
Theory based machine learning

Theory based machine learning viscoelastic full waveform
inversion based on recurrent neural network

Tianze Zhang, Kristopher Innanen, Jian Sun, Daniel Trad

ABSTRACT

In this study, we use a recurrent neural network (RNN) to achieve viscoelastic full wave-
form inversion. The RNN is a typical type of neural network that consists of several RNN
cells. In this study, each RNN cell is designed according to the stress velocity viscoelas-
tic wave equation. With the Automatic Differential engine built in the machine learning
library, the exact gradient for the trainable parameters, the velocity models and attenuation
models, would be given based on the computational graph. Both the simple and complex
model numerical inversion tests prove that the inversion based on this theory-guided re-
current neural network can give accurate inversion results. The performance of this RNN
based inversion with different objective functions are also tested. Three objective functions
are tested here, which are the l1 norm, l2 norm and Huber objective functions. All the three
objective functions can provide the right inversion results, however, the l1 norm and Huber
objective function have better accuracy to reconstruct the high wavenumber components of
the modes. The l2 norm inversion has the best data residual convergence rate, but l1 norm
and Huber objective function have better accuracy to reconstruct the models. Compared
with Qp and Qs, the inversion for Vp, and Vs are more stable with all the three objective
functions.

INTRODUCTION

Elasticity is usually considered as a good model for seismic forward and inversion
problem. However, in real seismic data, the energy of waves can be converted into differ-
ent kinds of energy, for instance heat, due to attenuation (Robertsson et al. (1994)). This
means that pure elastic media may not be enough to demonstrate the reality in the sub-
surface in some cases. The quality factor Q is usually used to describe attenuation. The
physical meaning of Q is the number of wavelengths a wave must propagate through the
material before its amplitude drops by a factor e−π. By using Pade approximation, Day and
Minster (1984) combined the viscoelastic theory into 2D time domain modeling methods.
Emmerich and Korn (1987) introduced generalized the standard linear solid (GSLS) model
to approximate the viscoelastic earth model. Robertsson et al. (1994) developed the stag-
gered grid finite difference method for viscoelastic modeling Bohlen (2002). The modeling
method we use in this study is also based on Robertson’s method.

Full waveform inversion (FWI) is a powerful method based on data fitting to invert ve-
locity models. During full waveform inversion, we first generate synthetic wavefields by
using initial models. The forward propagating wavefields are calculated, and shotrecords
are recorded at the same time to form the synthetic shotrecords. The zero-lag correlation
between the backpropagation wavefields and the forward propagation wavefields is calcu-
lated as the gradients to update the models. Sometimes, the Hessian matrix would also be
calculated to tackle the cross-talk problem. In recent years, adding attenuation into FWI
had been studied by many researchers. Fabien-Ouellet et al. (2016) derived the adjoint state

CREWES Research Report — Volume 31 (2019) 1

Tianze et. al

equations for the viscoelastic wave equation based on the velocity-stress formulation, and
then performed viscoelastic full waveform inversion on actual fields data. Fabien-Ouellet
et al. (2017) explored the use of OpenGL to develop a portable code that can take advan-
tage of the many parallel processor architectures now available, and presented a program
for 2D and 3D viscoelastic FWI in the time domain. Yang et al. (2016) studied 3-D mul-
tiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized
Maxwell/Zener body including an arbitrary number of attenuation mechanisms. Groos
et al. (2012) explored which viscoelastic modeling is relevant during a full waveform in-
version of shallow seismic surface waves, and concluded that if we use Q factors inaccurate
the inversion becomes worse. Trinh et al. (2018) used the SEAM Phase II Foothill dataset
to simultaneously invert the P and S wave speed. Belahi et al. (2015) investigated the need
to properly account for attenuation when inverting long offset seismic data by comparing
the results of elastic FWI applied to viscoelastic data and fully viscoelastic FWI. Belahi
et al. (2016) found that inverting for all parameters together is necessary to get access to
the short wavelength features of the subsurface model because the short wavelength attenu-
ation model is required to properly treat reflections and converted waves close to the critical
angle. According to these researches, the attenuation phenomenon is an important aspect
that influences the inversion results of full waveform inversion.

The power of machine learning has become noticed by Geophysicists. One of the most
powerful advantages for machine learning is that it can build the linear or nonlinear rela-
tionship between the input and output through training trainable parameters. Data-driven
methods to invert velocity models have also been studied. Yang and Ma (2019) introduced
an inversion method that is based on the convolutional neural networks, which reduces the
strong dependency of initial models for scalar wave FWI. Mosser et al. (2018) introduced
the generative adversarial networks to perform seismic data inversion. Sun and Demanet
(2018) used CNN to expand the bandwidth of the seismic data. Lin and Wu (2018) de-
signed the InverseNet bases on the convolutional network to do full waveform inversion.
However, these methods are mainly data-driven, which means that these methods need a
huge amount of time for training and ignore the theory we know about inversion and wave
propagation. If over-fitting and under-fitting problems occur in these methods, the inversion
results would be badly influenced.

Jian et al. (2019) used a recurrent neural network to achieve the scalar wave full wave-
form inversion. Each of the RNN cells is designed according to the scalar wave equation,
which forms a theory-based machine learning seismic data inversion method. In this paper,
based on their idea, we introduce the recurrent neural network (RNN) to achieve viscoelas-
tic FWI. In this study, the cells in RNN are designed according to the viscoelastic wave
equation. Exact gradients for the trainable parameters are given by the Automatic Differ-
ential engine built in the machine learning framework. By using an optimization method
and the step length for each model, we can update the models and reduce the misfit between
the observed and synthetic data.

VISCOELASTIC WAVE EQUATION

The 2-D first order viscoelastic wave equation can be derived from the momentum con-
servation equation and the viscoelastic constitutive relationship (for details see appendix).

2 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

Equation (1) shows the viscoelastic wave equation written in the stress-velocity form. σxx,
σzz and σxy are the stress tensors, vx and vy are the velocity fields in horizontal and vertical
directions respectively, rxx, ryy and rxy are the memory variables. τσ is the relaxation time.
It is possible to use the same relaxation time for both of P- and S-waves (Robertsson et al.
(1994)). τ pε and τ sε define the attenuation level of the media. π is the relaxation modulus
corresponding to P-waves analogous to λ + 2µ in the elastic case, where λ and µ are the
Lame constants. µ is the relaxation modulus corresponding to S- waves and is the analog
of the Lame constant µ in the elastic case. Flowing Robertsson’s step (Robertsson et al.
(1994)), we have the viscoelastic wave equation:

∂vx
∂t

=
1

ρ

(
∂σxx
∂x

+
∂σxy
∂y

)
∂vy
∂t

=
1

ρ

(
∂σxy
∂x

+
∂σyy
∂y

)
∂σxy
∂t

= µ
τ sε
τσ

(
∂vx
∂y

+
∂vy
∂x

)
+ rxy

∂σxx
∂t

= π
τ pε
τσ

(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

τ sε
τσ

∂vy
∂y

+ rxx

∂σyy
∂t

= π
τ pε
τσ

(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

τ sε
τσ

∂vx
∂x

+ ryy

∂rxy
∂t

= − 1

τσ

(
rxy + µ

(
τ sε
τσ
− 1

)(
∂vx
∂y

+
∂vy
∂x

))
∂rxx
∂t

= − 1

τσ

(
rxx + π

(
τ pε
τσ
− 1

)(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

(
τ sε
τσ
− 1

)
∂vy
∂y

)
∂ryy
∂t

= − 1

τσ

(
ryy + π

(
τ pε
τσ
− 1

)(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

(
τ sε
τσ
− 1

)
∂vx
∂x

)

(1)

Equation (1) shows the viscoelastic wave equation we use in this study. The partial
derivatives in time and space are approximated by second order finite-difference on a stag-
gered grid, in which velocities are updated at integer time steps ∆t, the stress fields and
memory variables are updated at half-time steps. In this paper, the particle derivative is
calculated according to the image convolution. We first create kernels to calculate partial
derivative in different directions according to the staggered grid method. The kernels would
scan the wavefields and calculate image convolution to get the partial derivatives.

RECURRENT NEURAL NETWORK

The recurrent neural network (RNN) is a typical type of network in deep learning,
which is suitable to deal with data that be discrete in time. The RNN usually consists of
a series of cells, each represents in time step. In each RNN cell, there are one or more
trainable parameters waiting to be updated. According to our designed structure, each cell
uses the input data to generate output data. Meanwhile, a Dynamic Computational Graph
would also form, which records every mathematical operation between the variables and
trainable parameters. The misfit between the output data generated by RNN and the labeled
data would be calculated according to the misfit function we set up. The partial derivative

CREWES Research Report — Volume 31 (2019) 3

Tianze et. al

of the residual with respect to the trainable parameters would be calculated according to
the backpropagation of the Dynamic Computational Graph.

FIG. 1. Forward propagation for RNN

Figure 1 shows a simple RNN network, which represents a mathematical relationship
between the input data sequence S and output data sequence P. Figure 1 shows three RNN
cells. In each cell, the black circles are mathematical operations. The hollow circles are
the input data. The hollow rhombus are the outputs of the cells. The hollow hexagons
are the trainable parameters. The sequence H is the labeled data at each time step. We
want to build the right relationship between the input sequence S and output sequence P
by optimizing the trainable parameters. The sequence O = O1, O2, ... represents internal
variables. In Figure 1, we can see that O1 is a variable generated in cell number one and
used by cell number two. O5 is the variable generated in cell number two and used by cell
number three. The data generated by one cell is used recurrently by the next cell. This is
why it is called a recurrent neural network. According to the mathematical operations in
the RNN cell demonstrated under Figure 1, we can get the final outputs of the RNN at each
time, which forms the sequence P. Every variable in the cell is a scalar.

After we finish the forward propagation, we need to update the weights in RNN. The
gradients are calculated by using the backpropagation method according to the Chain’s
Rule. Figure 2 shows the backword propagation for this RNN. Take t = 1 as an example.
The residual R1 is calculated with R1 = H1 − P1. Sequence R = R1, R2, ... is evaluating
the difference between the output of the cell and the labeled data. If we need to update the
trainable parameter w1, then we need to calculate the partial derivative of the residual with

4 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

FIG. 2. Backword propagation for RNN

respect to the trainable parameter w1 with the backpropagation method:

∂R1

∂w1

=
∂R1

∂P1

∂P1

∂O3

∂O3

∂w1

=
∂R1

∂P1

∂P1

∂O3

∂O3

∂O1

∂O1

∂w1

= −2O1s1 = −2w1s
2
1 (2)

This partial derivative is the gradient for w1 at time step one. Following the same process,
at time step two, we can also calculate the partial derivative of the residual with respect to
weight w1:

∂R2

∂w1

=
∂R2

∂P2

∂P2

∂w1

=
∂R2

∂P2

∂P2

∂O7

∂O7

∂w1

=
∂R2

∂P2

∂P2

∂O7

∂O7

∂O5

∂O5

∂O1

∂O1

∂w1

= −2O5s1 (3)

Similarly, we have:

∂R3

∂w1

=
∂R3

∂P3

∂P3

∂w1

=
∂R3

∂P3

∂P3

∂O11

∂O11

∂w1

=
∂R3

∂P3

∂P3

∂O11

∂O11

∂O9

∂O9

∂O5

∂O5

∂O1

∂O1

∂w1

= −2O9s1 (4)

Thus, if the RNN has propagated three times, the gradient of w1, which is also the
partial derivative of the loss with respect to w1 can be expressed as:

∂Loss

∂w1

= −2s1(O1 +O5 +O9) (5)

The gradients for other parameters can also be calculated by using the same principle.

We now give the basic steps required train a RNN.

(a) Design the RNN cells by considering which kind of mathematical relationship be-
tween the input data and output data should have. Set up which parameter should be con-
sidered as the trainable parameter.

(b) Calculate the forward propagation by using the input data.

(c) Calculate the residual between the output data generated by RNN and labeled data.

CREWES Research Report — Volume 31 (2019) 5

Tianze et. al

(d) By using the backpropagation method, or the Chain’s Rule, get the gradients for the
trainable parameters.

(e) Implement an optimization method to calculate the direction and use the step length
to update the trainable parameters.

(f) Start another iteration.

By using a machine learning library, like Tensor Flow or Pytorch, we do not need
to calculate the gradients all by ourselves. The gradients can be calculated by using the
Automatic Differential engine built-in these machine learning frameworks. During the for-
ward propagation, every mathematical operation is recorded in the Dynamic Computational
Graph. The gradients are calculated according to this Dynamic Computational Graph by
using the backpropagation method explained above. Also, the gradients calculated in this
way are the exact gradients based on your computational graph.

The recurrent neural network we design in this study represents elastic wave equation
we discussed in the first section. That is why it is a theory-based machine learning method.
Figure 3 shows the structure of the viscoelastic RNN cell we build in this study. The
green circles in Figure 3 represent the mathematical operations. The light blue oval means
the stress fields. A purple oval means velocity field and the gray ovals are the memory
variables. The yellow boxes are the trainable parameters. The cross line with a black dot
on it means that several data are running parallel in the cell. The cross line without a black
dot means that it is simple overlapping. The brown line means we need to send data out of
the cell. The light blue line means that we need to send data into the cell.

Figure 4 shows how the viscoelastic RNN generates synthetic data. As we can see
from figure 4, the network consists of several viscoelastic RNN cells. Each RNN cell is
designed according to the viscoelastic wave equation, and considered as a time step. At
each time step, the input is the discrete source wavelet information, and the corresponding
stress fields, velocity fields and memory variables at that time would be calculated in that
cell. Figure 4 only shows the velocity field in x direction, however, the stress fields, the
velocity fields, and the memory variables would all be calculated in this cell. After we have
the fields, the receivers on the top of the model would record the waveform information at
that time, which forms the synthetic shotrecords. Then, the wavefields calculated at this
time would be sent to the next cell to calculate the wavefields for the next time. At the end
of the computational time, we will have the final shotrecords.

6 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

FIG. 3. Viscoelastic RNN cell

NUMERICAL TESTING

In this section, we will perform some numerical tests to examine the efficiency of the
methods proposed. Figure 5 shows the shotrecords of one trace generated by the viscoelas-
tic RNN with different levels of attenuation and reference frequency. From the shotrecords
we can see that with the increase of the attenuation level, the amplitude has decreases,
which means that with the increase of the attenuation level, the energy of the wave is being
lost and transformed into other kinds of energy, for instance, heat. Also, with different
reference frequencies, the phase of the shotrecords also shifts in different directions. Ac-
cording to figure 5, with a higher reference frequency, as the increase of the attenuation
level, the peak of the records shifts to the left. However, with a lower reference frequency,
as the increase of the attenuation level, the peak of the records does not shift much. This
means that both the attenuation level and the chosen reference frequency influence the
modeling of the records, and therefore influence the inversion results.

CREWES Research Report — Volume 31 (2019) 7

Tianze et. al

FIG. 4. How viscoelastic RNN generate synthetic data

FIG. 5. Amplitude and phase change due to different attenuation levels and reference frequencies

Now, we will test the inversion method by using synthetic data. Figure 6 demonstrates
the true Vp, Vs, Qp and Qs model. The model consists of four layers, and each layer has
its own P wave velocity, S wave velocity and attenuation levels. The size of the model is
30×70 grid points. The source is the Ricker’s wavelet with the a frequency of 35Hz. The
shots are evenly distributed on the top of the model at every 5 grid points. The receivers
are located on every grid point of the model. The grid lengths in horizontal and vertical
directions are dx = 3m and dz = 3m respectively. The total receiving time is 0.2s, and
the time step is 0.0005s. Figure 7 shows the first 4 shotrecords in horizontal direction
and vertical direction respectively generated by viscoelastic RNN. These shotrecords are
generated with the true model and we use these data as the labeled data. In this test, the
initial Vp, Vs, Qp and Qs models will be used0 as the trainable parameters, and the initial
models are obtained by smoothing the true models. During the forward propagation, as
the synthetic records are calculated, they are recorded to build the Dynamic Computational
Graph. The gradients of the trainable parameters would be calculated by using this Graph,
according to the backpropagation method. After, the gradients are calculated, with an

8 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

optimization method and the step lengths for each model, we can get the directions to get
the trainable parameter updates.

FIG. 6. Viscoelastic layers model

FIG. 7. Viscoelastic shotrecords generated by viscoelastic RNN at different source locations

Figures 8 (b), (e), (h) and (k) are the initial models for Vp, Vs, Qp and Qs respectively,
and figure 8 (c), (f), (i), (l) are the inversion results based on recurrent neural network full
waveform inversion. From the comparison of the true model and the inversion results, we
can see that FWI based on viscoelastic RNN is promising. The main layers of the models
have been correctly updated. Figure 9 shows the comparison of the inversion result at
0.1km for Vp, Vs Qp and Qs respectively. From the inversion results, we can also see that
both the value and position of the velocity layers have been correctly recovered.

Figure 10 shows the inversion results for another model with a more complex structure.
The size of the model is 70×100, and the grid lengths in x and z directions are dx = dz =
2.5m. 7 sources are evenly distributed on the surface of the model. We also use the Ricker’s
wavelet as the sources. The main frequency of the source is 35Hz. The time step is 0.005s,
and the total receiving time for the shotrecords is 0.3s, which means that there are 600
time steps in this RNN network. Figure 10 (a), (d), (g) and (j) are the true models for Vp,
Vs, Qp and Qs model. Figure 10 (b), (e), (h) and (k) are the initial models for Vp, Vs, Qp

and Qs model, and figure 10 (c), (f), (i) and (l) are the inversion results. We can see that
the structure of the model has also been accurately reconstructed. The agreement with the
true model is very satisfactory, and the lower parts of the models have also been correctly
updated. This inversion took about 3 hours and 4 parameters were simultaneously updated
on a Mac, with 16Gb of RAM and an i9-9880H CPU (2.30GHz).

INVERSION WITH DIFFERENT OBJECTIVE FUNCTION

Full waveform inversion is an ill-posed data fitting inversion problem. Initial models,
the definition of the multiparameter classes and inaccurate modeling of wavefield ampli-
tudes would all influence the inversion results. More robust objective functions have been
introduced by researchers to increase the stability for FWI (Brossier et al. (2010)). In this
section, we will investigate how different objective functions would influence the inversion

CREWES Research Report — Volume 31 (2019) 9

Tianze et. al

FIG. 8. (a),(b),(c): True model, initial model and inversion result for P wave velocity model respec-
tively, (d),(e),(f): True model, initial model and inversion result for S wave velocity model respectively,
(g),(h),(i): True model, initial model and inversion result for Qp model respectively, (j),(k),(l): True
model, initial model and inversion result for Qs model respectively

FIG. 9. (a) Vp inversion result at 0.1km, (b) Vs inversion result at 0.1km (c) Qp inversion result at
0.1km (d) Qs inversion result at 0.1km

results with the viscoelastic RNN we proposed. For traditional FWI, when we change the
objective function, we need to derive the gradients again. However, if the inversion is under
the framework of a recurrent neural network, this process can be done by simply change the
objective function. The gradients based on that objective function would be calculated au-
tomatically by using the Automatic Differential engine in machine learning library we use.

10 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

FIG. 10. (a), (d), (g) and (j) true model for Vp, Vs, Qp and Qs, (b), (e), (h) and (k) initial model for Vp,
Vs, Qp and Qs, (c), (f), (i) and (l) inversion results for Vp, Vs, Qp and Qs,

This is also why the RNN is a powerful inversion tool. The Automatic Differential engine
relieves us from the burden of deriving gradients, and these are the exact gradients based
on the computational graph. Thus, we can focus on other aspects of the seismic inversion
problem, for instance, the modeling error problems or more robust objective functions.

In this section, three objective functions would be tested, which are the l1 norm func-
tion, the l2 norm function, and the Huber function.

The loss function for l1 is:
lossl1 = |x− y| (6)

The loss function for l2 is:

lossl2 =
1

2
(x− y)2 (7)

The loss function for Huber function is:

lossHuber =

{
0.5(x− y)2,if |x− y| < 1

|x− y| − 0.5,otherwise
(8)

CREWES Research Report — Volume 31 (2019) 11

Tianze et. al

From the definition for the loss functions, we can see that l2 objective function is the
least-squares norm, and l1 objective function is the least-absolute values norm. The Huber
objective function is the combination of the l1 norm and the l2 norm. The l2 norm is the
misfit we use in the traditional FWI. Djikpéssé and Tarantola (1999) successfully used the l1
norm objective function to invert field data from the Gulf of Mexico with time-domain FWI.
Pyun et al. (2009) also studied the l1 norm performance on FWI in frequency domain. Their
experiments demonstrate that the inversion based on l1 is more robust than l2 inversion. In
this section, we will test the performance of these objective functions on the viscoelastic
FWI under the framework of the recurrent neural network.

FIG. 11. (a), True V p model, (b) True V s model, (c) True Qp model, (d) True Qs model

In this numerical test, we use part of the Marmousi model to test the efficiency of this
inversion method. The source wavelet is the Ricker’s wavelet with a main frequency of
35Hz. The model size is 50×100 grid points. The grid length of the model is dz = dx =
2m. 7 shots are evenly distributed on the top of the model. Every grid point at the top of the
model contains a receiver. The total receiving time for the shotrecords is 0.3s, and the time
step is 0.004s. We use the 2 order in time and 2 order in space staggered grid method to
simulate the synthetic data. Figure 11 (a), (b), (c) and (d) are the true models for Vp, Vs, Qp

and Qs. Figure 12 (a), (e), (i), (m) are the initial models for Vp, Vs, Qp and Qs respectively.

Figure 12 (d), (h), (i),(l) and (p) are the inversion results by using the l2 norm objective
function for Vp. Vs, Qp and Qs. Figure 12 (c), (g), (k), and (o) are the inversion results
by using the l1 norm objective function for Vp. Vs, Qp and Qs. Figure 12 (b), (f), (j) and
(n) are the inversion results for the Huber misfit function for Vp. Vs, Qp and Qs model
respectively. From the inversion results we can see that by using all the three objective
functions, the main structures of the models have been correctly updated. It is fair to say
that all the inversions can converge to the right solution for this inversion problem. This
could also be proven by the profile plot in Figure 13, which plots the initial value, true value
and inversion result at different locations of the models. The plots in figure 13 demonstrate
that the inversion results are correctly updated and get close to the true value.

However, in the inversion results for Vp and Vs, the very high wavenumber components
of the model are better reconstructed by using the Huber and l1 objective function. On

12 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

FIG. 12. (a) Initial Vp model, (b) Huber norm Vp result, (c) l1 norm Vp result, (d) l2 norm Vp result,
(e) Initial Vs model, (f) Huber norm Vs result, (g) l1 norm Vs result, (h) l2 norm Vs result, (i) Initial Qp

model, (j) Huber norm Qp result, (k) l1 norm Qp result, (l) l2 norm Qp result, (m) Initial Qs model,
(n) Huber norm Qs result, (o) l1 norm Qs result, (p) l2 norm Qs result

the one hand, the bandwidth-limited problem may cause this inaccuracy problem for the
very high component of the models. On the other hand, this may also due to the nature of
using different objective functions to perform inversion, which means that the l1 and Huber
function would be more robust objective functions for the full waveform inversion. From
figure 12 we can also see that the high attenuation part of the model has been correctly
updated. However, compared with Vp, and Vs, the very high wavenumber of the inversion
results for Qp and Qs is not very well constructed. This may due to the cross-talk problem.
Cross talk problem appears when we need to simultaneously update the models. From the
inversion results we can see that for all of the four models, the Vs model suffers the most
from the cross-talk problem. In figure 13 (g),(h) and (i), we can see that the inversion result
for Qp by using the l2 norm is less accurate compared with the inversion results with l1 and
Huber misfit function, as the black arrows pointing out.

Figure 14 shows how normalized data residual declines as the increase of the iteration
times. The solid line represents the l1 norm data residual. The dotted line is the Huber
norm data residual, and the solid dotted line stands for the l2 norm data residual. We can
see that the l2 norm has the fastest convergence rate compared with the other two objective
functions at the early periods of the iteration times. Figure 15 shows how the model misfit
changes as the increase of iteration times. Figure 15 (a) is the Vp model misfit. Figure 15
(b) is the Vs model misfit. Figure 15 (c) is the Qp model misfit. Figure 15 (d) is the Qs

model misfit. The solid lines are the misfits for l1 norm. The dotted lines are the misfits for
Huber norm. The solid dotted lines are the misfits for l2 norm. In these figures we can see
that the Huber norm can provide more accurate models for Vp, Vs and Qp. While for Qs,
the l1 norm has the best model misfit convergence rate. The model data misfits declination
for Vp and Vs are very stable, however for Qp and Qs, the convergence rates are not very

CREWES Research Report — Volume 31 (2019) 13

Tianze et. al

FIG. 13. (a) Vp l1 norm inversion result at 60m, (b) Vp l2 norm inversion result at 60m, (c) Vp Huber
norm inversion result at 60m, (d) Vs l1 norm inversion result at 90m, (e) Vs l2 norm inversion result
at 90m, (f) Vs Huber norm inversion result at 90m, (g) Qp l1 norm inversion result at 42m, (h) Qp

l2 norm inversion result at 42m, (i) Qp Huber norm inversion result at 42m, (j) Qs l1 norm inversion
result at 48m, (k) Qs l2 norm inversion result at 48m, (l) Qs Huber norm inversion result at 48m,

FIG. 14. Seismic records data normalized convergence rate. Solid line: l1 norm. Dotted line: Huber
norm.Solid dotted line: l2 norm.

stable, especially for Qs. All the misfits for Qp and Qs vibrate several times before they get
converged. From these figures, we can see that, in general, l2 norm has a better convergence
rate for the seismic data records, however, the l1 and Huber objective function could more
accurately reconstruct the models.

14 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

FIG. 15. Model misfit

ACKNOWLEDGMENT

We thank the sponsors of CREWES for continued support. This work was funded by
CREWES industrial sponsors, and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 461179-13. We also thanks the support from
the China Scholarship Council (CSC).

CONCLUSION

In this study, we first give a brief introduction to the recurrent neural network and
demonstrate how the trainable parameters are updated in the RNN. And then, based on
the viscoelastic wave equation, we build the viscoelastic RNN cell and performed the
viscoelastic full waveform inversion, which forms the theory-based machine learning full
waveform inversion. This inversion framework generates the gradient automatically, and
the gradients are the exact gradients based on the forward computational graph. Numeri-
cal tests show that the inversion framework we introduced generates the correct inversion
results for Vp, Vs,Qp andQs. We also test the performance of different misfits for viscoelas-
tic full waveform inversion based on this RNN framework. Three objective functions are
tested here,which are the l1, l2, and Huber norm functions. All, the three objective func-
tions have given us the right inversion results, however, the l1 and Huber norm have the
better ability to reconstruct the high wavenumber component of the models. From the data
residual declination rate, we can see that the l2 misfit has the fastest convergence rate. The
inversion for Vp and Vs are more stable than the inversion for Qp and Qs. All three model
objective functions for Qp and Qs vibrate several times during the inversion process.

CREWES Research Report — Volume 31 (2019) 15

Tianze et. al

APPENDIX

The constitutive relationship for a vicoelastic media can be expressed as:

σij = Gijkl ∗ ε̇kl = Ġijkl ∗ εkl, (9)

, where the G is a tensor called the relaxation function. ∗ means the time convolution. The
dot means the time differential. σij means the stress and εkl demonstrate the strain. In a
GSLS framework, (Liu et al. (1976)), the relaxation function could be described as :

G(t) = MR

(
1−

L∑
l=1

(
1− τεl

τσl

)
e−t/τσl

)
θ(t), (10)

, where MR is the relaxed modulus, L is the number of layers for viscoelastic model τσl
and τεl are the relaxation time for stress and strain. When it comes to isotropic viscoelastic
media. equation (1) becomes:

σij = Λ̇ ∗ δijεkk + 2Ṁ ∗ εij, (11)

Einstein’s notation is used in this formula and the δij is the Kronecker delta. Λ and M are
the relaxation functions respectively. Here we define:

Π = Λ +M, (12)

and according to the relaxation function based on GSLS framework we have:

Π = π

(
1−

L∑
l=1

(
1− τPel

τPσl

)
e−t/τ

P
σl

)
θ(t), (13)

,where τPεl , and τPσl are the strain and stress relaxation time for P wave. θ(t) is the Heaviside
function, π = λ+ 2µ and λ and µ are the elastic Lame parameters. Similarly, we have:

M = µ

(
1−

L∑
l=1

(
1− τSel

τSσl

)
e−t/τ

S
σl

)
θ(t), (14)

, where τSεl , and τSσl are the strain and stress relaxation time for S wave. According to the
relationship between the velocity field, the stress and strain we have :

˙εij =
1

2
(∂ivj + ∂jvi), (15)

σ̇ii = (Π̇− 2Ṁ) ∗ ∂kvk + 2Ṁ ∗ ∂ivi, (16)

σ̇ij = Ṁ ∗ (∂ivj + ∂jvi), (17)

, the time differential of Π is :

Π̇ = π

(
1

τol

L∑
`=1

(
1− τPe`

τPσ`

)
e−t/τ

P
σl

)
θ(t) + π

(
1−

L∑
`=1

(
1− τPe`

τPσ`

)
e−t/τ

P
σl

)
δ(t), (18)

16 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

Similarly, we have :

Ṁ = µ

(
1

τol

L∑
`=1

(
1− τSe`

τSσ`

)
e−t/τ

S
σl

)
θ(t) + µ

(
1−

L∑
`=1

(
1− τSe`

τSσ`

)
e−t/τ

S
σl

)
δ(t), (19)

Now, we subscribe equation (11) and equation (12) into equation (8) and (9), and change i,
j, into x and z we have :

σ̇xx =(Π̇− 2Ṁ) ∗ (∂xvx + ∂zvz) + 2Ṁ ∗ ∂xvx

=

{
π

[
1−

L∑
l=1

(
1− τPεl

τPσl

)]
− 2µ

[
1−

L∑
l=1

(
1− τSel

τSσl

)]}

×
(
∂vx
∂x

+
∂vz
∂z

)
+ 2µ

[
1−

L∑
l=1

(
1− τSεl

τSσl

)]
∂vx
∂x

+

L∑
l=1

π
1

τPσl

(
1− τPel

τPσl

)
e−t/τ

P
σlθ(t) ∗

(
∂vx
∂x

+
∂vz
∂z

)
+

L∑
l=1

−2µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/r

S
σlθ(t) ∗ ∂vz

∂z
,

(20)

σ̇zz =(Π̇− 2Ṁ) ∗ (∂xvx + ∂zvz) + 2Ṁ ∗ ∂zvz

=

{
π

[
1−

L∑
l=1

(
1− τPεl

τPσl

)]
− 2µ

[
1−

L∑
l=1

(
1− τSel

τSσl

)]}

×
(
∂vx
∂x

+
∂vz
∂z

)
+ 2µ

[
1−

L∑
l=1

(
1− τSεl

τSσl

)]
∂vz
∂z

+

L∑
l=1

π
1

τPσl

(
1− τPel

τPσl

)
e−t/τ

P
σlθ(t) ∗

(
∂vx
∂x

+
∂vz
∂z

)
+

L∑
l=1

−2µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/r

S
σlθ(t) ∗ ∂vx

∂x
,

(21)

σ̇xz =Ṁ ∗ (∂zvx + ∂xvz)

=µ

[
1−

L∑
l=1

(
1− τSεl

τSσl

)](
∂vz
∂x

+
∂vx
∂z

)
+

L∑
l=1

µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/τ

S
σlθ(t) ∗

(
∂vz
∂x

+
∂vx
∂z

)
,

(22)

The convolution factor in each formula can be considered as the memory variables,
which could be subtracted as

[
τPxxl, τ

S
xxl, τ

P
zzl, τ

S
zzl, τ

S
xzl

]
:

τPxxl = π
1

τPσl

(
1− τPεl

τPσl

)
e−t/τ

P
σlθ(t) ∗

(
∂vx
∂x

+
∂vz
∂z

)
, (23)

CREWES Research Report — Volume 31 (2019) 17

Tianze et. al

τSxxl = −2µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/τ

S
σlθ(t) ∗ ∂vz

∂z
, (24)

τPzzl = π
1

τ pσl

(
1− τPεl

τ pσl

)
e−t/τ

P
σlθ(t) ∗

(
∂vx
∂x

+
∂vz
∂z

)
, (25)

τSzzl = −2µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/τ

S
σlθ(t) ∗ ∂vx

∂x
, (26)

τSxzl = µ
1

τSσl

(
1− τSεl

τSσl

)
e−t/τ

S
σlθ(t) ∗

(
∂vz
∂x

+
∂vx
∂z

)
, (27)

Form formula (15) and (16) we can see that τPxxl and τPzzl has the same mathematical
expression. Thus we fuse them together as τPl :

τPl = τPxxl = τPzzl = π
1

τPσl

(
1− τPεl

τPσl

)
e−t/τ

P
σlθ(t) ∗

(
∂vx
∂x

+
∂vz
∂z

)
, (28)

Take time partial derivative of equation (15) we have :

˙τPl =

(
∂vx
∂x

+
∂vz
∂z

)
∗

[
π
−1

τPσl
2

(
1− τPεl

τPσl

)
e−t/τ

P
σlθ(t) + π

1

τPσl

(
1− τPεl

τPσl

)
e−t/τ

P
σlδ(t)

]

=− 1

τ pσl
τPl −

1

τ pσl
π

(
τPεl
τPσl
− 1

)(
∂vx
∂x

+
∂vz
∂z

)
,

(29)
Similarly, we have:

τ̇Sxxl = − 1

τSσl

[
rSxxl − 2µ

(
τSεl
τSσl
− 1

)
∂vx
∂x

]
, (30)

τ̇Szzl = − 1

τSσl

[
rSzzl − 2µ

(
τSεl
τSσl
− 1

)
∂vz
∂z

]
, (31)

τ̇Sxzl = − 1

τSσl

[
rSxzl + µ

(
τSεl
τSσl
− 1

)(
∂vz
∂x

+
∂vx
∂z

)]
, (32)

Following the constitutive relationship and the momentum conservation equation. The 2D
viscoelastic wave equations are:

ρv̇x =
∂σxx
∂x

+
∂σxz
∂x

+ fx, (33)

ρv̇z =
∂σxz
∂z

+
∂σzz
∂z

+ fz, (34)

σ̇xx = π

[
1−

L∑
l=1

(
1− τPεl

τPσl

)](
∂vx
∂x

+
∂vz
∂z

)
−2µ

[
1−

L∑
l=1

(
1− τSεl

τSσl

)]
∂vz
∂z

+RP+RS
xx,

(35)

18 CREWES Research Report — Volume 31 (2019)

Theory based machine learning

σ̇zz = π

[
1−

L∑
l=1

(
1− τPεl

τPσl

)](
∂vx
∂x

+
∂vz
∂z

)
−2µ

[
1−

L∑
l=1

(
1− τSεl

τSσl

)]
∂vx
∂x

+RP+RS
zz,

(36)

σ̇xz = µ

[
1−

L∑
l=1

(
1− τSεl

τSlσl

)](
∂vz
∂x

+
∂vx
∂z

)
+RS

xz, (37)

RP =
L∑
l=1

τPl , (38)

RS
xx =

L∑
l=1

τSxxl, (39)

RS
zz =

L∑
l=1

τSzzl, (40)

RS
xz =

L∑
l=1

τSxzl, (41)

Thus, when L = 1 the viscoelastic wave equation is:

∂vx
∂t

=
1

ρ

(
∂σxx
∂x

+
∂σxy
∂y

)
∂vy
∂t

=
1

ρ

(
∂σxy
∂x

+
∂σyy
∂y

)
∂σxy
∂t

= µ
τ sε
τσ

(
∂vx
∂y

+
∂vy
∂x

)
+ rxy

∂σxx
∂t

= π
τ pε
τσ

(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

τ sε
τσ

∂vy
∂y

+ rxx

∂σyy
∂t

= π
τ pε
τσ

(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

τ sε
τσ

∂vx
∂x

+ ryy

∂rxy
∂t

= − 1

τσ

(
rxy + µ

(
τ sε
τσ
− 1

)(
∂vx
∂y

+
∂vy
∂x

))
∂rxx
∂t

= − 1

τσ

(
rxx + π

(
τ pε
τσ
− 1

)(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

(
τ sε
τσ
− 1

)
∂vy
∂y

)
∂ryy
∂t

= − 1

τσ

(
ryy + π

(
τ pε
τσ
− 1

)(
∂vx
∂x

+
∂vy
∂y

)
− 2µ

(
τ sε
τσ
− 1

)
∂vx
∂x

)

, (42)

CREWES Research Report — Volume 31 (2019) 19

Tianze et. al

REFERENCES

Belahi, T., Fuji, N., and Singh, S., 2015, Elastic versus viscoelastic full waveform inversion of near-offset
and wide-angle data in the presence of attenuation, in 77th EAGE Conference and Exhibition 2015.

Belahi, T., Singh, S., and Fuji, N., 2016, Viscoelastic full waveform inversion of sea bottom long offset
seismic data in presence of attenuation, in 78th EAGE Conference and Exhibition 2016.

Bohlen, T., 2002, Parallel 3-d viscoelastic finite difference seismic modelling: Computers & Geosciences,
28, No. 8, 887–899.

Brossier, R., Operto, S., and Virieux, J., 2010, Which data residual norm for robust elastic frequency-domain
full waveform inversion?: Geophysics, 75, No. 3, R37–R46.

Day, S., and Minster, J., 1984, Numerical simulation of wavefields using a pade approximation method:
Geophys. JR astr. Soc, 78–105.

Djikpéssé, H. A., and Tarantola, A., 1999, Multiparameter l1 norm waveform fitting: Interpretation of gulf of
mexico reflection seismograms: Geophysics, 64, No. 4, 1023–1035.

Emmerich, H., and Korn, M., 1987, Incorporation of attenuation into time-domain computations of seismic
wave fields: Geophysics, 52, No. 9, 1252–1264.

Fabien-Ouellet, G., Gloaguen, E., and Giroux, B., 2016, The adjoint state method for the viscoelastic wave
equation in the velocity-stress formulation, in 78th EAGE Conference and Exhibition 2016.

Fabien-Ouellet, G., Gloaguen, E., and Giroux, B., 2017, Time-domain seismic modeling in viscoelastic me-
dia for full waveform inversion on heterogeneous computing platforms with opencl: Computers & Geo-
sciences, 100, 142–155.

Groos, L., Schäfer, M., Forbriger, T., and Bohlen, T., 2012, On the significance of viscoelasticity in a 2d
full waveform inversion of shallow seismic surface waves, in 74th EAGE Conference and Exhibition
incorporating EUROPEC 2012.

Lin, Y., and Wu, Y., 2018, Inversionnet: A real-time and accurate full waveform inversion with convolutional
neural network: The Journal of the Acoustical Society of America, 144, No. 3, 1683–1683.

Liu, H.-P., Anderson, D. L., and Kanamori, H., 1976, Velocity dispersion due to anelasticity; implications for
seismology and mantle composition: Geophysical Journal International, 47, No. 1, 41–58.

Mosser, L., Dubrule, O., and Blunt, M., 2018, Stochastic seismic waveform inversion using generative ad-
versarial networks as a geological prior, in First EAGE/PESGB Workshop Machine Learning.

Pyun, S., Son, W., and Shin, C., 2009, Frequency-domain waveform inversion using an l 1-norm objective
function: Exploration Geophysics, 40, No. 2, 227–232.

Robertsson, J. O., Blanch, J. O., and Symes, W. W., 1994, Viscoelastic finite-difference modeling: Geo-
physics, 59, No. 9, 1444–1456.

Sun, H., and Demanet, L., 2018, Low frequency extrapolation with deep learning, in SEG Technical Program
Expanded Abstracts 2018, Society of Exploration Geophysicists, 2011–2015.

Trinh, P.-T., Brossier, R., Métivier, L., and Virieux, J., 2018, Data-oriented strategy and v p/v s model-
constraint for simultaneous v p and v s reconstruction in 3d visco-elastic fwi: Application to the seam ii
foothill dataset, in SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysi-
cists, 1213–1217.

Yang, F., and Ma, J., 2019, Deep-learning inversion: a next generation seismic velocity-model building
method: Geophysics, 84, No. 4, 1–133.

Yang, P., Brossier, R., Métivier, L., and Virieux, J., 2016, A review on the systematic formulation of 3-d
multiparameter full waveform inversion in viscoelastic medium: Geophysical Journal International, 207,
No. 1, 129–149.

20 CREWES Research Report — Volume 31 (2019)

