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ABSTRACT

The standard re-expressions used in AVO analysis and inversion (e.g., from velocity-
density to modulus-density, or from the Aki-Richards approximation to the Shuey approx-
imation, etc.) are formally coordinate transforms between oblique-rectilinear (i.e., non-
Cartesian) coordinate systems. Alternative coordinate transforms leading to favourable
updating properties represent in this sense a valid suite of AVO re-expressions. In a low-
dimensional model space like that of AVO (which involves dimensionalities in the low
single digits), analytic forms for transformation matrices to systems in which the Hessian
operator is an identity matrix can be found. These imply new AVO approximations, within
which updates in AVO inversion require no 2nd order objective function information. This
may have consequences both for iterative linear AVO inversion algorithms and “weighted
stack” algorithms, the latter of which can be based on much simpler weights.

INTRODUCTION

In a companion report we have introduced the idea of overlaying oblique and scaled
coordinate systems onto model spaces, which are so designed as to confer favourable con-
vergence properties on least-squares inversion. In this report we will apply the idea to a
low-dimensional seismic inverse problem, Amplitude Variation with Offset (AVO) inver-
sion. AVO inversion (e.g., Castagna and Backus, 1993) is the process by which seismic
reflection data amplitudes at multiple angles are used to simultaneously estimate the jumps
in elastic medium properties at one or more subsurface boundaries. Except in rare cases,
AVO analysis and inversion involve linearizations of the relationship between reflected
seismic amplitudes and parameter “jumps”, or perturbations, across reflecting boundaries.
We will start with these linearized forms in our development.

AVO APPROXIMATIONS

AVO analysis and inversion is based on linearized approximate solutions of the Zoep-
pritz equations. The basic form is the Aki-Richards approximation (Aki and Richards,
2002), which for RPP is

RPP(θ) ≈ 1

2
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1 + tan2 θ

)
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− γ sin2 θ

∆VS
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+
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(
1− γ sin2 θ

)
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ρ
, (1)

where γ = 4(VS/VP )2, and where θ is either the angle of incidence of the plane P-wave, or
the average of the incident and transmitted angle. A wide range of re-expressions, which
take equation (1) as a starting point, are in use. Many of these involve changing the physical
variables that experience a contrast at the boundary. For instance, a form based on the P-
wave and S-wave impedances IP = ρVP and IS = ρVS , and the relations
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is often used (e.g., Larsen, 1999):

RPP(θ) ≈ 1
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+
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ρ
. (3)

It is also common to re-express the Aki-Richards approximation with an emphasis on the
form of the coefficients, rather than the perturbations alone. The Shuey approximation
(e.g., Castagna and Backus, 1993),

RPP(θ) ≈ 1
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is of this type. Here, the first term dominates near θ ≈ 0◦, the second in an intermediate
range, and the third where θ is large enough for tan θ and sin θ to differ significantly. By
choosing this formulation, in other words, we allow ourselves to focus on available data
and which parameters are derived from which angle ranges.

AVO approximations exist for each of four reflection coefficient types: RPP, RPS, RSP

andRSS. In converted wave AVO analysis and inversion, combinations ofRPP andRPS have
been shown to lead to model inferences with greater accuracy and stability than those based
on RPP alone (e.g., Larsen, 1999). An impedance formulation, with the density eliminated
by assuming it varies in a known manner with P-wave velocity, involves simultaneous
quantification of these two reflection coefficients as

RPP(θ) ≈ A(θ)
∆IP
IP

+B(θ)
∆IS
IS

, and

RPS(θ, ϕ) ≈ C(θ, ϕ)
∆IP
IP

+D(θ, ϕ)
∆IS
IS

,

(6)

where

A =
1

2

(
1 + tan2 θ

)
, B = −γ sin2 θ, C = −VP tanϕ

VS

(
1 + E

)
, D = −VP tanϕ

10VS
E, (7)

and where E = 2 sin2 ϕ− 2(VS/VP ) cos θ cosϕ, and ϕ is the shear wave angle.

In each of the cases above, the reflection coefficient is an inner product between two
vectors, one a vector of coefficients and the other a vector of model parameters (or un-
knowns, in AVO inversion). For instance, equation (1) can be written

RPP(θ) ≈
[

1

2

(
1 + tan2 θ

)
,−γ sin2 θ,

1

2

(
1− γ sin2 θ

)] ∆VP/VP
∆VS/VS

∆ρ/ρ

 . (8)
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Later we will make use of the fact that the ordering of the elements of these vectors is not
important, provided any switching of elements in one vector is matched by a corresponding
switch in the other. For instance, RPP is evidently symmetric under the exchange

RPP(θ) ≈
[
− γ sin2 θ,

1

2

(
1 + tan2 θ

)
,
1

2

(
1− γ sin2 θ

)] ∆VS/VS
∆VP/VP

∆ρ/ρ

 . (9)

This inner product form and this symmetry hold across all AVO linear approximations.

AVO RE-PARAMETERIZATION AS A COORDINATE TRANSFORM

We assume that the set of model parameters [∆VP/VP ,∆VS/VS,∆ρ/ρ]T has the transforma-
tion properties of a contravariant vector. Then, if the coefficient vector is treated as a co-
variant vector, the reflection coefficient as the inner product of the two can be considered to
be a proper scalar or invariant. In this section we will show how AVO re-parameterizations
can be expressed in terms of coordinate transformations from one oblique-rectilinear sys-
tem to another. To do this, we will make use of the relationships between vectors in two
coordinate systems, say s and r (see, e.g., Innanen, 2020a). Given any one transformation
matrix, e.g., tνµ, these rules give the others:

sν = tνµr
µ : from r to s, contravariant

rν = (t−1)νµs
µ : from s to r, contravariant

φµ(r) = tνµφν(s) : from s to r, covariant

φµ(s) = (t−1)νµφν(r) : from s to r, covariant.

(10)

Suppose that we are characterizing the reflection coefficient RPP arising from a specific
contrast in elastic properties. The three velocity/density perturbations associated with this
contrast are the contravariant components of a vector in a coordinate system labelled s:

sµ =

 s1

s2

s3

 =

 ∆VP/VP
∆VS/VS

∆ρ/ρ

 , (11)

and the coefficients are the covariant components of a vector F (s)
µ (θ):

F (s)
µ (θ) =

 F
(s)
1 (θ)

F
(s)
2 (θ)

F
(s)
3 (θ)

 =

 1/2 (1 + tan2 θ)
−γ sin2 θ

1/2
(
1− γ sin2 θ

)
 . (12)

Here the indices 1, 2 and 3 have been assigned to P-wave velocity, S-wave velocity, and
density respectively, but, as pointed out above, any re-assignment is permissible, provided
it occur within both sµ and Fµ. RPP is then the scalar product

RPP(θ) = F (s)
µ (θ)sµ. (13)
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Suppose next that the impedance perturbations associated with the same medium are the
contravariant components of a vector in a different coordinate system labelled r:

rµ =

 r1

r2

r3

 =

 ∆IP/IP
∆IS/IS
∆ρ/ρ

 . (14)

The reflection coefficient, which is an invariant in our setup, is then given by

RPP(θ) = F (r)
µ (θ)rµ. (15)

If the re-parameterization is legitimately an oblique-rectilinear coordinate transform, this
F

(r)
µ (θ) must arise from its F (s)

µ (θ) counterpart via transform rules for covariant vectors,
and the perturbation vector via rules for contravariant vectors. Inspection of equation (2)
allows us to infer the transformation matrix taking a contravariant vector in the s system to
its counterpart in the r system:

rµ =

 r1

r2

r3

 =

 1 0 1
0 1 1
0 0 1

 s1

s2

s3

 . (16)

From the rules summarized in equation (10), the transformation matrix that must be applied
to F (r)

µ in order to obtain F (s)
µ is the transpose of the inverse of the matrix in (16). The

inverse, computed analytically, is  1 0 −1
0 1 −1
0 0 1

 . (17)

Applying the transpose of this matrix to the Aki-Richards coefficients, we obtain 1 0 0
0 1 0
−1 −1 1

 1/2(1 + tan2 θ)
−γ sin2 θ

1/2(1− γ sin2 θ)

 =

 1/2 (1 + tan2 θ)
−γ sin2 θ

1/2
(
γ sin2 θ − tan2 θ

)
 . (18)

This correctly reproduces the coefficients in equation (3), confirming that this type of re-
parameterization is a bona fide oblique coordinate transform. We can quickly confirm this
by considering the Shuey approximation as another example. Let the r system instead
contain model vectors of the form

rµ =

 r1

r2

r3

 =

 ∆S1/S1

∆S2/S2

∆S3/S3

 . (19)

We treat this vector is a transformation of the Aki-Richards vector sµ, through a matrix that
can be constructed by inspection of equations (5): r1

r2

r3

 =

 1 0 1
1 −2γ −γ
1 0 0

 s1

s2

s3

 . (20)

4 CREWES Research Report — Volume 32 (2020)



Misfit-based coordinate system design in AVO inversion

This matrix is of the second type in (10). It follows that the matrix taking a covariant vector
from the r system to the s system is the transpose of the inverse of this matrix. Computing
this analytically, and applying it to the Aki-Richards coefficients, we obtain the coefficients
of F (r)

µ (θ): 0 −1/2 1
0 −1/2γ 0
1 1/2γ + 1/2 −1

 1/2(1 + tan2 θ)
−γ sin2 θ

1/2(1− γ sin2 θ)

 =

 1/2
1/2 sin2 θ

1/2
(
tan2 θ − sin2 θ

)
 , (21)

which, by comparison with equation (4), is observed to correctly reproduce the Shuey
coefficients.

Converted wave AVO, or any approach using more than one reflection type, requires us
to introduce multiple scalar products. In the impedance formulation examined by Larsen
(1999), for instance, we have

RPP(θ) ≈ F (s)
µ (θ)sµ

RPS(θ, ϕ) ≈ G(s)
µ (θ, ϕ)sµ,

(22)

both involving the same model vector

sµ =

[
∆IP/IP
∆IS/IS

]
, (23)

where

F
(s)
1 (θ) = A(θ), F

(s)
2 (θ) = B(θ), G

(s)
1 (θ, ϕ) = C(θ, ϕ), G

(s)
2 (θ, ϕ) = D(θ, ϕ). (24)

Here a single transformation comprising a 2×2 matrix,

tνµ =

[
t11 t12
t21 t22

]
, (25)

would in general be applied separately to both equations. It may be acceptable to reduce
the data, e.g., by forming a linear combination

R(θ, ϕ) = q1RPP(θ) + q2RPS(θ, ϕ) ≈
(
q1F

(s)
µ (θ) + q2G

(s)
µ (θ, ϕ)

)
sµ, (26)

recovering a single scalar product form, which transforms via (25).

THE HESSIAN IN LEAST-SQUARES AVO INVERSION

The Hessian matrix associated with a least-squares objective function plays a very im-
portant role in practical AVO inversion. The inverse of the Hessian appears explicitly as a
pre-multiplier of the gradient in an iterative scheme for nonlinear AVO inversion; however,
it also appears implicitly in the weights of all linearized inversion schemes (which are much
more commonly applied). The linear inverse scheme is essentially equivalent to a single
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Gauss-Newton update within the nonlinear/iterative scheme, so we can discuss the latter
without loss of generality.

Suppose we were to assume a linearized forward model for deconvolved PP reflection
data as a function of time t and incidence angle θ. “Predicted” data associated with a
particular set of velocity and density perturbations are, within this scheme,

Rpred
PP (θ, t) ≈1

2

(
1 + tan2 θ(t)

)
∆VP (t)

VP
− γ(t) sin2 θ(t)

∆VS(t)

VS

+
1

2

(
1− γ(t) sin2 θ(t)

)
∆ρ(t)

ρ
.

(27)

Time values are treated independently of one another, so we can drop the t dependence,
remembering that the problem will be solved once per time point in practice. Assigning
the coefficients to the covariant components of a vector Fµ and the perturbations to the
contravariant components of a vector sµ, we have

Rpred
PP (θ) = F (s)

µ (θ)sµ. (28)

Given M angles of input data, the least-squares objective function is then

Φ(s) =
1

2

M∑
j=1

(
F (s)
µ (θj)s

µ −RPP(θj)

)2

= sµφµν(s)s
ν + sµgµ(s) + χ, (29)

where

φµν(s) =
1

2

∑
j

F (s)
µ F (s)

ν , ϕµ(s) = −
∑
j

F (s)
µ RPP, and χ =

1

2

∑
j

R2
PP. (30)

Because we have defined the model unknown as a contravariant vector, for Φ to be a scalar,
φµν must be a second rank covariant tensor, ϕµ must be a covariant vector, and χ must be
scalar. The first of these, φµν , is the Hessian:

φµν(s) =

 (1/2)
∑

j F
(s)
1 F

(s)
1 (1/2)

∑
j F

(s)
1 F

(s)
2 (1/2)

∑
j F

(s)
1 F

(s)
3

(1/2)
∑

j F
(s)
2 F

(s)
1 (1/2)

∑
j F

(s)
2 F

(s)
2 (1/2)

∑
j F

(s)
2 F

(s)
3

(1/2)
∑

j F
(s)
3 F

(s)
1 (1/2)

∑
j F

(s)
3 F

(s)
2 (1/2)

∑
j F

(s)
3 F

(s)
3

 . (31)

The rules in (10) apply to tensors as well as vectors; if tνµ is a transformation matrix via
which a contravariant vector in an r system goes over into an s system, then a rank-2
covariant tensor transforms as

φµν(r) = tλµ φλσ(s) tσν . (32)

To give another example, for simultaneous PP and PS inversion, the least-squares objective
function takes the form

Φ(s) =
1

2

M∑
j=1

(
F (s)
µ (θj)s

µ −RPP(θj)

)2

+
1

2

M∑
j=1

(
G(s)
µ (θj, ϕj)s

µ −RPS(θj, ϕj)

)2

, (33)
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where θj and ϕj are the average P-wave and S-wave ray angles associated with the jth
offset in the data, which we assume is a known relationship. The Hessian matrix in this
case is

φµν(s) =
1

2

M∑
j=1

(
Fµ(θj)Fν(θj) +Gµ(θj, ϕj)Gν(θj, ϕj)

)
, (34)

where

F1(θ) =
1

2

(
1 + tan2 θ

)
, F2(θ) = −γ sin2 θ,

G1(θ, ϕ) = −VP tanϕ

VS

(
1 + Γ(θ, ϕ)

)
, G2(θ, ϕ) = −VP tanϕ

10VS
Γ(θ, ϕ),

(35)

and where Γ = 2 sin2 ϕ− 2(VS/VP ) cos θ cosϕ.

FIG. 1. Objective function for standard 3-term AVO inversion. (a) The real part of RPP is plotted
as a function of incident angle θ. The discrete set of data amplitudes are plotted as circles. (b)-(d)
2D slices through the 3D objective function are taken, each time holding one perturbation fixed at
its true value. In (b) the slice is at constant ∆ρ/ρ = ∆ρ/ρ|true; in panel (c) the slice is at constant
∆VS/VS = ∆VS/VS |true; and in panel (d) the slice is at constant ∆VP /VP = ∆VP /VP |true. The true
model is plotted with an x in these three panels.

AVO inversion (like all multiparameter inversion) is an un-mixing process, where the
influences of 2-3 independent perturbations on a set of reflection amplitudes are separated.
This only happens to the extent permitted by (1) the physics describing the mixture, and
(2) the available data. The shape and character of the Hessian matrix is informative about
whether (1) and (2) will lead to successful unmixing or not. For problems with N un-
knowns, the Hessian is an N×N matrix conferring onto the objective function an ellip-
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soidal symmetry*. Difficulties with un-mixing of parameters, as well as convergence prob-
lems and uncertainty, appear as eccentricities in the ellipsoid and misalignments between
the axes of the ellipsoid and those of the coordinate axes of model space in a given pa-
rameterization. A spherically-symmetric objective function has a scaled Kronecker delta
function as a Hessian; this represents the best case scenario, with little chance of confusion
or cross-talk between parameters during inversion.

To illustrate this, consider a standard 3-term AVO problem in the velocity/density pa-
rameterization. Suppose the P-wave reflection coefficient of a boundary between medium
1 (with properties VP1 = 2.0 km/s, VS1 = 1.0 km/s, ρ1 = 2000 kg/m3) and medium 2 (with
properties VP2 = 2.2 km/s, VS2 = 1.15 km/s, ρ2 = 2200 kg/m3) is measured at M = 6 an-
gles, {1◦, 7◦, 10◦, 25◦, 35◦, 60◦}. The data and the objective function associated with this
problem are plotted in the four panels of Figure 1. The basin of attraction as projected onto
these three planes is elongated along some preferred axes, indicating significant uncertainty
in these directions; it is also misaligned, meaning the axes of the ellipsoid are oblique to
the model space coordinate axes.

The above example was created assuming the availability of high-angle data (i.e., θ =
60◦). In practice, a maximum angle of roughly θ = 30◦ is more common. Overall the
expectation will be that the uncertainty will increase given data on a smaller angle range.
The objective function associated with data on an angle range {1◦, 7◦, 10◦, 30◦} is plotted
in Figure 2 (all other quantities, and the figure design, are unchanged). The elongation of
the basin of attraction, or, equivalently, the eccentricities of the ellipsoid, have increased
noticeably in both slices pertaining to the density. Density is notoriously difficult to deter-
mine from short-offset (small angle) reflection amplitude data; this increase in eccentricity
of the objective function, via the Hessian φµν , is a hallmark of that difficulty. Interestingly,
given the correct density perturbation, in panel (b) it transpires that the smaller angle range
slightly improves the distinguishability of the P- and S-wave velocities.

AVO RE-PARAMETERIZATIONS BASED ON DATA MISFIT

We have thus far (1) identified with each re-parameterization of the AVO problem a
transform between oblique-rectilinear coordinate systems, and (2) focused on the obliquity
and eccentricity of the objective function implied by the Hessian matrix as a strong indica-
tor of the ease or difficulty of simultaneous multiparameter inversion. We next undertake
a search for new parameterizations, designed by enforcing favourable properties on the
resulting Hessian matrices.

We have developed algorithms by which transformation matrices whose action on a
Hessian satisfies certain constraints (Innanen, 2020b); one of these allows us to find an AVO
re-parameterization whose least-squares gradient always points directly to the minimum,
regardless of starting point. There are many such matrices, distinguished by their lower

*We use the terms ellipsoid and sphere throughout this paper; by these words, we mean more specifically
“N dimensional hyperellipsoid”, or “N dimensional hyperspheroid”. In each case the dimension of the
sphere or ellipsoid to be visualized is equal to the number of model parameters being inverted for.
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FIG. 2. Objective function with all variables the same as those in Figure 1 except with an angle
range of {1◦, 7◦, 10◦, 30◦}.

triangular values. The simplest, in which the lower triangular entries are all zero, is

tνµ =

 t11 t12 t13
0 t22 t23
0 0 t33

 . (36)

The other 6 elements are determined by enforcing the 6 constraints

φµν(r) = tλµ φλσ(s) tσν = δµν , (37)

where δµν is the Kronecker delta, and where φλσ(s) is the Hessian derived from the Aki-
Richards approximation in equation (31). The solution is

tνµ =

 ψ1 α2ψ2 α3ψ3

0 ψ2 β3ψ3

0 0 ψ3

 , (38)

where (suppressing the s dependence)

α2 = −φ12

φ11

, α3 =
φ22φ13 − φ12φ23

φ2
12 − φ11φ22

, β3 =
φ11φ23 − φ12φ13

φ2
12 − φ11φ22

(39)

and

ψ1 = φ
−1/2
11 , ψ2 =

(
φ22 − φ212/φ11

)−1/2
,

ψ3 =

[α3, β3, 1]

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 α3

β3

1


−1/2

.
(40)
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The transformation matrix of a contravariant vector from the s system to the r system
occurs via the inverse of this tνµ, which is

(tνµ)−1 =

 1/ψ1
− α2/ψ1

(
α2β3 − α3

)
/ψ1

0 1/ψ2
− β3/ψ2

0 0 1/ψ3

 . (41)

This means the AVO approximation in the new coordinate system is

RPP(θ) = F
(r)
1 (θ)r1 + F

(r)
2 (θ)r2 + F

(r)
3 (θ)r3, (42)

where rµ = [∆VP/V
′
P ,∆VS/V

′
S,∆ρ/ρ

′]T , and (∆VP/VP )′

(∆VS/VS)′

(∆ρ/ρ)′

 =

 ψ1 α2ψ2 α3ψ3

0 ψ2 β3ψ3

0 0 ψ3

−1  (∆VP/VP )
(∆VS/VS)

(∆ρ/ρ)

 , (43)

and  F
(r)
1 (θ)

F
(r)
2 (θ)

F
(r)
3 (θ)

 =

 ψ1 α2ψ2 α3ψ3

0 ψ2 β3ψ3

0 0 ψ3

T  F1(θ)
F2(θ)
F3(θ)

 . (44)

Three-parameter velocity/density AVO, coordinate-aligned Hessian

A further example of a useful transformation based on the Hessian operator is one which
removes misalignment of the symmetry axes of the objective function with the coordinate
axes. This is a simpler problem, allowing a greater freedom to pre-select transformation
matrix elements and a smaller number of constraints to apply. For instance, we may select
the diagonal and lower-triangular elements of tνµ to be

tνµ =

 1 t12 t13
0 φ11 t23
0 0 T 3

3

 , (45)

where T 3
3 = φ2

12 − φ11φ22, and permit the three constraint equations

φ12(r) = tλ1 φλσ(s) tσ2 = 0,

φ13(r) = tλ1 φλσ(s) tσ3 = 0,

φ23(r) = tλ2 φλσ(s) tσ3 = 0,

(46)

to fix t12, t13 and t23. The solution is

tνµ =

 1 −φ12 φ22φ13 − φ12φ23

0 φ11 φ11φ23 − φ12φ13

0 0 φ2
12 − φ11φ22

 , (47)
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FIG. 3. Objective function based on discrete data in (a). Random initial point is plotted as a black
circle; result of an unweighted stack update is plotted as a black circle.

and its inverse, the matrix to be applied to the standard AVO model vector to transform it
to the new coordinate system, is

(tνµ)−1 =

 1 λ1

(
λ1φ12φ13 − φ22φ13

)
/λ2

0 1/φ11
(
λ1φ13 − φ23

)
/λ2

0 0 1/λ2

 , (48)

where

λ1 =
φ12

φ11

, λ2 =
(
φ2

12 − φ11φ22

)
. (49)

CONSEQUENCES FOR AVO INVERSION

We will frame the consequences of applying the transformation implied by (47) in terms
up steepest-descent optimization steps. It should be emphasized that it is rare for AVO
inverse problems to be solved iteratively in this way; normally, a linear weighted sum of
the data is invoked. However, it is possible to understand the weights in the stacking process
in terms of first and second derivatives of a least-squares objective function, so we lose no
applicability discussing it this way. A steepest descent update in a transform domain in
which the Hessian is spherically symmetric can be understood as a weighted stack with
very mild weighting.

In Figure 3 we return to the projections of the objective function in the standard AVO
model space with coordinates ∆VP/VP , ∆VS/VS and ∆ρ/ρ. This time we place randomly-
chosen starting points as black circles, and minima in those directions as blue circles. Up-
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dating beyond this is found to be practically impossible, with the rate of reduction of the
objective function between the blue point and the minimum being very small.

FIG. 4. Objective function in the transformed system.

The steepest-descent update in the transformed system:

rµmin = −gµν
∑
θ

F (r)
ν (θ)RPP(θ) (50)

is illustrated in Figure 4. We observe that the minimally weighted stack in this case gives
us a result very close to the exact solution.

CONCLUSIONS

The standard re-expressions used in AVO analysis and inversion (e.g., from velocity-
density to modulus-density, or from the Aki-Richards approximation to the Shuey approx-
imation, etc.) are formally coordinate transforms between oblique-rectilinear (i.e., non-
Cartesian) coordinate systems. Alternative coordinate transforms leading to favourable
updating properties represent in this sense a valid suite of AVO re-expressions. In a low-
dimensional model space like that of AVO (which involves dimensionalities in the low
single digits), analytic forms for transformation matrices to systems in which the Hessian
operator is an identity matrix can be found. These imply new AVO approximations, within
which updates in AVO inversion require no 2nd order objective function information. This
may have consequences both for iterative linear AVO inversion algorithms and “weighted
stack” algorithms, the latter of which can be based on much simpler weights.
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