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ABSTRACT

Current efforts to use elastic full waveform inversion (EFWI) go beyond imaging of
complex structures and aim at determination of reservoir-scale rock physics properties.
However, the nonlinearity of EFWI and parameter crosstalk can prevent its convergence
toward the actual model. Parameters such as density and fluid saturation are more difficult
to retrieve because of their limited contributions to seismic data. We develop a method
for EFWI that uses rock physics constraints to mitigate such limited sensitivity. These con-
straints are in the form of explicit velocity-density relations for different lithologic facies as
a function of position, and are imposed through a model regularization term in the objective
function. We implement two different workflows of constraining EFWI for elastic and rock
physics properties. One is a sequential approach that consists of first inverting for veloc-
ity and density through EFWI and then transforming the elastic attributes to rock physics
properties. The other is a joint approach where we parameterize EFWI with rock physics
properties, allowing elastic and rock physics properties to be simultaneously updated. Con-
straining each workflow helps improve density and saturation recoveries. We also illustrate
that the joint approach is superior to the sequential inversion in terms of computational cost
and the ability to ensure consistency between elastic and rock physics properties.

INTRODUCTION

Elastic full waveform inversion (EFWI) is concerned with the simultaneous determina-
tion of two or more subsurface elastic properties. Despite the increasing implementation of
EFWI in properly imaging and interpreting the subsurface, several key challenges remain.
For instance, EFWI is a highly nonlinear and ill-posed problem, so the model updates are
often trapped in local minima (Bunks et al., 1995; Operto et al., 2013; Geng et al., 2018;
Pan et al., 2018). Moreover, EFWI suffers from parameter crosstalk, which arises from the
complex manner in which multiple elastic properties co-determine seismic waveforms, and
occurs when errors in one parameter are mapped into the updates of another (Métivier et al.,
2017; Pan et al., 2018, 2019; Keating and Innanen, 2019).These issues increase the uncer-
tainty of the inverse problem and could lead to subsurface model that does not represent
realistic lithology (Aragao and Sava, 2020).

Regularization techniques allow to stabilize ill-posed inverse problems by incorporat-
ing prior information about the model in the inversion. Prior information can consist of
estimates of model parameters (Asnaashari et al., 2013) or expected structure of the model,
e.g., smoothness (Tikhonov and Arsenin, 1977) or blockiness (Guitton, 2012). In recent
years, some authors propose using physical relationships between elastic parameters as
prior information to constrain the inversion. Because these relationships vary with lithofa-
cies and are commonly derived from well logs, the corresponding model constraint is often
called facies-based rock physics constraint (Kamath et al., 2017; Singh et al., 2018; Zhang
et al., 2018) or petrophysical constraint (Rocha and Sava, 2018; Aragao and Sava, 2020).
Their methods distinguish with each other by the form of mode penalty term included in
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the objective function. For example, Rocha and Sava (2018) use a logarithmic function to
confine the inverted models to a region defined by linear trends between model parameters.
Aragao and Sava (2020) propose using probability density functions to impose complex
petrophysical relations. Zhang et al. (2018) use a facies-based prior model term and update
it iteratively during the inversion. These approaches have been demonstrated to guide the
inversion toward high-resolution and geologically plausible elastic models.

Most efforts to involve EFWI in rock physics model reconstruction are of a sequential
type, that is, the elastic attributes are first inverted from seismic data via EFWI, and they are
next transformed to rock physics properties, such as porosity, lithology, and fluid satura-
tion (Grana, 2016; Dupuy et al., 2016a,b). Therefore, if constraining EFWI helps improve
elastic models, it should also lead to more accurate reconstructions of rock physics prop-
erties. As opposed to the sequential approach, Hu et al. (2020) propose formulating EFWI
with rock physics model parameterizations. Because they unify EFWI and rock physics
in a single formulation, their approach accounts for the elastic and rock physics proper-
ties together, allowing them to be jointly updated. Their results illustrate that parameter
crosstalk is generally an issue for recovering rock physics properties, and water saturation
is most challenging to estimate due to its minor contribution to seismic data. This raises the
question of whether the regularization techniques designed to improve elastic models can
be incorporated into the joint approach for a better estimation of rock physics properties.

In this study, we propose a model penalty term based on explicit relations between
velocity and density. We assume that the relations are facies-dependent, and can be ob-
tained, for example, by fitting well-log data. We first discuss general aspects of EFWI,
emphasizing the mechanisms used to incorporate this constraint. Then, we use a simple
synthetic model, which contains only one facies, to test both the sequential and joint work-
flows for recovering elastic and rock physics properties. For each workflow, we show the
improvement obtained by imposing the model constraint. We also illustrate some favor-
able features of the jointly inverted models. Finally, on a selected target of the Marmousi
model, we demonstrate the potential and challenges of applying the proposed method to
multi-facies cases.

THEORY
EFWI with model constraint

The general definition of the objective function for solving ill-posed inverse problems
could be recast as the Tikhonov function (Tikhonov and Arsenin, 1977; Asnaashari et al.,
2013):

E(m) = Ey(m) + AE,,(m), (1)

where the data misfit term E;(m) is based on a norm of the residuals between observed
data d s and synthetic data d(m) simulated from model m, and the model term E,,(m) is
based on a norm of a model penalty function. A is the trade-off parameter that controls the
relative importance of data and model term. Using the /5 norm, F4(m) can be written as

E4(m) = ||W(dops — d(m))|5 = %[(dobs —d(m))"WiWy(dos —d(m))],  (2)
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where W, is a weighting operator on the data, and the superscript 7 denotes the transpose.
In our study, W, is chosen as identity matrix.

To impose petrophysical relations to constrain the inversion, we define the model penalty

term as
1

En = 5 Z(ml — f(ma))?, 3)

X
where x denotes model space coordinates, m; = m1(x) and my = my(x) are two different
physical parameters, and f = f(x) is a position-dependent function mapping ms to m;.
We consider an EFWI model parameterization of P-wave velocity, S-wave velocity, and
density (Vp, Vs, p). Let m; represent density and mg represent P-wave velocity, equation 3

becomes ]

En=752 (p= (%)) 4)
The model term £, forces the inverted velocity and density models to satisfy the relation
p = f(Vp). In general, different lithologies are subject to different velocity-density rela-
tions (e.g., Gardner et al., 1974; Castagna et al., 1993; Martin et al., 2006). We make the
function p = f(Vp) position-dependent so that each model cell, based on its associated
lithology or geologic facies, is subject to a specific velocity-density trend. (e.g., Gardner
et al., 1974; Castagna et al., 1993; Martin et al., 2006). We also assume that well logs of
the two properties are available, and from which we can fit a per-facies relation between

them.
Within a Newton optimization, the model vector is updated by minimizing a quadratic
approximation of the objective function F(m). The search direction dm is the solution of
Hom = —g, )

and
g=gis+Agm, H=H;+ \H,, (6)

where g, g4, and g, are the gradients of the objective function E(m), the data misfit term
E;(m), and the model term E,,(m), respectively. H, H,, and H,,, are the corresponding
Hessian operators.

In this study we use the 2D frequency-domain isotropic-elastic wave equations (Pratt,
1990), the gradient of the data misfit term with respect the model parameter m is given by

(Brossier et al., 2009)
T
e for () o).

3mi

where R takes the real part of its argument, v is the incident wavefield, A is the impedance
matrix containing frequency and medium properties, Ad = d,;s — d(m), and the super-
script * denotes the complex conjugate.

The gradient of the model term with respect m is

8(;0 — f(VP))

Im = (lO - f(VP)) om

. ®)
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To avoid explicitly constructing the Hessian operator H,;, we employ a truncated Gauss
Newton (TGN) method (Métivier et al., 2017), in which equation 5 is solved iteratively, in-
volving only Hessian-vector products, which can be efficiently calculated using the adjoint
state method (Plessix, 2006).

EFWI parameterized by rock physics properties

A wide range of sets of isotropic-elastic parameter classes, for instance the Lamé con-
stants plus density, (\, p, p), or alternatively the P-wave and S-wave velocities plus den-
sity, (Vp, Vs, p), can be selected for inversion (e.g., Tarantola, 1986). Although any triplet
(A, i, p) can be uniquely computed from its associated triplet (Vp, Vs, p), and vice versa,
which is suggestive that the parameterization is irrelevant, in practice the class chosen for
updating is very important.

Let p = [p1, p2, p3]” represent a reference EFWI parameterization, with p; being the ith
parameter class with ¢ = (1,2, 3), so that, in the velocity/density parameterization above,
for instance, p, represents the S-wave velocity. Let m.’ represent the model parameter in
class p; at the ith spatial position. From equation 5 we observe that this model parameter
is altered at each iteration by an update proportional to A /m}’. To transform to a new
parameterization, say q = [q1, g2, ¢3]*, we compute

OA  OA OmM  OA OmP*  OA om

omy  omP omP  Omi* Om  Oml® om]’’

)

for each of j = (1,2,3). Given an EFWI scheme set up to update parameters p, within
which the partial derivatives of A are known, and given relations between these parameters
and any new desired set q, of the form m}’ (mJ", m# m?¥), through equation 7 we can
move to a new scheme in which the q are updated. This allows us to transform between
different elastic parameter sets, e.g., (Vp, Vs, p), (A, i1, p), (K, i, p), etc.; however, it also
allows us to transform from a base elastic parameter scheme to any desired petrophysical
model, provided a suitable mapping exists between the parameters of this model and the

three base elastic properties.

Here we consider a rock physics property model, in which q embodies porosity (P),
clay content (C'), and water saturation (Sw). The base elastic parameterization is based on
P- and S-wave velocities and density. We link the two parameter sets through a represen-
tative rock physics relation: the KT model (Kuster and Toksoz, 1974), which provides Vp,
Vs and p as explicit functions of P, C, and Sw. These relations can be used as discussed
above to obtain the partial derivatives of the objective function with respect to P, C', and
Sw. As aresult, we formulate EFWI with a model parameterization based on the three rock
physics properties, allowing them to be directly updated. Also, because the computation of
Vp, Vs and p from P, C, and Sw is included in the EFWI forward problem, these elastic
attributes are jointly updated during the inversion.

For the P-C-Sw parameterized EFWI problem, we can still deploy the model constraint
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in the form of Vp-p relations. We achieve this by rewriting Equation 4 as

By = 5 S lplm) — f(Vo(m))]* (10)

where m = (P, C, Sw). In other words, we constrain the inverted rock physics property
model based on its elastic response.

NUMERICAL EXAMPLES
Single-facies example

In the "Theory" section we proposed adding a model penalty term in the form of Vp-
p relations to the objective function. We illustrated how this term works to constrain the
EFWI that is either classically parameterized by Vp-Vs-p or parameterized by rock physics
properties: P-C-Sw. The two model parameterizations correspond to two different work-
flows of using EFWI for elastic and rock physics properties: sequential and joint. Here
we test both workflows on a single-facies synthetic model, and for each workflow we com-
pare the proposed method with the unconstrained inversion. This leads to solving the same
problem using four different approaches: unconstrained sequential inversion, constrained
sequential inversion, unconstrained joint inversion, and constrained joint inversion.

We also note that within the sequential approach, the estimation of rock physics prop-
erties from the EFWI-derived elastic attributes is a nonlinear inverse problem, which is not
trial to solve. We use a grid-search method (Sen and Stoffa, 2013) that involves the sys-
tematic search through each point in a predefined model space to locate the best-fit models.
We make the search step small enough to ensure a precise conversion, so that no theoretical
uncertainty would be brought to the converted models.

Figure 1 shows the three-layer model to recover, including its elastic properties: Vp, Vg,
p and two rock physics properties: P and Sw. We create a favorable scenario by assuming
a stable lithology (i.e., a single facies) and constant C' (not shown). The KT model is used
to relate P, Sw to Vp, Vs, p and is assumed known. Figure 2 shows the initial models,
which are smoothed versions of the true models. In Figure 3 we project the true and initial
models onto a Vp-p crossplot and a P-Sw crossplot.

Figures 4 shows the recovered models using the unconstrained sequential approach.
The Vp, Vs, and p models are first recovered using EFWI, they are next transformed to P
and Sw models using grid search. Apart from some mild oscillatory behavior, the inverted
velocity models match closely with the true models. The density model has its structure
recovered, but the values of its top and middle layers overestimated to some extent. The
converted porosity model is reasonably accurate, but the water saturation model is strongly
distorted. Figure 5 shows the vertical profiles of the true and inverted models at a lateral
position x=0.12km. We observe among the three elastic parameters a relatively large de-
viation of density estimate from the true model, and the deviation gets significantly more
pronounced in the Sw estimate. The inverted porosity, on the other hand, matches closely
the true model. Same conclusions can be drawn from the crossplots in Figure 6, which
clearly demonstrate the lack of converge in Sw. Our explanation is that velocities and den-

CREWES Research Report — Volume 32 (2020) 5



Hu and Innanen

sity are much more sensitive to porosity than to Sw, making porosity well-constrained in
the conversion. Therefore even though there are obvious errors in density, porosity can be
suitably recovered by the good velocity estimate. By contrast, the errors in either velocity
or density become magnified in Sw.

In Figures 7, 8, and 9 the inversion results of the constrained sequential approach are
summarized. The Vp-p relation used to constrain the inversion is derived by fitting the exact
Vp and p data, which are assumed to be collected from well logs, with a quadratic function
in the form of p = aVP? + bVp + ¢, where a, b, and c are coefficients. The fitting curve
is denoted by the yellow line in Figure 9a. Imposing the model constraint confines the
inverted Vp and p samples to this line. On the other hand, iteratively reducing data misfit
drives these samples towards their true values. As a result, compared to the unconstrained
approach, the inverted density model matches more closely the true model, which also
leads to a significant improvement in Sw recovery.

We next proceed the test using the joint inversion. Unlike the sequential approach, in
which rock physics is included as a cascaded step after EFWI, the joint approach accounts
for the elastic and rock physics properties in a single EFWI formulation, allowing them to
be simultaneously updated. In Figures 10, 11, and 12 we summarized the inversion results
of the unconstrained joint approach. We observe that Sw is updated insufficiently. This
is explained by Hu et al. (2020) through radiation pattern analysis, which shows very low
relative scattering amplitudes from Sw. However, we note that the difficulty associated
with recovering Sw here is of a different type to the sequential approach. In the latter case,
the limited sensitivity of velocity and density to Sw makes the inversion of Sw unstable; in
the joint approach, the very low sensitivity of seismic data to Sw makes it difficult for EFWI
to produce sufficient update for this property. We also observe in Figure 11 an improved
recovery of velocity and density models compared to the unconstrained sequential approach
(Figure 5). This likely originates from a reduced degree of parameter crosstalk introduced
by the P-Sw model parameterization.

The recovered models using the constrained joint inversion are demonstrated in Figures
13, 14, and 15. Compared to the unconstrained joint approach, the improvement to the Sw
recovery is obvious: the middle layer is accurately recovered, and the spatial extent of each
layer can be clearly identified. The density recovery is also slightly improved. Compared
to the constrained sequential inversion, the directly estimated Sw is more stable in each
layer and is free of undesired perturbations that mimic anomalies (Figure 7¢). While the
error magnification associated with rock physics inversion is generally an issue for the
sequential approach, it is avoided in the joint inversion. This enables the latter to guarantee
the consistency between elastic and rock physics property models. Moreover, by combining
rock physics and EFWI in a single formulation, the joint approach avoids numerically
solving the nonlinear rock physics inverse problem, therefore it is computationally more
efficient.
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FIG. 1. True models of a) P-wave velocity, b) S-wave velocity, ¢) density, d) porosity, and e) water
saturation. Each layer is homogeneous.

0 a) Vo b) Vs c) p
E km /s km /s g/cm®
= 25
B 4.8 3
jb]
a 29 23
46 2.8
2.1
05 44 27
d P
0 )
El
4
= 03
=} 0.9
a 0.18
i 0.7
0.06
05 05
0 0.5 0 0.5
Distance(km) Distance(km)
FIG. 2. Initial models. They are smoothed versions of the true models.
271 17
° initial * true
261
09t o
25¢
241 08
23 & 07 o
22
0.6
2.1
° 05F .
2 (2) (b)
1.9 : : : : 0.4 : : : : : : !
42 44 46 48 5 0 005 01 045 02 025 03 035
Vo P

FIG. 3. True and initial models displayed in a) P-wave velocity-density crossplot, and b) porosity-
water saturation crossplot.

CREWES Research Report — Volume 32 (2020) 7



Hu and Innanen

a) Ve b) Vs c) p
0
E km/s g/cm?
=1 25
B 3
a 2.9 2.3
2.8
21
0.5 2.7
d) P
0
g
=
= 0.3
&
[ 0.18
0.06
0.5
0 0.5
Distance(km) Distance(km)
FIG. 4. Unconstrained sequential inversion: recovered models.
—True —Inverted
0 ‘
0.1f
o2t
=
=
o
& 03¢
0.4}
0.5
45 5 26 28 3 2 25 0 0.2 0.5 1
Vp(km/s) Vs(km/s) p(g/cm?) P Sw
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FIG. 6. Unconstrained sequential inversion: crossplots.
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FIG. 9. Constrained sequential inversion: crossplots. The yellow line denotes the Vp-p relation
used as constraint.
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Multi-facies example

Our study is based on the assumption that there is a one-to-one mapping between facies
and velocity-density relation, therefore, to impose the constraint we need to predetermine
the spatial distribution of facies. This step is simplified with the three-layer model, which
can be well defined by a single velocity-density relation. However, it is more general that
the subsurface model exhibits multiple velocity-density relations and different facies.

Here, we test the proposed method on a selected target of the Marmousi model (Figure
16). In Figure 17a we display the true models using a Vp-p crossplot. The model points
(black dots) can be classified into three categories, each corresponds to a single facies /
Vp-p relation. Labeling every point based on the facies it falls into, a facies map can be
generated (Figure 17b). Notably, the solution of facies map is not unique. It depends on
the way in which we separate those points. More groups and different fitting equations are
allowed. Even the terminology "facies" we use is not strict, it is rather a tool for us to assign
the correct Vp-p relation to each grid.
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FIG. 16. Marmousi case. True models of a) P-wave velocity, b) S-wave velocity, and c) density
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FIG. 17. Facies classification. a) Model points are classified into three groups. Fitting each group
using a quadratic function: p = aV;? + bVp + c. b) The corresponding spatial distribution of facies.
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However, it is unrealistic to obtain the facies map based on the true model, which
is unknown. A facies classification technique is required. Some authors have proposed
using an iterative approach to impose facies-based constraints (e.g., Singh et al., 2018;
Zhang et al., 2018), which consists of estimating the facies distribution based on the current
inverted model, and then using this facies distribution to constrain the inversion at the next
iteration. By doing so the facies map is updated interactively with the model during the
inversion. They ended up achieving a good estimation of both subsurface models and facies
map. Unfortunately, we have not yet found this approach effective for imposing the kind of
constraint we propose. Our study indicates that the iterative approach will inevitably assign
the wrong facies to part of the model at each iteration, and hinder the model from updating
towards reducing data misfit. As a result, it can be less efficient than the unconstrained
inversion.

While our research into facies classification is ongoing, we examine the proposed
method using the exact facies distribution (Figure 17b). In Figure 18 we compare the inver-
sion results between the unconstrained and constrained approaches. The recovered density
model using the constrained approach has a higher resolution (Figure 18d) and matches the
true model more closely (Figure 18e). Figure 19b illustrates that the inverted model points
are confined to different lines honoring their corresponding facies, thus being more likely
to recover the true model points.

CONCLUSIONS

We propose a regularized EFWI scheme that includes rock physics information as a
model penalty term. This term is in the form of facies-based velocity-density relations. We
illustrate how it helps to constrain a sequential workflow and a joint workflow for recover-
ing elastic and rock physics properties. Parameters such as density and water saturation that
are difficult to estimate with the unconstrained inversion are better resolved using the con-
strained approach. The joint inversion is computationally more efficient and can guarantee
the consistency between elastic and rock physics property recoveries. A robust facies clas-
sification technique is required for applying the proposed method to complex subsurface
models.
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