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ABSTRACT

Seismic data reconstruction is an important step in seismic data processing that affects
the whole processing sequence because many tools for noise attenuation or imaging require
the input data to be sampled regularly in space to work properly. It is also important for
data acquired on a difficult terrain with natural or cultural obstacles which may be missing
a large portion of the surface shots and receivers. For plane waves or data with small
curvatures, rank reduction method is a very effective signal reconstructing method. But
when it comes to more complicated data, the rank reduction method may fail or give poor
results as a consequence of curved events not having a small rank (sparse) representation.
To satisfy the plane wave assumption for the rank reduction method, one can utilize local
windows to assume that events are plane waves. The rank reduction method requires as a
parameter the number of events. This number defines the minimum rank selected in each
step. However, it is difficult to select the appropriate rank in each window. In this report, we
propose a method to select the rank automatically in each window by finding the maximum
ratio of the energy between two singular values. We test the efficiency of the method by
applying it to both synthetic and real seismic data.

INTRODUCTION

Seismic reconstruction methods can be divided into three main classes: signal process-
ing based methods, wave equation based methods, and rank reduction based methods.
Most of the methods in the signal processing based category are multidimensional and use
prediction filters (Abma and Claerbout, 1995; Spitz, 1991; Porsani, 1999), transform do-
mains such as Fourier transform (Sacchi et al., 1998; Liu and Sacchi, 2004; Trad, 2009),
Radon transform (Sacchi and Ulrych, 1995; Trad et al., 2002), or Curvelet transform (Her-
rmann et al., 2008). Some hybrid techniques use a combination of Fourier transform with
prediction errors filters (Naghizadeh and Sacchi, 2010) as a way to improve interpolation
beyond aliasing.
Wave equation based algorithms implement an implicit migration de-migration pair. Stolt
(2002) introduced mapping and reconstruction operators reconstructing missing traces, reg-
ularizing a data set, and removing acquisition footprints. A finite-difference offset contin-
uation filter for interpolating seismic reflection data was proposed by (Fomel, 2003).
In rank reduction based methods, the linear events in a clean seismic data set are low rank
in the time domain. However, noise and missing traces increase the rank of data (Trickett,
2008). The rank reduction algorithm in the frequency domain is carried out in frequency
slices by generating Hankel/Toeplitz matrix and applying a low-rank reduction method on
the generated matrix. The singular spectrum analysis (SSA) method proposed by (Oropeza
and Sacchi, 2011) works by rank reduction of the Hankel matrix with an iterative algorithm
in the frequency domain. Gao et al. (2013) extended the SSA method to higher dimensional
seismic data and called a multichannel singular spectrum (MSSA).
One of the advantages of rank reduction methods is simultaneous random noise attenuation
and data interpolation. One of its limitations, on the other hand, is that it needs to satisfy
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the plane wave assumption. To satisfy the plane wave assumption the rank reduction meth-
ods need to be applied on local windows. Most of the time it is not easy to find the proper
window size because it is hard to decide whether the structure in the local window is linear
or not. Moreover, it is hard to approximate the rank of each window. Choosing the wrong
rank will lead to a failure because the overestimation of rank remains a significant residual
and underestimation of it will cause random noise and distort the signal. In this report, we
will apply a method that selects rank automatically for each local window. The method
was proposed by Wu and Bai (2018) for 2D data. We apply the proposed rank selection
criterion to both synthetic 3D data and demonstrate its successful performance.

Background

Singular Spectrum Analysis

Let’s start with a 3D seismic record d(t, x, y) the transformed data in Fourier domain
will beD(f, x, y). One frequency slice organized from the 3D seismic record can be shown
as:

Df =


d(1,1) d(1,2) ... d(1,Ny)

d(2,1) d(2,2) ... d(2,Ny)
...

... . . . ...
d(Nx,1) d(Nx,2) ... d(Nx,Ny)

 , (1)

where Nx and Ny are number of traces in x and y directions respectively. Generating a
Hankel matrix in each inline will leads to:

Mj =


D(1,j) D(2,j) ... D(Lx,j)

D(2,j) D(3,j) ... D(Lx+1,j)
...

... . . . ...
D(Kx,j) D(Kx+1,j) ... D(Nx,j)

 , (2)

where Nx and Lx are the dimensions of the Hankel matrix and Lx = floor(Nx/2) + 1 and
Kx = Nx − Lx + 1. We generate a Hankel matrix of Hankel matrices to add the cross-line
dimension:

M =


M1 M2 ... MKy

M2 M3 ... MKy+1
...

... . . . ...
MLy MLy+1 ... MNy

 . (3)

We call the matrix of Equation 3 a block Hankel matrix. The size of the block Hankel
matrix is (Ly × Lx)× (Ky ×Kx). The size of the block Hankel matrix can easily blow up
by the increasing number of channels in each dimension of data. Equation 3 equals to:

M = HHF [d(t, x, y)]. (4)

In Equation 4, H denotes Hankel operator and F denotes Fourier transform. It can be
proved that the rank of the block Hankel matrix is equals to the number of plane waves in
the data set. However, the presence of random noise or missing traces in the recorded data,
leads to increasing the rank of the block Hankel matrix (Hua, 1992). Applying truncated
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singular value decomposition (TSVD) to the block Hankel matrix can reduce the rank of
the block Hankel matrix by remaining the number of largest singular values equals to the
number of the plane waves in the data set:

svd(M) = UΣVH , (5)

Σ = diag(σ1, ..., σn), (6)

where Σ is the matrix of singular values of matrix M, U and V are the matrices of singular
vectors of the block Hankel matrix M, and σi are the singular values (Golub and Reinsch,
1971). U and V are orthogonal and Σ is diagonal. The number of non-zero singular values
in the Hankel matrix determines the rank of the Hankel matrix. If the number of the plane
waves in the data set is k, the rank of the matrix M equals to k. We can obtain the reduced
rank matrix as follow:

Mk = UkΣkV
H
k , (7)

where Σ is a diagonal matrix with k largest singular values of M, Uk and Vk are the k
first singular vectors of M. By averaging the anti diagonals of each Hankel matrix, the
reconstructed signal D can be obtained. The whole process of MSSA can be shown as:

d̂(t, x, y) = F−′ARHHF [d(t, x, y)], (8)

where F−′ denotes the inverse Fourier transform,A shows the average of anti diagonals,R
indicates rank reduction operator using TSVD. To reconstruct the missing traces, we apply
MSSA algorithm in a recursive algorithm. The seismic record with missing traces contains
zeros in missing traces that increase the rank of the Hankel matrix. The recursive algorithm
to recover missing traces can be written as:

Dn+1 = Dobs + (I− S)� PDn, (9)

where, Dn indicates the reconstructed data in Fourier domain after n iterations, S is a
sampling operator, I = ones(size(S)), the operator P denotes ARHHF , � is array mul-
tiplication for two matrices, and Dobs is the observed data. For a data set contaminated with
random noise the algorithm can be modified as:

Dn+1 = αnDobs + (1− αn)S� PDn + (I− S)� PDn, (10)

where αn is an iteration dependent scalar that decreases from 1 to zero when the maxi-
mum iteration occurs. The logic of this algorithm is that the original observed data is only
partially inserted into the algorithm, with the largest contribution at the beginning of the
iterations and no contribution at the last iteration.
MSSA as a low-rank reduction method is a powerful algorithm in denoising and construct-
ing the missing traces simultaneously. However, there is an obstacle for MSSA that is
assuming the events are linear. Complicated structures with large curvature are not suitable
for low-rank reduction methods like MSSA. One solution for the curved events is applying
NMO correction before applying the low-rank reduction method and the other one is using
local spatial windows to assume that events are linear.
In the MSSA algorithm, the rank of the block Hankel matrix equals the number of events
in each local window that is equal to the number of distinctly large singular values. To
prove this idea we test two different data set to inspect how the singular values are related
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to the number of events by investigating of distribution of singular values of them. The first
data set is a 3D cube of a linear event. The 3D data has 29 traces in in-line direction and
29 traces in cross-line direction. Figure (1-a) is a slice of the cube of clean data in in-line
direction. Figure (1-b) shows the singular value distribution of the block Hankel matrix of
the clean data in a constant frequency of 30 Hz where the largest non zero singular value is
related to the energy of the linear event. Figure (1-c) represents a slice of a cube of 3D data
containing one linear event contaminated with random noise and missing traces. Figure
(1-d) shows the singular value distribution of the block Hankel matrix of the incomplete
data in 30 Hz. We can see that presence of missing traces and random noise increased the
rank of the block Hankel matrix but still, the energy of the linear event can be diagnosed
with the first distinct large singular value.
We repeat the test with a 3D cube data set containing four linear events. Figure (2-a) is a
slice of the cube of clean data in in-line direction with 4 linear events. Figure (2-b) shows
the singular value distribution of the block Hankel matrix of the clean data in a constant
frequency of 30 Hz where the first four large singular values represent the energy of events.
Figure (2-c) represents a slice of a cube of 3D data containing four linear events contam-
inated with random noise and missing traces. Figure (2-d) shows the distribution of the
singular values of the block Hankel matrix of the incomplete data in 30 Hz. Although, the
presence of missing traces and random noise increased the rank of the block Hankel matrix
but still, the energy of the linear events can be diagnosed with an abrupt drop of energy
between the forth singular value and the fifth singular value.

In the adaptive rank reduction method, we want to find the cutoff number that indicates
when the contribution from the signal becomes much less than the contribution of the miss-
ing traces or random noise. Wu and Bai (2018) proposed that this cutoff number happens
at the point where the ratio of two consecutive singular values becomes the largest.

N = maxi
σ2
i

σ2
i+1

, (11)

where, σi is the ith singular value of the block Hankel matrix in each frequency. N in-
dicates the point where the two following singular values become more scattered. N can
be introduced as the optimal rank of the block Hankel matrix for each slice of constant
frequency.

It is interesting to mention that a very similar concept has been used in wavelet trans-
forms, taking into account the energy of the wavelet coefficients, to detect the point where
the signal becomes non-stationary. In some ways, we can think of this break point in the
singular value spectrum as a change of character of the signal (coherent becomes incoher-
ent).

Examples

We compare the efficiency of the adaptive rank reduction method by applying on a
synthetic 3D cube of pre-stack data. To compare our results numerically we use Quality
Factor (QF) defining by Equation (12).

QF = 10 log10(
‖d0‖22

‖df − d0‖22
) (12)
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a) c)

b) d)

FIG. 1. A slice of a 3D data synthetic cube with one linear event. (a) Clean data.(b) Singular values
of the block Hankel matrix for the clean data. (c) Incomplete data contaminated with random noise.
(d) Singular values of the block Hankel matrix for the incomplete data.

Where d0 is the recovered data, and df is the result after applying interpolation algorithms.
This allows us to test the accuracy of the results.
First, we test the proposed adaptive rank reduction method on 3D synthetic data with 100
traces in in-line direction and 11 traces in cross-line direction. For our first example, we
choose a local window of 25×11 in in-line and cross-line direction with 13 and 5 traces
overlap. Figure(3-a) represent the input data with 9 curved events and 51% missing traces.
Figure (3-b) shows clean data. Figure (3-c) shows the result of applying adaptive rank re-
duction, the calculated output QF=16 dB. Figure (3-d) represents the residual errors for the
result of the adaptive rank reduction. Figure (3-e) shows the result of applying the constant
rank reduction method. The selected rank is equal to the number of the events in each win-
dow k=9 and the output QF=14.4 dB. Figure (3-f) shows the residual errors for the result
of the traditional rank reduction method.
Figure 4 is a close look at the first two in-line of the 3D cube of Figure 3. Figure (4-a)
shows input data. Figure (4-b) shows clean data. Figure (4-c) shows result of applying
adaptive rank reduction. Figure (4-e) shows result of applying constant rank reduction.
Figure (4-d) and (4-f) shows residual errors.
windows means refusing the plane wave assumption and applying the algorithm on curved
events. When using global windows, the curved data is a large rank, to preserve the signal
the rank of the block Hankel matrix is higher. Figure 5 shows the result of applying the
proposed method on the global window using the same 3D cube of the previous test. Fig-
ure (5-a) shows the result of applying adaptive rank reduction method, the output QF=10.5
dB. Figure (5-c) shows the result of using traditional rank reduction the output QF=6.5 dB.
Figure (5-b) and (5-d) shows the residuals for Figure (5-a) and (5-c) respectively.
Figure 6 is a close look at the first two in-line of the 3D cube of Figure 5. Figure (6-a)
shows the result of applying adaptive rank reduction. Figure (6-b) shows the result of ap-
plying constant rank reduction. Figure (6-c) and (6-d) shows residual errors.
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a) c)

b) d)

FIG. 2. A slice of a 3D data synthetic cube with four linear events. (a) Clean data. (b) Singular
values of the block Hankel matrix for the clean data. (c) Incomplete data contaminated with random
noise. (d) Singular values of the block Hankel matrix for the incomplete data.

In this test for better simulation, we are adding random noise into data. We test data with
different noise variations to evaluate the efficiency of the algorithm in presence of random
noise.
Figure 7 shows the comparison of the results of applying the two methods on a data set with
51% missing traces in presence of noise. We vary the noise level from weak to strong. The
red line shows the output QF of the adaptive rank-reduction method, and the blue line indi-
cates the output QF of the traditional rank-reduction method. We can see an improvement
in the output QF of the adaptive rank-reduction method in comparison with the traditional
method. Figure 8 shows the comparison of the F −K transform of the first in-lines of data
contaminating with random noise (SNR = 4) between Figure (8-a) input data with 51%
missing traces and SNR = 4, (8-b) clean data, (8-c) result of the adaptive rank-reduction
method, and (8-d) result of the traditional rank-reduction method.
We test the efficiency of the method on a 3D field data set. Figure (9-a) shows the initial
distribution of the traces in a shot gather. Then we kill 41% of the traces to apply the pro-
posed method. Figure (9-b) illustrates the geometry of traces after killing 41% of them.
Figure 10 demonstrates the results of applying adaptive rank reduction and the traditional
rank reduction withe the constant rank. Figure (10-a) shows the input data with 41% miss-
ing traces.Figure (10-b) shows the actual clean real data. Figures (10-c) and (10-e) are the
results of the constant rank reduction fo k = 5 and k = 10 on the local respectively. Figures
(10-d) and (10-f) show the residual error of figures (10-c) and (10-e) respectively. Figure
(10-g) demonstrates the result of application of adaptive rank reduction method. The resid-
ual error for the adaptive rank reduction method is displayed in figure (10-h). Results show
the reconstruction of the missing traces compared to the input data, but figure (10-d) shows
that for k = 5 there are some coherent signals in the time 1.6s remaining. This means that
the selected rank is underestimated and it could not reconstruct all the events. Figure (10-f)
shows more residual errors than figure (10-d), this could be an overestimation of the rank,
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for k = 10. Figure (10-g) shows the coherent event in time 1.6s that means the proposed
method could reconstruct the events better than the two other results.

CONCLUSIONS

Most of the rank reduction methods are applied on local windows to assume input data
linear. In this paper, we have compared two methods of rank reduction for signal recon-
struction. The traditional rank reduction methods needs linear data while the adaptive rank
reduction method can be applied on global windows with highly curved data. We tested the
efficiency of the method on both local and global windows. Synthetic data examples show
preserving the signal better than the traditional rank reduction method. The traditional rank
reduction method cannot reconstruct signal properly specially for a highly curved events.
For the global windows the adaptive rank reduction tends to reconstruct the missing traces
while the traditional method remain missing traces and too much noise.
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a) b)

c) d)

e) f)

FIG. 3. (a) Input data with 9 curved events and 51% missing traces. (b) clean data. (c) Result of
applying adaptive rank reduction, output QF=16 dB. (d) Residual errors for the result of adaptive
rank reduction.(e) The result of applying the constant rank reduction method k=9 and the output
QF=14.4 dB. (f) Residual errors for the result of traditional rank reduction method.
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a) b)

c) d)

e) f)

FIG. 4. A zoom in the first two in-line of 3D cube of Figure (3). (a) Input data. (b) clean data. (c)
Result of applying adaptive rank reduction, output QF=16 dB. (d) Residual errors of(c). (e) The
result of applying the constant rank reduction method k=9, output QF=14.4 dB. (f) Residual errors
of (e).
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a) b)

c) d)

FIG. 5. Global window test. (a) Result of applying adaptive rank reduction method, the output
QF=10.5 dB. (b) Residuals. (c) Result of using traditional rank reduction the output QF=6.5 dB. (d)
Residuals.

a) b)

c) d)

FIG. 6. A zoom in to Figure (5) for the first two in-line. (a) Result of applying adaptive rank reduction
method. (b) Residuals. (c) Result of using traditional rank reduction the output QF=6.5 dB. (d)
Residuals.
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FIG. 7. Comparison of the output QF of the adaptive rank-reduction method with the traditional
rank-reduction method for a 3D data set with 51% missing traces contaminating with different level
of random noise on the global window

FIG. 8. Comparison of F −K spectrum the output QF of (a) clean data, (b) Input data,(c) result of
the adaptive rank-reduction method, and (d) the result of the traditional rank-reduction method.
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a) b)

FIG. 9. Geometry of the field data. (a) Initial distribution of the traces. (b) Distribution of traces after
killing 41% of them.

a) b)

c) d)

e) f)

g) h)

FIG. 10. Results of reconstruction of the field example. (a) Input data. (b) clean data. (c) Constant
rank method, k = 5. (e) Constant rank, k = 10. (g) Adaptive rank reduction. (d), (f) and (h)
Residuals error of (c), (e) and (g) respectively.
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