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ABSTRACT

Analyzing pipelines incidents in Canada is important to understand their impact on the
environment and workers’ safety. Data provided by the Government of Canada is confus-
ing and incomplete but contains useful information that can be analyzed and modeled to
mitigate future incidents. Most of the reports come from the province of Alberta, which
contains most of the pipelines in Canada, and are mainly related to 4 companies. We could
notice a correlation between the number of incidents per year with the price of the WTI
crude oil price, as well as weekend effects. No seasonality is observed in the data, but
we noticed some outliers - months with a larger number of reports than the average - and
they are related to a single company. Clustering for dimensionality reduction and cluster
analysis, applied on pipeline and maintenance information, showed 4 main clusters, each
associated with different insights, such as the average volume of substance released, how
long took for the occurrences discovering, and emergency level.

INTRODUCTION

Pipelines are used to transport oil and gas (among other substances) are considered the
safest method of transportation for them, according to Green and Jackson (2015). However,
even rare, failures causing the spill of such substances occur, becoming a hazard to the
environment as there is a high probability of the contamination of water bodies, soil, and
wildlife (Michel and Fingas, 2016). In Canada, accidents are usually onshore. Several
studies use statistical models to estimate risk of the pipelines due to natural hazards (Badida
et al., 2019), or create forecast model to evaluate oil exposure due to spills (Wang et al.,
2020).

Belvederesi et al. (2018) use accident reports provided by PHMSA (Pipeline and Haz-
ardous Material Safety Administration) to analyze the of liquid spills. The authors pointed
how major failures have significantly affected the environment, such as the Plains Mid-
stream Canada ULC pipeline failure of April 2011, when 4300m3 of crude oil were released
into a water body close to the Traditional Territory of the Woodland Cree First Nation near
Peace River, Alberta, according to the Alberta Energy Regulator 2014. However, the anal-
ysis of spills in Canada has proven to be difficult (Belvederesi et al., 2017).

In this project, we analyze pipeline incidents, that resulted on spill or not, with the goal
to find patterns that can be used to prevent future incidents. We used the pipeline incident
reports from the Government of Canada on a period from 2008 to 2019. We separated the
data into clusters, and also analyzed the events over time, looking for correlations with oil
production and/or oil price.
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DATA ANALYSIS

The data was downloaded directly from the Government of Canada repository, and
contains a large number of information, such as the incidents locations (latitude and longi-
tude), operator’s name, type of incident, type of substance leaked (if any), volume spilled,
incident information, among others. Although there are lots of columns about the incident
itself, their descriptions on environmental impact are limited, with just a few columns ded-
icated to it. Also, the provided file (CSV) is quite confusing and incomplete, with many
columns hard to understand what they are, and many empty or missing information in most
of the columns.

Summarizing the Data

Figure 1 shows the location of all the incidents report from 2008 to 2019, coloured by
the type of substance the pipeline was transporting. Most of the reports come from Alberta,
the province where most of the pipelines are located, but most of the Canadian provinces
have had some type of occurrence.

FIG. 1. Map of pipeline incidents coloured by the substance transported.

Although the confusing data, lots of information are interesting and useful for analysis.
Figure 2 summarizes some of those information on pie charts. By checking the type on in-
cident reported, 51% correspond to the release of substance, 22.2% are related to operation
beyond design limits, 17.7% are associated to fire, while the remaining reports are divided
on several other causes.

Still on Figure 2, the most common type of release is gas (43.5%), with liquid (5.61%),
and miscellaneous (4.04%) far behind. 46.9% are not applicable. This means that almost
half of the reports are not related to any type of release, but with some incident on the
pipeline and/or the working facility, and most of the releases are related to less viscous
substances (gases).
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FIG. 2. Charts summarizing the types of incidents, types of release, and companies by the propor-
tion of appearance.

The top 4 companies with the largest number of occurrences (Figure 2) are NOVA
Gas Transmission LTD. (22.4%), Westcoast Energy Inc. (19.5%), Enbridge Pipelines Inc.
(18.2%), and TransCanada Pipelines Ltd. (14.4%). These companies are the ones with the
largest length of pipelines in Canada’s territory, and they been the top 4 does not come as a
surprise.

Time Series Analysis

There 3 dates for each report in the data set: the dates of occurrence (estimated date
and time of the failure), discovery (date and time in which the incident was noticed), and
report (day companies informed an incident to the Government). Each data is composed of
year, month, day, hour, minute, and second. The informed time is in the 12h system, but
with no information if it was am or pm, making it not possible to analyze if the time of the
day impacts the likelihood of an incident.

FIG. 3. Proportions of missing data for each date.
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Another observation is the amount of missing data for each date (Figure 3). While
dates of report and discoveries are well sampled, the date of occurrence has about 21% of
missing data. This can be due to the impossibility determining when the failure happened,
and some could be due to human mistake when filling the report.

FIG. 4. Comparing the yearly number of incidents with the oil production.

On Figure 4 is presented the comparison of the yearly number of incidents (histogram)
with the oil production (red line is the mean production, while gray is the standard deviation
of the production). There is no apparent correlation between them. The production has a
tendency to increase every year (except for 2017 and 2019), while the number of incidents
oscillates. On the same plot there is the standard deviation (STD) of the oil production for
each year, on a tentative to check any correlation between years with higher variation of
pipeline usage (STD) with the number of incidents. There is no apparent linear correlation,
but it is important to point that the years 2014, 2017, and 2019 had higher variation in
production, and the number of incidents were smaller when compared to neighbours in
2014 and 2016, while there is a high peak of incident in 2017. So a non-linear correlation
can exist.

While no direct correlation was observed between incidents and oil production, a cor-
relation may exist when comparing the number of incidents and the average of the WTI
crude oil price for each year (Figure 5). The number of incidents tends to be high when
the price of the oil is increasing compared to the previous year, and lower when the price
drops. Let’s just remember that correlation does not mean causation, but it is interesting to
see those trends.

Figure 6 shows the average of occurrences and discoveries per the day of week for all
the years (2008 to 2019) in gray, and the average for all the years in red. These plots show
that number of occurrences and discoveries highly drop during weekends. This may be
caused by the decrease of operation in facilities during Saturdays and Sundays.

Still analyzing the dates of the incidents, Figure 7 shows the average of incidents per
month for each year (gray) and the average per month for all the years (red), considering the

4 CREWES Research Report — Volume 32 (2020)



Pipeline Incidents

FIG. 5. Comparing the yearly number of incidents with the WTI crude oil price.

FIG. 6. Average of occurrences and discoveries per the day of week for all the years (2008 to 2019)
in gray, and the average for all the years in red.

a) occurrences, b) discoveries, and c) reports in the data set. d) are the averages for all the
years with error bars. There is no apparent seasonal effect on the number of incidents, but
for the discoveries and reports, there are some outliers (very unusual high or low values)
on November 2010, February 2012, October 2013, and September 2017. By looking at
the information for these dates, most of the events are from the same company Enbridge
Pipelines Inc., same location, same discovery date, but different occurrence dates. Probably
all the discoveries happened during the inspection date and small parts of the pipeline were
checked as having some issue and, as the issues were small, they also took a longer time to
be discovered. But further investigation on these events is recommended.

MODELING

This section is focused on the unsupervised learning algorithms used for the analysis,
more specifically the t-Distributed Stochastic Neighbour Embedding, or t-SNE (van der
Maaten and Hinton, 2008), for dimensionality reductions, and the DBSCAN (Ester et al.,
1996) for clustering.
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a) b)

c) d)

FIG. 7. Average of incidents per month for each year (gray) and the average per month for all the
years (red), considering the a) occurrences, b) discoveries, and c) reports in the data set. d) are
the averages for all the years with error bars.

t-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a technique for dimension-
ality reduction to visualize high-dimensional data (van der Maaten and Hinton, 2008). The
process consists on initially calculation, on the high-dimensional space, the probability pj|i
of xj be a neighbour of xi for all the N observations (left part of the equation 1), given the
bandwidth of the Gaussian kernel σi. The goal of the t-SNE methodology is to learn the
similarity of the reduced d-dimensional observations yi and yj by preserving the probabil-
ities pj|i. The measure of similarity is calculated using the equation 1 (right):

pj|i =
exp(||xi − xj||2/σ2

i )∑
k 6=l exp(−||xi − xk||2/σ2

i )
⇐⇒ qj|i =

(1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

(1)

The dimensional reduced observation are estimated by minimizing the Kullback-Leibler
divergence (equation 2):

C = KL(P ||Q) =
∑
i 6=j

pij log

(
pij
qij

)
(2)

where:
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pij =
pj|i + pi|j

2N
(3)

The minimization of the equation 2 is is achieved by the gradient descent equation 4:

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj||2)−1 (4)

t-SNE, as a dimensionality reduction algorithm, tries to preserve the clusters (similar
neighbours) on well defined groups in the low-dimension space. However it may not occur
if a parameter called perplexity (which measures the quality of a probability distribution
or probability model to predict a sample) is not set properly. In this project, we use the
algorithm to visualize computed clusters on a 2-D scatter plot.

DBSCAN

Density-based spatial clustering of applications with noise, or simply DBSCAN, was
proposed by Ester et al. (1996) as a non-parametric clustering algorithm, and it has a sim-
ple but powerful functionality. The user has to set a few parameters, the most important
ones are the distance ε (maximum distance on what two points are neighbours), and the
minimum number of neighbours minPt for the cluster. The algorithm will set one random
point of the data set as the center of the cluster, and starts to scan the points around it as
neighbours until the conditions ε and minPt are satisfied. When conditions fail, a point
that was not marked as part of the previous cluster is set as a new cluster center and a new
scan starts, now for another cluster. The algorithm repeat the process until there are no
points that satisfy the conditions. The algorithm decides how many clusters are in the data,
and points that are not included into any cluster is marked as outlier with the label 0.

The algorithm can fail to find different clusters with a high density data set, and is very
hard to setup if the distances between the points are sparse.

Clustering and Visualizing the Incidents Reports

For the clustering step, 6 features were selected with information for the type of activity,
equipment, inspection, maintenance, and substance that were in place during the incident.
DBSCAN separates the data into clusters and we analyze if the clusters bring information
about released volume of substance, how long it took for the incident/failure took to be
discovered, and if the emergency level, that goes from 0 (no emergency) to 4 (disaster).

Figure 8 shows the t-SNE reduced dimensionality of the data (to 2 dimensions) coloured
by the DBSCAN clusters. Clustering algorithm was done before the dimensionality reduc-
tion, the t-SNE was used only for visualization and to check if the clusters are reliable.

Analyzing Figure 8, the DBSCAN algorithm was able to find a total of 28 clusters,
although most of them are small and contain a small number of points. The clusters are
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FIG. 8. t-SNE map of the data coloured by the DBSCAN clusters.

mostly far from each other, as t-SNE ended up providing a sparse representation of the
points and clusters. There are 4 groups that immediately called our attention: the clusters
3, 4, 5, and 7, as they are larger and well represented in the t-SNE map.

Table 1. Most common clusters and their values.

DBScan Count Released.Vol.Mean Disc.Diff.Mean Emergency.Mean
3.00 107.00 0.00 1.44 1.02
4.00 147.00 0.00 0.48 0.99
5.00 237.00 48886.97 0.01 1.02
7.00 98.00 0.00 0.00 0.98

Table 1 summarizes the information for those clusters. The largest cluster is 5, with
237 occurrences, while cluster 7 is the smallest one (98 occurrences). Also, cluster 5 is the
only one related to release of substance, with an average of 48, 886.97m3 released. Cluster
3 contains the incidents that took longer to be discovered, with an average of 1.44 days.
About the emergency level, the averages for all the cluster are virtually the same.

FIG. 9. Chart with the counts of emergency levels for the 4 largest clusters.

On Figure 9, the pie charts with the emergency level proportion for each cluster shows
that Level 1 is the most common type of emergency for all the clusters. Cluster 7 differs
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from the others as having larger proportions of the emergencies 0 (no emergency) or 2.
This means that incidents that falls into cluster 7 have a higher probability to be of a more
dangerous emergency, as well not being an emergency at all.

By clustering the data set and analyzing the time series of the occurrences, we could
have some insights about the pipeline incidents, and to identify abnormalities on reports
the companies send to the government.

CONCLUSIONS

We analyzed Canada’s pipeline incidents reports from 2008 to 2019. The data proved
to be confusing and incomplete, but with a large number of useful information from which
we could learn some patterns.

In the first part of the analysis, we learned that about half of the pipeline incidents
reported resulted on some type of substance released, dominated by gas. Also, four com-
panies are predominant on number of reports sent.

From the time series analysis, the number of incidents per year has no observed cor-
relation with the average yearly production, while there is a correlation with the average
price of the WTI crude oil for the year. The number of incidents tend to increase during
elevations of the oil price, and to drop when the price reduces (more accentuated in 2008
and 2014, the start of the last two oil crisis). It was also observed that the number of occur-
rences and discoveries during the weekends. We could not observe any seasonal effect on
the number of incidents, but we could identify outliers on the number of discoveries and
reports. Each of these outliers are connected with a single company (Enbridge Pipelines
Inc.), when discoveries and reports of several incidents were set to a same day and location.

We applied clustering methods for dimensionality reduction and cluster analysis. We
could define 4 large clusters, where one of them (cluster 7) was associated to larger release
of substances, another one (cluster 3) was associated to events that took longer to be dis-
covered, while the cluster 4 was associated to incidents that can be of higher emergency, or
no emergency at all.
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