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ABSTRACT

Re-parameterizations of model space, which are widely applied in seismic inverse prob-
lems, are coordinate transforms between non-Cartesian systems. To develop this we iden-
tify objective functions as scalar functions of the model vectors, which themselves are
contravariant vectors; gradients of the objective function are covariant vectors. A proce-
dure for general transformation to a pre-defined coordinate system and optimization within
that system is set out. We argue that a under a class of transformations constrained by the
Hessian operator in the reference system, steepest-descent updates are precisely parallel
to Gauss-Newton updates, and, provided the transform can be efficiently determined, op-
timization within the transformed system should have favourable convergence properties.
This class of transforms includes an infinite number of variants, and seeking examples from
within this class with other, additional, favourable features appears warranted.

INTRODUCTION

In this year’s CREWES report there are a set of papers on the general subject of design
of transformations between coordinate systems, with application to increased optimization
efficiency in inverse problems. This paper is meant to act as the central document, with the
others being offshoots. The first paper (Innanen, 2020a) is a review of and/or introduction
to some of the tools of tensor mathematics that geophysicists are less likely to have encoun-
tered, especially relating to the separate treatment of contravariant and covariant vector and
tensor components. This is the second paper, where the basic ideas are set out. The third
and fourth papers (Innanen, 2020b,c) are applications of the idea to two somewhat distinct
kinds of problem: a low-dimensional problem, AVO inversion, and a high-dimensional
problem, FWI. The fifth paper (Innanen, 2020d) provides detailed descriptions of numer-
ical procedures for determining general transformation matrices based on the ideas in the
other papers.

Because so much detail is shunted to other documents, this paper is quite short. In the first
section, several features of quadratic objective functions as scalar functions of contravariant
model vectors, gradients of these functions, and updates based on these gradients, are set
out. In the second section, the conclusions of the first section motivate the formulation of
a design scheme for coordinate systems in which steepest descent updates are as efficient
as Newton updates. Finally, anticipating that these procedures will be particularly useful
for large scale problems, several numerical features of the transform design problem are
discussed.
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OPTIMIZATION IN GENERAL RECTILINEAR COORDINATE SYSTEMS

Quadratic objective functions and their transformation

Let tµν be a transformation between rectilinear coordinate systems s and r, such that position
vectors transform as

sµ = tµνr
ν . (1)

Let Φ be a scalar quadratic objective function

Φ = sµφµνs
ν − sµϕµ + γ. (2)

Substituting (1) into (2), we observe that under transformation to the r system Φ becomes

Φ′ = rµφ′µνr
ν − rµϕ′µ + γ′, (3)

where φ′µν = tλµ φλσ t
σ
ν , ϕ′ = tλµ ϕλ, and γ′ = γ. The objective function Φ is a scalar,

meaning that if sµ and rµ satisfy equation (1),

Φ(sµ) = Φ′(rµ). (4)

Consider a fixed point rµ0 and its associated Φ0 = Φ′(rµ0 ). By varying tµν , we can send
this rµ0 over into a range of output vectors sµ = tµνr

ν
0 . However, because of (4), this range

is not unlimited, but is restricted to sµ vectors for which Φ(sµ) = Φ0. If we add to this
that there exists only one sµ whose associated Φ0 is the minimum, it follows that if rµmin is
the minimizer of Φ in the r system, sµmin = tµνr

ν
min is the minimizer of Φ in the s system,

independent of tµν . This means that if we find the minimizer in any coordinate system, we
have it in all coordinate systems, independent of tµν .

Gradient vectors and their transformation

The gradient of the objective function in equation (2) is

Φ,µ(s) =
∂Φ(s)

∂sµ
= 2φµνs

ν − ϕµ. (5)

If a coordinate transform sµ = tµνr
ν is set up, a gradient, whose components are contravari-

ant, transforms as

Φ,µ(r) = tνµΦ,ν(r) = 2tνµφνλs
λ − tσµϕσ. (6)

A step in the direction of the negative of the gradient in the s system is

∆sµ = −gµνΦ,ν = −gµν
[
2φνλs

λ − ϕν
]

= ϕµ − 2φµνs
ν , (7)

where gµν is the metric tensor in the s system. Since Φ is precisely quadratic, we can
compare this against the displacement from any point sµ to the minimum, which is

sµmin − sµ = −
(
φ−1

)µν
Φ,ν =

(
φ−1

)µν
ϕν − 2sµ, (8)

where (φ−1)µλφλν = δµν . Comparing (7) and (8) it is clear that the steepest descent direction
only points towards the minimum if φµν = δµν .
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Transformation of steepest-descent updates

The shape and character of quadratic objective functions, and the directions of gradients
from fixed starting points, can be changed with transformations of the type in (1). A stan-
dard steepest-descent procedure is as follows. We choose a starting point sµ0 and at that
point compute the gradient:

Φ,µ(s0) =
∂Φ

∂sµ

∣∣∣∣
s0

. (9)

We then scale the negative of the gradient with a coefficient α, usually determined through
a line search, and update the starting point:

sµ1 = sµ0 + ∆sµ = sµ0 − α gµλΦ,λ(s0). (10)

The association of the gradient direction directly with a step, or displacement, in these
more general coordinates is revealed to be a significant change, requiring the metric tensor,
because the former is a covariant vector and the other contravariant. To transform such a
steepest descent update to the r system, we individually transform the starting vector and
the gradient, whose components are of contravariant and covariant types respectively:

rµ0 = (t−1)µνs
ν
0, Φ,µ(r0) = tνµΦ,ν(s0). (11)

These two quantities are then combined to produce an update in the r system:

rµ1 = rµ0 + ∆rµ = rµ0 − β gµλΦ,λ(r0), (12)

and the resulting contravariant vector rµ1 can then be transformed back to the s system:

sµ1 = tµνr
ν
1 . (13)

The sµ1 vectors in (10) and (13) are not in general the same.∗ Thus steepest descent op-
timizations in any pair of coordinate systems related through tµν should be expected to
produce different convergence histories.

Transformation of Hessian matrices

A quadratic objective function has ellipsoidal isosurfaces.† Unequal diagonal elements of
φµν affect ellipticity, and non-zero off-diagonal elements affect ellipticity and produce axial
re-orientations. The Hessian matrix changes under tµν according to

φµν(r) = tλµ φλσ(s) tσν . (14)

∗It may appear that we are just performing the same tasks in different domains, but the way displacements
and direction vectors are mixed in (12) causes a significant change. In fact, if the values of Φ arrived at in the
separate line searches in (10) and (12) are different (and nothing but coincidence could make them the same),
by (4) it is impossible for the two post-update positions in the s system to agree.
†An isosurface of Φ is the locus of sµ vectors whose Φ values are equal. A contour on a topographic map

is a 2D isosurface.
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Inspection of this relationship reveals that differences between the diagonal elements of tµν
cause changes in the ratios of the diagonal elements of the Hessian after transformation,
affecting ellipticity; non-zero off-diagonal elements in tµν introduce relative changes in both
the on- and off-diagonal elements of the Hessian after transformation, affecting ellipticity
and axis orientation. Consequently, suitably general coordinate transforms tµν can alter
almost all shape parameters of a quadratic objective function.

DESIGNING TRANSFORMS BASED ON THE HESSIAN MATRIX

In (4) we observe that by finding the minimum of a quadratic objective function in one
coordinate system we find it in all coordinate systems. Comparison of (10) and (13) con-
firms that although gradients map back and forth uniquely between coordinate systems,
steepest descent updates do not, and for a given starting point each such update is special
to its coordinate system. From (7) and (8) we observe that the gradient and the Newton
update are parallel in a system in which φµν = δµν . Finally, inspection of (14) suggests that
transformations can be designed to produce almost any desired change in the ellipsoidal
parameters of isosurfaces in φµν .

Formulation of the problem

From these facts it follows that in a system characterized by the Hessian φµν , we should
be able to design transforms tµν such that tλµ φλσ t

σ
ν = δµν , carry out an efficient steepest-

descent based search for the minimum in this system, and then transform the result back to
our original (and presumably otherwise more appropriate) coordinate system. Because φµν
is symmetric, in an N dimensional problem the equations

tλµ φλσ t
σ
ν = δµν (15)

are N(N + 1)/2 in number, which means N(N − 1)/2 further degrees of freedom remain
to be fixed when choosing tµν . There are therefore many transforms to choose from which
satisfy (15), and other considerations can be invoked in making a specific selection.

Approach

There are many possible ways to reduce the remaining degrees of freedom and precisely
specifying a particular tµν . For instance, we could fill N(N − 1)/2 of the columns of tµν
with basis vectors which span a portion of model space in some attractive way, after which
(15) would constrain the others. Or, we could pre-select the lower triangular entries of tµν ,
and treat them as fixed while the other entries are determined. This second approach is in
some sense the most general, in that no one basis vector of the new coordinate system is
entirely pre-selected, and no one basis vector is entirely determined by (15). The left-most
columns are almost entirely pre-selected, and the right-most almost entirely determined,
and one might object that this reduces the generality of the approach. But since the model
vector can usually be re-ordered without changing the problem, this is an apparent effect
only.
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NUMERICAL CONSIDERATIONS

In a companion report (Innanen, 2020d) numerical procedures for computing generalN×N
transformation matrices satisfying (15), given the N(N − 1)/2 lower-triangular entries as
input, are set out. The algorithm moves from left to right through the columns of tµν ; at the
jth column the j unknowns at and above the diagonal are determined.

Involvement of the Hessian

In large optimization problems, the Hessian matrix is generally too large and complex to
be calculated, stored, or inverted. At most, Truncated Newton type methods are applied,
which involve Hessian information, but only in the form of Hessian-vector products, which
are computationally tractable. In designing the transformation matrix, all calculations sim-
ilarly involve Hessian-vector products only, and so no Hessian information beyond what is
generally involved in Truncated Newton methods appears to be required.

Accumulating sets of matrix row operations

At the jth column of tµν , the unknown on the diagonal is the solution of a quadratic equation
in one unknown, and the elements above the diagonal are the solutions of linear equations,
each in one unknown, calculations which are trivial computationally. The weights within
these equations are, however, determined through sequences of row operations on a matrix
built from Hessian-vector products. The jth column itself produces on the order of j of
these row operations, and several elements of the matrix must be subject to all previous row
operations at each j. These two sets of operations represent the bulk of the computational
expense involved in the design of tµν . Current codes for determining tµν do not handle
these repeated calculations particularly efficiently. However, matrix row operations being a
very common numerical operation, it is likely methods exist which make this process quite
efficient.

CONCLUSIONS

Re-parameterizations of model space, which are widely applied in seismic inverse
problems, are coordinate transforms between non-Cartesian systems. Under a class of
transformations constrained by the Hessian operator in the reference system, optimization
should have favourable convergence properties. This class of transforms includes an infi-
nite number of variants, and seeking examples from within this class with other, additional,
favourable features appears warranted. Currently the degree to which the computational
expense of determining the transformation operator can be reduced is not fully clear; this
will be an important question to resolve.
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