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ABSTRACT

In this paper we extend recent work on formulating seismic full waveform inversion
within a deep learning environment. We are motivated both by the possibilities of incor-
porating training of multiple datasets with the relatively low dimensionality of a theory-
guided network design, and by the fact that by doing so we implement an FWI algorithm
ready-made for new computational architectures. A recurrent neural network is set up with
rules enforcing elastic wave propagation, with the wavefield projected onto a measurement
surface acting as the labelled data to be compared with observed seismic data. Training this
network amounts to carrying out elastic FWI. Based on the Automatic Differential method,
the exact gradient can be constructed by inspection and use of the computational graph, a
gradient which acts to update the elastic model. We prepare our approach to mitigate cross-
talk, which is a general property of multiparameter full waveform inversion algorithms, by
allowing relative freedom to vary the eFWI parameterizations. The influence of random
noise has also been examined.

INTRODUCTION

In the past year, CREWES has been expanding on and following a theory-guided ap-
proach to our analysis and implementation of machine-learning and/or AI methods for seis-
mic data. In a theory-guided machine learning algorithm, the very large number of degrees
of freedom represented by the weights of a ML network are reduced through assumptions
regarding the physical origins of the output and input layers. For instance, theory-guiding
within ML was used by Downton and Hampson (2018), in which a network designed to
predict well log properties from seismic amplitudes was trained not only with real data
but with synthetics derived from the Zoeppritz equations. Philosophically, theory-guided
approaches are appealing to us, simply because it is difficult to believe that even the most
modern Al algorithm will find the fact that deterministic physics connects the inputs and
outputs of many geoscience problems unhelpful. The project reported in 2018 (and pub-
lished this year) which formalized the approach for us was the work of Sun et al. (2019),
in which a recursive neural network was set up to simulate the propagation of a seismic
wave through a general acoustic medium. The network is set up in such a way that the
trainable weights correspond to the medium unknowns (i.e., wave velocity model), and the
non-trainable weights correspond to the mathematical rules (differencing etc.) enforcing
wave propagation. The output layer was the field projected onto a measurement surface.
Sun et al. (2019) discovered that training such a network with a single data set is very close
to carrying out full waveform inversion.

We have put significant effort in 2019 then into extending and expanding this approach,
and that expansion is the topic of this paper. The primary effort has gone into extending the
acoustic work to the far more complex elastic problem. In this paper the isotropic elastic
(2D) problem is broached; in a companion report, the viscoelastic problem is set up. There
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are two kinds of motivation for doing this: (1) novel alterations to standard elastic FWI
which can be accomplished only in such a milieu as the RNN; (2) the implementation of
this seismic inversion problem within an ML environment tailor-made for computational
architectures which are “the wave of the future”. The importance of the second motivation
is more or less self-evident. In the case of the first, there are aspects of a trainable ML that
we have not yet broached and which may be extremely valuable. For instance, could the
training aspect of a theory guided FWI-RNN be used to combat modelling errors? We do
not answer these questions in this report - we simply formulate and stress-test an isotropic
elastic machine learning full waveform inversion - the first of its kind to our knowledge.

Regardless of how it is implemented, full waveform inversion (FWI) is a challenging
data fitting procedure aimed at extracting important information from seismic records. Key
ingredients for conventional FWI are an efficient forward modeling method to simulate
synthetic data, and a local differential approach, in which the gradient and direction are
calculated to update the model.

Forward modelling/simulation

There are several ways to perform forward modeling, for example, the finite differ-
ence method, finite element method and the pseudo spectrum method. The finite difference
method (FD method) is one of the most popular methods in seismic waveform simula-
tion, reverse time migration and full-waveform inversion. FD method is straightforward
to be implemented in programming and easy to be paralleled. FD method is also the first
choice for high dimensional problems. Various kinds of FD methods have been developed
by researchers to solve acoustic, elastic and viscoelastic wave equations, for instance, the
staggered-grid method and the optimally accurate FD method (Moczo et al. (2007)). For-
ward modeling methods could influence the inversion results. The higher orders of time
and space we use to discrete the partial derivatives, the more accuracy we will have to sim-
ulate waveform. Accurate synthetic data is essential for an inversion problem. However,
the increase orders of time and space for the partial derivatives would inevitably increase
computational cost. Furthermore, which kind of wave equation we would use to generate
synthetic data could also influence the inversion results. For instance, if the area where
we are investigating has a very high attenuation level and we only use the elastic wave
equation to generate synthetic data. The inversion result would be inevitably influenced by
this modeling error. The next essential step for FWI is the gradient calculation. The gra-
dient for traditional FWI is achieved by calculating the zero-lag correlation of the forward
propagating wavefields and the residual backpropagation wavefields. After we have the
gradients, an optimization method could calculate the directions for FWI to accelerate the
convergence rate. Next, a step length is usually obtained by line search. With the direction
and step length, we can update our models and reduce the misfit.

Multiparameter updating

Issues faced by FWI are also challenging. The local minimum problem can be seen as
one of the most important issues in FWI. FWI is a highly nonlinear problem, thus it may
contain several local minimums for the misfit. When the initial model is not good or close
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enough to the global minimum, the inversion could be trapped into the local minimum and
can not jumpy out of it. When it comes to the elastic waveform inversion, which is a multi-
parameter inversion, the trade-off problem is also an important issue. The trade-off problem
in FWI can be considered as the conflation of the influence of one physical property on the
data with another (Pan et al. (2019)). Implementing, second-order optimization method
could mitigate this problem. Multi-parameter Hessian is a square and symmetric matrix
with a block structure. Off diagonal blocks of the Hessian matrix blocks measure the
correlation of Frechet derivative wavefields with respect to different physical parameters,
which act to mitigate the trade-off effect of these parameters (Innanen (2014)). Tarantola
introduced the use of scattering patterns for trade off problem (Tarantola (1986)), saying
that by using different types of parameterization, the cross talk problem could be released.
Gholami et al. (2010) studied the sensitivity of elastic FWI for VTT media. Pan et al. (2019)
tested the performance of different parameterization for FWI by using both the synthetic
data and field data.

MACHINE LEARNING METHODS IN GEOPHYSICS

Basic ideas of machine learning methods have been used in seismic inversion since the
1980s. Roth and Tarantola (1994) presented an application of neural networks to invert
from time-domain seismic data to a depth profile of acoustic velocities. Due to the de-
velopment of hardware, machine learning methods are becoming more commonly used in
the study of Geophysics problems in recent years. Machine learning methods are studied
widely in a variety of areas in Geophysics, such as fault detecting, denoising, reservoir
predicting and inverting velocity models. Jin et al. (2019) implemented machine learning-
based models using supervised learning techniques to identify fracture zones. A convolu-
tional neural network (CNN) was trained by Zheng et al. (2019) to pick faults automatically
in 3D seismic volumes, and the CNN was trained to make predictions of 1D velocity and
density profiles from input seismic records. Peters et al. (2019) explained the similari-
ties and differences between deep networks and other geophysical inverse problems and
showed their utility in solving problems such as lithology interpolation between wells,
horizon tracking, and segmentation of seismic images. Chen et al. (2019) leveraged the
unsupervised learning philosophy of the autoencoding method to adaptively learn the seis-
mic signals from the noisy observations. Li et al. (2019) proposed a novel method that is
applicable to attenuating both incoherent noise, such as environmental noise, and coherent
noise, such as ground roll and scattered noise, under a unified learning-based framework.
Zhang et al. (2019a) proposed an interpolation method based on the denoising convolu-
tional neural network (CNN) for seismic data. Parra et al. (2019) presented a method
based on an inversion algorithm that automatically inverts subsidence signatures for tun-
nel radius, depth, Poisson’s ratio, and the gap parameter. Smith et al. (2019) developed
a machine-learning workflow that incorporates geophysical and geologic data, as well as
engineering completion parameters, into a model for predicting well production. By us-
ing a supervised machine learning method, Shustak and Landa (2018) developed a method
uses numerical backpropagation of the time-reversed registered wavefield followed by an
analysis of its obtained focusing.

When it comes to the inversion of the velocity model, Sun and Demanet (2018) applied
deep learning method to the challenging bandwidth extension problem that is essential for
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FWI.Zhang et al. (2019b) designed an end-to-end framework, the velocityGAN, which can
generate high-quality velocity images directly from the raw seismic waveform data. Wu
and Lin (2018) trained a network with an encoder-decoder structure to model the corre-
spondence from seismic data to subsurface velocity structures. Yang and Ma (2019), based
on convolution neural network, investigated a method based on the supervised deep fully
convolutional neural network for velocity-model building directly from raw seismograms.
However, in these methods, the theories of wave propagation and inversion methodology
have been ignored, which means that the nonlinear relationship between the seismic records
and the velocity models are based on large amount of training. Jian sun et. al (2019) pro-
posed a theory-guided machine leaning method, which used the recurrent neural network
(RNN) to perform scalar wave FWI. This RNN is consisted of several RNN cells, and
each RNN cell is designed according to the scalar wave equation. This method combines
the knowledge we know about wave propagation and the advantages of machine learning
methods. In this study, we extend their idea into elastic media to perform a more challeng-
ing inversion test.

INTRODUCTION TO RECURRENT NEURAL NETWORK

The recurrent neural network is a powerful model for sequential data. RNN achieves
state of the art performance on tasks that include language modeling (Mikolov (2012)),
speech recognition (Graves et al. (2013)), and machine translation (Kalchbrenner and Blun-
som (2013)), (Zaremba et al. (2014)).

A recurrent neural network is consisted of several recurrent neural network cells. Each
cell could be considered as a time step with some mathematical operations inside. The op-
erations in each cell would use some information that is generated from the previous cells.
Thus, the data generated in a cell is used recurrently by other cells. Figure 1 (a) shows a
simple structure of a recurrent neural network to solve a problem. The mathematical opera-
tions between the internal variables are also listed at the bottom of the figure. The problem
may need several cells to achieve the final goal, but only three cells of the network are
demonstrated in this figure for simplification. In this RNN, sequence S = [sg, $1, S2, - - - |

is the input data. Sequence w = [wy, w1, wy, - - -] contains the parameters that need to be
optimized. O is an initial input. Elements in sequence O = [O;, O3, Os - - -] are the internal
variables calculated in cells. Sequence H = [hg, hq, ho, - - -] is the labeled data. Sequence

V = (v1, v9, v3, - - -) evaluates the difference between output data of the cell and the labeled
data by using mean square objective function. We wish to make labeled data H and RNN
output O as close as possible, by optimizing the trainable parameters w = [wy, wy, wa, - - +].

In order to optimize the trainable parameters, w = [wy, w1, wa, - - -], we need to calcu-
late the partial derivative of the residual with respect to these parameters. This process is
achieved by using the backpropagation method according to the Chain’s Rule. For instance,
we want to calculate the partial derivative of the residual V3 with respect to w;. According
to the computational graph we have:

OVs  0V3 00y  OVs 009 005 005
ow,  00¢ Ow,  00¢ D05 005 Owy 0
= OVs 00y 005 005 00 = —2cos(w181)$1(hs — Oy)
009 00g 005 005 Ow,
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Cell one Cell two Cell three Cell one Cell two Cell three
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cells
—» Backpropagation of data

FIG. 1. Forward propagating of RNN

The gradients of w,, and w- are also achieved in the same way. After we have the gradients,
according to an optimization method we can update the weights and start another iteration.

We do not need to calculate all the partial derivatives by ourselves. If we are using a
machine learning library of Pytorch or Tensor Flow, the partial derivative would be calcu-
lated automatically calculated by using the Automatic Differential (AD) engine built inside
of these machine learning libraries. During the forward propagation, a Dynamic Compu-
tational Graph (DCG) would be built. This Dynamic Computational Graph records how
every internal parameter is calculated from its previous one. When we need to calculate the
partial derivative of the output with respect to the trainable parameter, Automatic Differen-
tial engine would use the DCG to backpropagate the computational graph to that parameter,
and calculate the partial derivative along the computational graph using Chain’s rule.

According to the modeling framework of finite difference method, seismic waveform
modeling could also be considered as a kind of sequential data, since the wave equation
can be discrete in time and the wavefields at the current time step can be calculated from
previous time steps. Thus, we could also form a kind of recurrent neural network for
seismic waveform modeling. When we want to simulate synthetic data, RNN would prop-
agation forwardly to generate synthetic wavefields, and the wavefields would be recorded
at the surface of the model, which forms the synthetic shotrecords. At the same time of
forward propagating, the mathematical operations between each internal variables would
be saved for backpropagation. When it comes to inversion, the residual between the syn-
thetic shotrecords and observe records could be calculated. With the Automatic Differ-
ential method, partial derivative of the residual with respect to the velocity model would
be gained. Then, we can use an optimization method to update the model and reduce the
misfit.
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ISOTROPIC ELASTIC WAVE EQUATION

Equation (2) shows the equation of the isotropic elastic wave equation. v, and v, are
the elastic velocity fields in x and z direction. o, 0., and o, are the stress tensors. p
is the density of the model. A and p are the first and the second Lame parameter for the

elastic media.
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To simulate the wave propagation in the underground world, a PML (Perfect Matching
Layer) damping coefficient is used to absorb energy when the waves hit the boundary of
the model. Thus, we need to discrete the velocity fields and the stress fields in both x and z

direction. So we have equation (3) and (4):
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In the above equation d, and d, are the PML boundary damping coefficients in X and z
direction respectively. I = A42pu. The mathematical expression of the damping coefficient
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. i \"
dn(l) = dOn ( ) ) (5)

Npmin

18:

where 1 means x or z direction, and i is the length of the effective PML layers form the
simulation boundary. 7,,,;,, is the number of the PML layers in ) direction. The value of P
is usually between 1 and 4. The value of dj,, is:

1 TV
do, =1 - —— 6
0'!7 Og <R> npmlnAn7 ( )

where R is the theoretical reflection coefficients, and 7 is the tuning parameter which has
the value between 3 and 4. v, is the shear velocity value. An is the grid length in 7
direction.The combination of the R, 71, can be expressed as:

R=0.01, iy =5,

R=10.001, nppy =10, . )
R =0.0001, nppy, = 20

Derivative calculation based on image convolution
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FIG. 2. Staggered grid finite difference method based on convolution

In this study, we use the staggered grid finite difference method to simulate synthetic
data, and we use image convolution operation in machine learning to calculate partial
derivative. Figure 2 shows how we use image convolution to update the velocity fields
in x direction at grid point (2,2) and (2,3). According to the staggered grid format we
first need to calculate the partial derivative fields for the stress fields. From the figure, we
can see that grids for particle velocity field are located in the middle of stress fields grids,
which form the staggered grid format. To calculate the partial derivative by using image
convolution, first, we need to create a kernel. The kernel is designed according to the stag-
gered grid finite-difference coefficients and the staggered stencil. Kernel would move from
the edge of the original matrix element by element to calculate the partial derivative. In
figure 2, to update the velocity fields at point (2, 2), 22)a kernel which has the value of
[0, c1, ca, c3, ¢4] s designed. At first, the kernel covers five stress fields elements which are
(00, g2V 522 5(23) 524 This means that these five elements of the stress fields
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would be used to update the velocity fields. By summing up all the elements of the doc
product of these five elements with the kernel matrix, we can get the value of the partial
derivative stress fields to update the velocity fields, Thus, the updated velocity fields at
point (2, 2) can be calculated as:

vx(2,2)|k+§ _ V(2,2)| 7 4 7(010(2,1)|k + 020_(2,2)|k + 030_(2,3)|k 4+ 040_(2,4)|k) (8)

xT

After this operation, the kernel would move forward to calculate the partial derivative for
next point, which can be expressed as:

At
Vx(2,3)|k+§ _ ‘/;(2,3)|k—% + 7(010(2’2)|k + 620_(2,3)|k: + 630_(2,4)|k' + C40(2,5)|k) 9)

This operation would continue until the partial derivative of the last grid point of the field is
calculated. Thus, the partial derivative of a field can be expressed in an image convolution
way:

0,0, = 0, % Ky, (10)

where K,; is the kernel we create to calculate the partial derivative in x direction and
* means image convolution. By using machine learning packages like Tensor Flow or
Pytorch, the image convolution function is well designed and we do not need to program
everything manually. All we need to do is to choose which field we want to calculate partial
derivative and design the kernels.

By using the image convolution method to calculate the partial derivative and imple-
ment PML boundary, the isotropic elastic wave equation in an RNN cell can be expressed
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as:
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,where the kernels are
_ 0. .
(1/24)/dz,
K (—9/8)/dz, (12)
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L O -
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K, = [(1/24)/dx, (—=9/8)/dxz, (9/8)/dx, (—1/24)/dz, O} (15)

Equation (11) is also what is happening in an elastic RNN cell. Details about the struc-
ture of an elastic RNN cell, please see appendix two. Figure 3 shows how elastic RNN
generates seismic records. Every RNN cell is designed according to the isotropic elastic
wave equation, which is equation (11). In figure 3, only the velocity fields at the x di-
rection is shown, however, at each time step we need to generate all the following fields:
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FIG. 3. How elastic RNN generate synthetic data
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Table 1. Testing model parameters

Physical parameters Physical meaning Value
V, Pressure wave velocity ~ 2000m/s
Vi Shear wave velocity 1400m/s
P density 1000kg/m?

Table 1 lists the property of an elastic media, and figure 4 shows the velocity fields in the
horizontal x direction and vertical z direction calculated at different time steps generated by
RNN. The source of the wavelet is a Ricker wavelet with a main frequency of 35H z. The
size of model is 100x 100, and the grid length is dz = dz = 4m. The source is located at
the center of the model. Figure 4 (a) are the horizontal and vertical velocity fields generated
at time at 0.1s, and figure 4 (b) are the fields calculated at 0.2s. We can see that RNN has
provided us with right wave fields, and when the waves hit the boundary, they are absorbed

properly.
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FIG. 4. (a)Velocity fields generated at time at 0.1s,(b) velocity fields calculated at 0.2s

NUMERICAL INVERSION

In this section, we test the efficiency of the method we introduce by doing numerical
tests. Figure 5, (a), (d) and (g) demonstrate the true model for V,, V; and density model.
The source of the wavelet is Ricker’s wavelet with a main frequency of 35H z. The model
has 54 x101 grid points, and the grid length of the model is dv = dz = 4m. Ten sources
are evenly distributed at the top of the model, and there are 101 receivers positioned at the
top of the model. The total time to receive the shotrecords is 0.3s, and length for the time
step is dt = 0.0003s. Initial models are obtained through Gaussian smooth. The maximum
iteration time is 200.

Gradient calculation is one of the most important steps for FWI. The gradients in
this study are calculated by the Automatic Differential engine in the machine learning
library, Pytroch. The mathematical principle under this Automatic Differential engine is
the Chain’s Rule. Gradients calculated in this way are the exact gradients based on for-
ward computational graph. During forward propagation, RNN would generate synthetic
shotrecords at each time step, at the same time, a Dynamic Computational Graph (DCG)
would be built to record the mathematical operation between each variable, for instance,
how the stress field is calculated according to the stress field at the last time step and the
partial derivative of the velocity field. Then, we can start the backpropagation method.
According to the Dynamic Computational Graph saved in memory, residual between ob-
serve data and the synthetic data would be calculated and backpropagated to the trainable
parameters. The partial derivative of the residual with respect to the trainable parameters
would be calculated by using the Chain’s rule, in the same way as we present in the first
section. After calculating the gradient, we need to use an optimization method to calculate
the direction and update the trainable parameters.

In this test, the optimization method we use is the Adam algorithm. Algorithm 1 shows
the basic step about Adam algorithm. One of the advantages of Adam algorithm is that
it has the ability to shrink the ‘step-length’ of model updates during the iteration process,
which means a relatively large learning rate can also be tolerated with oscillation occurred
at first few iterations and we do not need to search the step length in every iteration. A
traditional line search method, like the Wolfe Principle, would require extra forward mod-
eling calculation, which would inevitably increase the computational cost. With Adam
algorithm, the extra computational cost for step length would be mitigated (Jian Sun et. al.
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2019).

Algorithm 1 Adam algorithm. Recommended setting for hyper-parameters: §; = 0.9,
B2 = 0.999, and € = 10~%, All operations on vectors are element-wise. 35 and 85 donated
the k£ power of 5, and [,
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FIG. 5. Velocity parameterization (a), (b), (c) True, initial and inversion result for V,, model respec-
tively, (d), (e), (f) True, initial and inversion result for V; model respectively,(g), (h), (i) True, initial
and inversion result for p model respectively.

Figure 5 (b), (e), (h) are the initial models we use for V,,, V; and p model. Figure 5 (c)
is the inversion result of the V), model. Figure 5 (f) is the inversion result of the V; model.
Figure 5 (i) is the inversion result of the density p model. Compared with the true model,
the layers of the subsurface have been correctly updated, which means that this elastic FWI
deep learning method based on recurrent neural network could provide us with promising
inversion results. The matching between the inversion results and the true models are very
satisfactory. Compared with other models, the inversion results for density is not as good
as the V,, and V; model. In figure 5 (i), we can see the blurred layers on the top of the
density model. This may due to the cross-talk problem. The cross-talk problem happens
when we need to update several parameters simultaneously, and influences the inversion
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results between each model. We will talk about how to release this problem in the next
section.

Different parameterization

Estimating multiparameter models is an essential step for lithologic characterization
and reservoir monitoring. However, if we intend to update several parameters simultane-
ously, the update of one parameter would influence other parameters, and this is the trade-
off problem or also referred to the cross-talk problem. One of the main reasons for this
problem is that the nature of seismic response for several different parameters are coupled
together from transmission to reflection. Furthermore, the magnitude for different parame-
ter can have different orders and different strength, which would make the inversion poorly
conditioned (Operto et al. (2013))

A second-order optimization method could be used to mitigate the cross talk problem
because the inverse of the Hessian is used to suppress the parameters that would be incor-
rectly updated, (Innanen (2014), Yang et al. (2016)). However, the direct inverse of the
Hessian matrix based on the Newton’s optimization method would cost a huge amount of
memory. The implementation of the Truncated-Newton method would to some extent re-
lease this computational cost problem since the inverse of Hessian would be solved with a
matrix-free scheme of the conjugate-gradient algorithm (Métivier et al. (2013), Boehm and
Ulbrich (2015)). Quasi-newton methods, for instance, the [-BFGS method, could also be
used to decrease the computational cost by approximating the inverse Hessian matrix with
the gradient information from previous iterations (Brossier et al. (2009)).

Different parameterization method is also proposed to deal with the coupling effects
in multiple physical parameter FWI. The coupling effects between different physical pa-
rameters are controlled by the physical relationships of these parameters and the subsurface
model parameterization choice. Tarantola (1986), by using the "scattering" ( or "radiation")
pattern, systematically analyzed the effect of different model parameterizations on isotropic
FWI. It is usually believed that the more different the scattering pattern between each pa-
rameter is, the better the inversion results we should have. Kohn et al. (2012) showed that
in different geophysical parameterization of isotropic FWI, density is always the hardest
to get good inversion result due to the energy leakage. Pan et al. (2019) used different
parameterizations to test their effect on Hussar Land data.

The objective of this section is to test the performance of different parameterizations
under the framework of the recurrent neural network for isotropic-elastic FWI. By modi-
fying the RNN cell and changing the trainable parameters, we combine the deep learning
method and parameterization theory. Three parameterization models are considered: veloc-
ity model (V-Dmodel) (P-wave velocity , S-wave velocity , and density ), modulus model
(M-D model) (First Lame parameter A\, second Lame parameter u, and density), and the
stiffness matrix model (S-D model) (¢, c44 and density p).

We first use a toy model to test the problem. Figure 6 (a), (d) and (g) are the true P wave
velocity model, S wave velocity model and density model we use in this test respectively.
We can see that three box anomalies are located at different positions of the layers. The
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initial models are obtained through Gaussian smooth. The size of the model is 40 <90, and
the grid length of the model is dv = dz = 4m. The type of the source wavelet is Ricker’s
wavelet with the main frequency of 35H z. The source is located at every 5 grid point of
the model, and every grid point at the top of the model is positioned a receiver. The total
receiving time is 0.25s, and the length for the time step is 0.0005s. Figure 6 (c), (f) and
(i) are the inversion results of P wave velocity, S wave velocity and density p. From the
comparison of the inversion results with the true models, we can see that all the models have
been correctly updated. RNN based FWI has given us the right inversion results. However,
we can also see that the V; model and p model have influenced the inversion result of V,,
as the black arrows pointing out. At these positions, }, model has been incorrectly updated
due to the influence of V; model and density model. From the inversion result for V, we
can also see that V; has been badly influenced by density model, and p model has also been
severely contaminated by V; model. These are the problems caused by the cross-talk.

Table 2. Different parameterization

Model Parameters Physical Meaning
V-D model Vo, Vss p P wave velocity, S wave velocity and density
M-D model A fhsP Lamé’s first and second parameter, density

S-D model ¢y, caq, p Isotropic-elastic stiffness matrix coefficients and density
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FIG. 6. V},,V;, p parameterization. (a) True V,, model, (b) Initial V,, model, (c) V,, inversion result, (d)
True Vi model, (e) Initial V; model, (f) Vs inversion result, (g) True p model, (h) Initial p model, (i) p
inversion result

Figure 7 shows the modulus parameterization by using A, iz and p parameters to repre-
sent the model, where A = V?p — 2V?p, i = V?p. By modifying the RNN cell, we can
change the trainable parameters from velocity parameters to modules parameters. Figure 7
(a), (d) and (g) are the true models of A, iz and p. Figure 7 (c), (f) and (i) are the inversion
results of modulus parameters. The matching between the inversion results and the true
models are very satisfactory. We can see the improvements of the inversion results from
the comparison of modulus parameterization and velocity parameterization. The trade-off
problem has been released by using the modulus parameterization. The influence of density
on A model and i model has been mitigated. The trade-off between A and p has also been
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decreased. However, the density mode still suffers from the cross-talk. The influence of p
model on p model is obvious.

Figure 8 shows the parameterization of the stiffness matrix coefficients. We can use two
stiffness matrix parameters and density to demonstrate an isotropic elastic media, which
are c11, c44, and density p (c;1 = A + 2u, cyy = p). Figure 8 (a), (d), (g) are the true
models of c;1, cqq, and p respectively. Figure 8 (b), (e), (h) are the initial models for ¢y1,
cy4, and p respectively. Figure 8 (c), (f), (i) are the inversion results of c;q, c44, and p.
The models have been correctly updated by using this parameterization. Also, compared
with velocity parameterization, the cross-talk problem has been mitigated as well in S-
D parameterization. However, the cross-talk in density still remains, which can not be
completely reduced.
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FIG. 8. Stiffness matrix parameterization (a) True c¢;; model, (b) Initial ¢;1 model, (€) ¢11 inversion
result, (d) True cq44 model, (e) Initial c44 model, (f) c44 inversion result, (j) True p model, (k) Initial p
model, () p inversion result.

Figure 9 shows the inversion of another model by using the M-D parameterization, and
figure 10 demonstrates the inversion results of this model by using the S-D parameteriza-
tion. We can see that the cross talk problem is not very severe in this model. However, we
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can see that the inversion result for c,4 is not very good compared with other parameteriza-
tion. Compared with figure 5, the inversion results for density are also improved with the
M — D and S — D parameterization. The cross-talk phenomenon, the blurred part at the
top of the density model have been improved. Figure 11 shows the model misfits for V,,
A, 11, Vi, 1, cqq respectively. All the models have converged at the end of the inversion.
We can also see that the convergence rate between V), A and c;; are similar. Compared
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with the inversion for Vj, the inversion for x and c44 have a better convergence rate, how-
ever, the inversion is much more stable by using the velocity parameterization. The model
misfit curve for p and c44 isolates several times before they converge. Figure 12 shows the
model misfit convergence rate for density by using the three parameterizations. The decline
rate for V — D and S — D are very similar and stable, and in this test, the density model
with M — D parameterization converged in around 10 iterations. Figure 13 demonstrates
how the data misfits change during the iteration by these three parameterizations. The in-
version by using the M — D and S — D parameterization have a better convergence rate

for the model and data misfits, however, the inversion is more stable by using the V' — D
parameterization.
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Choosing which parameterization is mainly based on the scattering pattern, however,
the assumptions to calculate scattering patterns are not suitable in regular seismic data sets,
for instance, the scattering pattern is calculated from an incident plane wave and back-
ground is usually considered as homogeneous. Meanwhile, the scattering pattern is usually
calculated based on Born approximation, which means the higher scattering patterns are
usually not considered here. Thus, in the future, we may need a more complete theory to
choose which parameter we should use to tackle the cross-talk problem.

Noise stress test

In this section, we will test the sensitivity of this deep learning method we proposed
with Gaussian noise. In order to show the influence of the noise on the data more clearly,
in Figure 14, we plot a trace from the shot profile with different ratios of noise.

(b) Gaussian noise (SNR=~-0.09) (c) Gaussian noise (SNR=-0.25)

(@G ian noise (SNR~-0.04)

Noise data
Noise free data | |

Noise data
Noise free data
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FIG. 14. Comparison between noise free data and Gaussian noise data. (a) Red line: noise free
data, blue line: noise data with Gaussian noise SN R~ — 0.04 (d) Red line: noise free data, blue
line: noise data with Gaussian noise SN R~ — 0.09 (g) Red line: noise free data, blue line: noise
data with Gaussian noise SN R~ — 0.25

In figure 14 (a), the red line is the record without noise, and the blue line is the record
with Gaussian random noise. The mean value of the noise is zero, and the standard div-
ination of the noise is 0.3 (std = 0.3), and the signal to noise ratio is approximately —0.04.
Figure 14 (b) shows the noise-free data and the noise data with SN R~ — 0.09. Figure 14
(c) shows the original data and the noise data with SN R~ — 0.25. From the records, we
can see that as the increase of the noise level, we are having a harder time to see the useful
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information from the shot records.
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Figure 15 (a), (e) and (i) show the inversion results of noise-free inversion based on
RNN. Figure 15 (b), (f) and (j) show the inversion results with Gaussian noise SN R~ —
0.04 for V,, Vi, and p model respectively. Figure 15 (c), (g) and (k) show the inversion
results with Gaussian noise SN R~ — 0.09 for V,,, V;, and p. Figure 15 (d), (h) and (1)
show the inversion results with Gaussian noise SN R~ — 0.25 for V,,, Vs, and p. From the
inversion results, we can see that even though, a certain amount of noise has been added
to the records, the basic structure of the inversion results could still be seen, however,
some layers have been blurred. Also, the inversion for V; is much more sensitive to noise,
compared with V}, and p This means that the inversion method we proposed is still very
sensitive to noise. A small amount of noise would heavily influence the inversion results.
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CONCLUSIONS

In this study, we introduce a theory-based deep learning framework, by using the recur-
rent neural network, to perform elastic full waveform inversion. The network is consisted
of a series of RNN cells, and each RNN cell is coded according to the knowledge about
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wave propagation. During the forward mapping process, a Dynamic Computational Graph
would be built, which means the mathematical operation between different kinds of wave-
fields and trainable parameters would be saved in RAM. With the Automatic Differential
engine, we calculate the exact gradient according to the Dynamic Computational Graph.
This would avoid us from calculating the backpropagation of the residual wavefield in
space. The inversion results on simple and complex models show that the inversion based
on this RNN deep learning framework can provide us with promising inversion results.

To tackle to trade-off problem, we use different types of parameterization to mitigate
this issue. Three different types of parameterization have been tested in this study, which
are the velocity parameterization (V-D model), the modules parameterization (M-D model)
and the stiffness coefficients parameterization (S-D). Inversion results show that by using
different parameterization, the trade-off problem has been mitigated. However, we can not
draw the universal conclusion on which one is the best parameterization for all models.
The improvements made by different parameterization still various from model to model.

We also test the noise resistance level of this framework, by adding different levels of
noise into the recorded data. From the inversion results, we can see that the RNN based
inversion framework has a weak ability to tolerate noise. With a small amount of noise, the
structure of the inversion results have been blurred.

This kind of machine learning framework is a theory-based machine learning method,
which is quite different from the data based inversion. A data-based machine learning
build their nonlinear relationship of the velocity model and shotrecords, by training the
labeled data and the data generated by the network, and the nonliterary is represented with
the weights and active function in the neural network cell. Thus, when the network is
insufficiently trained or overtrained, the model can not be used as a universal situation.
Also, data-based inversion requires huge amount of training data. The method we propose
uses only the observe data as the labeled data, and the cells are designed according to the
knowledge we know about wave propagation.

Which forms the theory-based machine learning method. It combines the knowledge
we know about the forward modeling and inversion, which would give a more general so-
lution for Geophysical inversion problems. Also, it uses the Automatic Differential method
in machine learning to calculate the exact gradient based on the computational map. This
kind of machine learning framework may be the pioneer to introduce more complex ma-
chine learning models into inversion problems and tackle the issues that the traditional
inversion methods can not solve.
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APPENDIX A

The detail of the staggered grid of the velocity stress wavefield equation can be ex-
pressed as:
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