of data residual r,

Ci =
1

N

N−i−1∑
k=0

(ri+k − r̄)(rk − r̄), (8)

Here Ci is the new data covariance matrix, i is the element index in the covariance matrix, r̄
is the mean for the data residual. k is the index for To include the non-stationary error, first,
an ergodic process is assumed and a standard deviation δi using data residuals by running
rms average over Q data is calculated,

δi =

√√√√ 1

Q

i+Q/2∑
k=i−Q/2

r2k. (9)

Next, a scaled data residual ni is obtained by

ni =
ri
δi
. (10)
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Then, a new Toeplitz data covariance matrix C̃d is calculated using ni, as expressed in
Equation 10. The final non-Toeplitz covariance matrix is calculated by scaling the new
Toeplitz covariance matrix with standard deviations

C
(d)
ij = C̃dδiδj. (11)

Thus, a data covariance matrix including non-stationary error and correlated error is found.
Based on more comprehensive data error analysis, a more accurate characterization of the
model parameters distribution could be obtained.

SIMULATION RESULTS

FIG. 1. Observing data for three-layered model with different random noise standard deviation.
(a) Observing data (red dot) with 1% random noise and (c) is the corresponding data error. (b)
Observing data (red dot) with 3% random noise and (d) is the corresponding data error.

To verify the feasibility of this algorithm, a three-layered simulated model over a half-
space is used to apply the inversion process. As for forward modeling, GPDC is used
to generate a synthetic dispersion curve. Frequency sampling for this dispersion curve is
uniform from 0.2 Hz to 20 Hz, with 50 points totally. Two random data errors with different
standard deviations are added to the generated data for inversion at first to examine the
influence of data error levels on inversion resolution. The observing data with different
data error standard deviations are shown in Figure 1, and the corresponding posterior
for these two observing data is shown in Figure 2 and Figure 3. Correlated data error
(Figure 4) is generated by multiplying an Gaussian random number array with the Cholesky
decomposition of a constructed data error covariance matrix with non-zero decaying off-
diagonal terms. Priors for all the variables are uniform within reasonable ranges. As
an increasing background velocity is pre-set for better convergence, the posterior we are
calculating is actually the perturbation of shear wave velocity (V s). Here, the prior setting
for Vs perturbation is [-200, 500] m/s, for Vp/Vs ratio is [1.4, 10]. Layer number lies in
a range from 2 to 30. Minimal thickness is set to be 0.01 m, while the maximal thickness
depends on the dispersion curve, which is set to be 90 m for this synthetic model. Twenty
cores are used for Markov Chain simulations, in which 5 cores starting from the temperature
T=1 are collected for samples, other 15 cores starting with increasing temperatures are used
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FIG. 2. Posterior for data with different levels of random noise. (a) Results of data with 1% random
noise. (b) Results of data with 3% random noise

FIG. 3. Posterior layer number distribution and likelihood distribution.(a) Posterior layer number
distribution for the synthetic data with 1% random noise. (b) Likelihood distribution for the same data.
(c) Posterior layer number distribution for the synthetic data with 3% random noise. (d) Likelihood
distribution for the same data.

as complementary. Over 400,000 iterations are computed with convergence guaranteed, and
the tailing 100,000 samples are used for statistically calculation. The quality of samples
collected can be checked by generating an ensemble of dispersion curves for data fitting.
From V s profile marginals and posterior hist-count in Figure 2, clear layer interfaces are
resolved, and model parameter probability distributions match well with the true model.

For a regorious data error estimation, a preliminary inversion assuming data error are
independent Gaussian distributed values is conducted. Then, the scaled data covariance
matrix involving correlated errors is obtained through the scaling the autocovariance matrix
of data residuals(Figure 4). With the new data covariance matrix, subsequent inversions
are carried out, which could be an iterative process. In the end, an ensemble of samples
collected from the final inversion could be statistically counted. The observing data with
correlated error is shown in Figure 4. The posteriors for the preliminary inversion and final
inversion process are displayed in Figure 5. It shows ignoring correlated data error could
influence the characterization of model parameters. But with cautious estimation of data
covariance matrix, results could be improved to a large extent. Dispite the correlated noises
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FIG. 4. Observing data with correlated noise. (a) Correlated noise matrix. (b) Observing data (red
dot) with true data (blue line). (c) Correlated noise.

on the data, the final posterior shear wave velocities and interfaces are close to the results
without correlated noises, and they are both reasonably close to the true model.

Based on the simulated model tests above, not only the model parameters are inferred
through trans-Dimensional inversion, different types of data errors are well estimated and
inferred The application on synthetic model verifies the robustness and feasibility of this
algorithm on layered models.

In addition, a multimode inversion is conducted to be compared with the inversion results
obtained with only the fundamental mode. Here, a different model with thinner shallow
layers and larger velocity jumps in neighboring layers is used to better demonstrate the

FIG. 5. (a) Result of ignoring correlated noise. (b) Result of involving correlated noise.
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FIG. 6. (a) Vs and layer number posterior, likelihood distribution for fundamental mode. (b) Vs and
layer number posterior, likelihood distribution for multimode.

FIG. 7. Data prediction using Markov Chain samples (red dots are observing data). (a) Fundamental
mode data prediction. (b) Multimode data prediction.

benefits of multimode inversion. The observing data is obtained by adding random Gaussian
distributed noise on it. Figure 6 reveals the posteriors. From the comparison, uncertainty in
shallow layers are reduced, some blurry additional layer in the top layer of the fundamental
mode result disappears in the multimode V s marginal posterior profile. The second layer
and third layer have a better resolution as well. The bottom layer with a large velocity jump
is hard to resolve in principle, as the reflection coefficient is close to 1 with a whole range of
large velocities having close coefficients in the propagator matrix. Bifurcation in the bottom
layer could be trade off effect, which reveals several different models could have similar
dispersion curves. This inversion result shows more general solutions due to the limited
information contained in dispersion curves. Besides, a better characterization of interfaces
are shown in the multimode result. The interface between the third layer and fourth layer
is confined to be more close with the real interface with additional mode constraint. From
the data prediction using Markov Chain samples(Figure7), both the fundamental mode and
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FIG. 8. Geometry for two DAS data. Red line is the fibre. Blue dotted line is the source line for first
DAS data. Red dashed line is the source line for the second DAS data (Hall and Lawton, 2019).

multimode data are fitted well.

Overall, from the inversion results compared in Figure 6, multimode inversion result
indicates well-defined near surface structure and substantially narrower uncertainty at
all depth. The deep layer velocity is more accurately characterized compared with the
fundamental mode inversion, uncertainty at shallow layers is reduced with more data
constraints.

APPLICATION TO DAS DATA FROM CAMI-FRS

Data analysis

The study in this paper investigates the DAS data acquisition by active seismic source
component. A straight-line fibre buried in the 1 meter deep trench with the length of
1111.4m is selected for data processing. The source used for acquisition was an IVI Enviro
Vibe with a linear sweep from 1Hz to 150Hz with 2s of listening time(Hall and Lawton,
2019). The recording fibre has a nominal gauge length of 10m and trace spacing of 0.66m.
Another helical fibre lying close to the straight-line fibre has the same length of 1111.4m,
and the trace spacing of this fibre is 0.59m due to a pitch angle of 28.5 ◦. Based on previous
exploration and well drilling information at this site, the near-surface geology at FRS is
extremely unconsolidated and stratified. A coal layer with approximate 25 meter depth lies
above the baserock. From shot record and f-k analysis of the DAS data, strong energy of
multimodal ground roll could be seen, while reflection and refraction waves can hardly be
observed.
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FIG. 9. Data spectrum analysis for different shots of the first DAS data.

FIG. 10. Single shot record and spectrums of the second DAS data. (a) Shot record. (b) Spectrum
without normalization. (c) Spectrum with normalization. (d) Spectrum with windowing normalization.
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FIG. 11. Dispersion compensation. (a) Original record. (b) Record after compensation. (c) Muting
higher velocity part. (d) Fundamental mode after muting. (e) Muting lower velocity part. (f) Higher
modes after muting.

There are two sets of active source DAS data available at CaMI-FRS(Figure 8). The first
one is a 1m deep straight line fiber trench data. It has 38 shots totally, and the sources are
placed inline with the fibre. Due to the source frequency limit, it’s hard to extract much
useful information below 10Hz, shown in Figure 9, which will correspondingly constrain
the investigation depth of Rayleigh wave. The data quality of second one is much better. It
has the same receiver sets, while the source sweeps from 1Hz to 150Hz. From the spectrum
of one shot data shown in Figure 10, we could find, obviously, the second data has wider
frequency range, and contains richer information. Thus, we will conduct surface wave
dispersion inversion on the second data. This inversion algorithm is applied to one shot of
the DAS data, as these shots all have the same receivers. The frequency spectrum is obtained
through τ − p transform and Fourier transform on the raw data. Multimodal specturms are
displayed in Figure 10 with column normalization and windowing normalization. Then the
dispersion compensation method is adopted to separate different modes in the frequency
spectrum(Fig.11). 36 points(4.5Hz to 22Hz) from fundamental mode and 13 points(6Hz to
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FIG. 12. DAS data multimode separation. (a) Original data spectrum. (b) Fundamental mode after
separation. (c) Higher modes after separation.

12Hz) from first higher mode are picked with a regular frequency interval of 0.5 Hz(Fig.12).

With the dispersion curves we picked, the maximal investigation depth for inversion is
set to be 50m.

Inversion and results

FIG. 13. Initial inversion result for DAS data. (a) Vs posterior distribution. (b) and (d) are layer
number posterior distribution. (c) and (e) are likelihood distribution.

An initial inversion is conducted using the fundamental mode and assuming the data
errors are independent Gaussian distributed.

The PPD results are shown in Figure 13. This figure shows there are several possible low
velocity layers within 30 m depth. The first layer has a velocity around 100 m/s, and layer
thickness is 3-5m. The second layer has a velocity around 260m/s, and the layer thickness is
approximately 25m. The velocity below 30m is uncertain, ranging from 400 to 1200m/s. As
our fundamental mode data starts from 5Hz, there is not enough data information to get the
accurate velocity for this depth. Data prediction ensemble is generated using Markov Chain
samples, shown in Figure 14. The data could be fitted well using this model samples. Then
the data errors are estimated by the approach explained in the theory part. Next, a multimode
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FIG. 14. Data predictions using the Markov Chain samples

inversion is conducted using fundamental mode and first higher mode. A comparison is done
between inversion results obtained only using the fundamental mode and inversion results
using multimode dispersion curves. V s marginals and interface probability of multimode
inversion are displayed in Figure 15.

Based on results above, there is a clear improvement in the multimode inversion results.
The uncertainty of deep layer has been constrained, the uncertainty of the top layer is
reduced. and the interfaces are more clear. The velocity of the bottom layer also shows the
bifurcation phenomenon. Besides, data error is estimated using the data residuals with the
same procedures for synthetic data, and then involved in the following inversion process.
But with more constraint from first higher mode, the velocity value is more close to the real
velocity value from the borehole data. For DAS data, the depth within 30 meters is well
characterized with narrow uncertainty. And this result could conform the general geology
structure in this field. Fundamental mode result and multimode result have close interface
and velocity PPD, which further proved the result soundness.

Comparison with other studies results

This section compares our results of V s uncertainty distribution with the shear wave
velocity obtained in other studies. The first reference shear wave velocity profile is obtained
through refraction migration. The second shear wave velocity profile is obtained through
geophone ambient noise interferometry.

We compared out result with other results, shown in Figure 16. From the comparison, our
result shows great agreements in terms of absolute velocities and interfaces. The interface
at depth around 28m is the lower boundary for the coal layer matching well with borehole
information. Besides, a small low velocity layer near the surface is better resolved compared
with other results. This shows our method has strengths in resolving detailed structure of
shallow layers and provide results easier to interpret. However, different data were used in
these methods, our dispersion curve is picked from 4.5Hz, and the interferometry method
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FIG. 15. Vs posterior using multimode dispersion curves

involves frequency as low as 3Hz. Therefore, it could resolve deeper layers, while the
resolution ability for this DAS data extends to around 30 m. From the result, we could see
there is small uncertainty within depth of 28m, which also reveals the V s velocity model is
quite robust.

CONCLUSIONS

This study focused on utilizing surface DAS data for multimode surface wave dispersion
inversion. Surface DAS data provide densely sampled Rayleigh wave with no interference
of other waves. Considering computational cost and geology background, an efficient
and probabilistic inversion named trans-Dimensional inversion is used for quantitatively
characterizing the distribution of shear wave velocity, layer thickness and layer number
in shallow site. Besides, a rigorous data error estimation method is adopted to include
correlated errors and non-stationary errors into the inversion process. For more efficient
convergence, parallel tempering which allow dynamic state exchange between different
Markov Chains and principal component rotation for better convergence are used to optimize
the inversion algorithm. The inversion applied to simulated models with random data error
and correlated data errors. The Vs marginal profile conforms with the true model and
demonstrates reasonable uncertainty distribution. The data prediction ensemble generated
by PPD samples could fit the data well. Then we applied it to multimode DAS data, and we
found the result is consistent with other results. An extra low velocity layer is found from
the PPD, robust shear wave velocity within 30m is obtained.

DISCUSSION

We found solution non-uniqueness when we apply the inversion algorithm on certain
synthetic models. The concrete conflicts are reflected in additional lower velocity layer
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FIG. 16. Comparison with other results. (The white dashed line is the result of SWD inversion using
ambient noise. The red line is the borehole velocity.)

appearing in our inversion results and models can not match with the true model appearing
repeatedly in the PPD. We believe, this just reveals the trans-Dimensional inversion is
quite intelligent, it explores all the possibilities that could match the dispersion curves we
observed. As the forward modelling is not sensitive to low velocity layer, models with low
velocity layers could be a possible model generating same dispersion curve. And since
Rayleigh wave is more sensitive to root mean square (RMS) shear wave velocity due to its
intrinsic characteristic, trade off models with same RMS shear wave velocity could also
be the solution. And higher mode which are more sensitive to deeper parameters could
help improve the result. The results shows all the models that match with certain dispersion
curve, including more general posterior. We have to acknowledge the information contained
in dispersion curves is limited. In order to obtain unique solution, additional data like
travel time and ellipticity or priors should be incorporated as constraints. In addition, more
efficient parallel tempering strategy that allow the chain block rapidly jump out of a local
minimum should be explored.
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