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ABSTRACT

Cost is the primary factor that needs to be considered for the seismic data acquisition
and processing. Super-shot or blended data strategy has been used in marine and land
seismic surveys to reduce acquisition costs by reducing the number of recording times.
Full waveform inversion (FWI) has been used to estimate high-resolution subsurface ve-
locity models. However, it suffers from expensive computational cost for matching the syn-
thetic and the observed data. Once the super-shots are acquired, conventional FWI methods
would require a de-blending process for super-shots. To reduce the costs of both data ac-
quisition and processing, FWI using blended data without the de-blending stage has been
recognized very promising in future oil exploration. In this work, we accelerate the FWI
process using different source-encoding strategies and compare their perfomance. The syn-
thetic examples show that amplitude and random time delay encoding provide slow conver-
gence rate and less satisfactory inversion results. The dynamic combined source-encoding
strategy converges fast, providing updated velocity with ignorable artifacts. While the static
combined source-encoding strategy provides the fast convergence rate as well as good es-
timation of velocity model. In addition, it requires the minimum computational cost since
we can directly simulate the super-shots without the blending stage.

INTRODUCTION

Cost is one of the key factors that affects how a seismic data acquisition will be con-
ducted. Even though the costs of seismic data acquisition and processing have reduced
dramatically with significantly improved technology, large seismic surveys are still too ex-
pensive for oil industries and raise the demand of data processing at the same time (Beasley
et al., 1998).

FWI is a high-resolution seismic imaging technique that is based on using the entire
content of seismic traces for extracting physical parameters of the medium sampled by
seismic waves (Virieux et al., 2017). The classical time-domain full-waveform inversion
(FWI) is originally proposed by Tarantola (1984) to invert the velocity model by mini-
mizing the l2-norm of the difference between predicted and observed data (Symes, 2008).
Full-waveform inversion techniques are promising but still suffer from some well-defined
obstacles (Pan, 2017), such as the nonlinearity, the non-uniqueness of the solution and the
expensive computational cost. The goal of FWI is to match the synthetic and the observed
data. The minimization of the misfit function is essentially an iterative, computationally in-
tensive procedure. At each iteration, the gradient of the objective function has to be calcu-
lated with respect to the model parameters by cross-correlating the back-propagated resid-
ual wavefield with the corresponding forward-propagated source wavefield. The forward
modeling demands large computational efforts, whereas back propagation of the residual
wavefield has large memory requirements to access the source wavefield. Pica et al. (1990)
further applied FWI into elastic cases. Pratt et al. (1998) proposed frequency-domain FWI,
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multiscale inversion became an area of active research. To date, building a good veloc-
ity model is still a challenging problem and attracts the increasing effort of geophysicists
(Virieux and Operto, 2009).

To reduce the costs of both data acquisition and processing, simultaneous source-firing
strategy has been recognized very promising in future oil exploration. Increasing field
efficiency by recording more than one source has been explored by means of encoded
shot gathers or super-shots (Womack et al., 1990; Abma et al., 2015; Anagaw and Sacchi,
2012; Romero et al., 2000; Garottu, 1983) . However, once the super-shots are acquired,
traditional seismic processing methods require a de-blending process for velocity model
estimation and seismic migration are performed (Florez et al., 2016).

Source-encoding strategies are first introduced into pre-stack migration in frequency
domain (Morton and Ober, 1998; Romero et al., 2000), including random phase-encoding,
linear phase-encoding, (modified-) chirp phase-encoding strategies, etc. Zhan et al. (2009)
proposed to compose multi-source shot gather of a sum of single shot gathers with random
time delays. Krebs et al. (2009) proposed to multiply the source wavelet with random en-
coding sequence of +1 or -1 and then blend all the shot gathers into one super-shot. Dai
et al. (2012) proposed to combine these two phase-encoding strategies for least-squares
RTM. Hu et al. (2016) proposed an efficient amplitude encoding strategy using cosine basis
to perform least-squares reverse time migration. Godwin and Sava (2013) proposed an am-
plitude encoding strategy using Hartley basis for wave-equation migration and compared
it’s performance with some other source-encoding strategies. To date, source-encoding
strategies have been used to accelerate RTM, LSRTM and FWI process (Krebs et al., 2009;
Dai et al., 2012; Godwin and Sava, 2013; Pan, 2017)

In this paper, we compare the inversion results by both random time-delay source-
encoding and random polarity source-encoding. We also adopt an amplitude source-encoding
method (Hu et al., 2016) into acoustic FWI for comparison. Furthermore, we combined
random time-delay and random polarity source-encoding to achieve improved convergence
rate and present updated model with well suppressed artifacts.

Acoustic Full Waveform Inversion in Time Domain

In the case of constant density, the acoustic wave equation is described by

1

v2(x)

∂2p (x, t;xs)

∂t2
−∇2p (x, t;xs) = fs (x, t;xs) (1)

where fs (x, t;xs) = f (t′) δ (x− xs) δ (t− t′) .

According to equation 1, the data misfit ∆p = pcal − pobs can be defined by the dif-
ferences at the receiver positions between the recorded seismic data pobs and the forward
modeled seismic data pcal = f(m) for each source-receiver pair of the seismic survey. In
the acoustic velocity inversion, f(·) indicates the forward modeling function, whereas m
corresponds to the velocity model to be inverted. The goal of FWI is to match the data
misfit by iteratively updating the velocity model. We also define the data misfit function as
the objective function taking the least-squares norm of the misfit vector ∆p, which is given
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by

E(m) =
1

2
∆p†∆p =

1

2
‖pcal − pobs‖2

=
1

2

ng∑
r=1

ns∑
s=1

∫ tmax

0

dt |pcal (xr, t;xs)− pobs (xr, t;xs)|2
(2)

where ns and ng are the number of sources and receivers and † denotes the adjoint operator
(conjugate transpose).

We use the gradient-based minimization method, which updates the velocity model
according to a descent direction dk and

mk+1 = mk + αkdk (3)

where k denotes the iteration number. By neglecting higher order terms, the objective
function can be approximated by

E (mk+1) = E (mk + αkdk)

= E (mk) + αk 〈∇E (mk) ,dk〉+
1

2
α2
kd
†
kHkdk

(4)

where Hk stands for the Hessian matrix and 〈·, ·〉 denotes the inner product. Differentiation
of the misfit function E (mk+1) with respect to αk gives

αk = −〈dk,∇E (mk)〉
d†kHkdk

= −〈dk,∇E (mk)〉
〈Jkdk,Jkdk〉

=
〈Jkdk,pobs − pcal〉
〈Jkdk,Jkdk〉

(5)

in which we use the approximate Hessian Hk := Ha = J†kJk (usually referred to as the
approximate Hessian) and∇mE = J†k∆p .

The CG algorithm decreases the misfit function along the CG direction, where

dk =

{
−∇E (m0) k = 0
−∇E (mk) + βkdk−1 k ≥ 1

(6)

We adopt Yang’s (Yang et al., 2015) hybrid scheme combining Hestenes-Stiefel and
Dai-Yuan methods to compute βk (Hager and Zhang, 2006):

βk = max
(
0,min

(
βHS
k , βDY

k

))
(7)

where {
βHS
k = 〈∇E(mk),∇E(mk)−∇E(mk−1)〉

〈dk−1,∇E(mk)−∇E(mk−1)〉

βDY
k = 〈∇E(mk),∇E(mk)〉

〈dk−1,∇E(mk)−∇E(mk−1)〉
(8)

The gradient of the misfit function with regards to the model is given by Bunks et al.
(1995):

∇Em =
2

v3(x)

ng∑
r=1

ns∑
s=1

∫ tmax

0

∂2pcal (x, t;xs)

∂t2
pres (xr, t;xs) dt (9)
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where pres (xr, t;xs) is the back-propagated residual wavefield. A precondition is possible
by normalizing the gradient by the source illumination, which is the energy of the forward
wavefield accounting for geometric divergence (Bai et al., 2014) :

∇E ( mk) =
∇Em√∑ns

s=1

∫ tmax

0
p2cal (x, t;xs) dt+ γ2

(10)

where γ is a stability factor to avoid division by zero. To obtain a reasonable step size αk

in equation 5, we estimate a small step length ε proposed by Pica et al. (1990) :

max (ε |dk|) ≤
max (|mk|)

100
(11)

and the Taylor approximation

Jkdk ≈
f (mk + εdk)− f (mk)

ε
(12)

For amplitude source-encoding, the encoding matrix is defined as

B =


b1,1 b2,1 . bNig ,1

b1,2 b2,2 . bNsig ,2

· · · ·
b1,Nsup b2,Nsup . bNsig ·Nsup

 (13)

where Nsup is the number of the super-shots and Nsig is the number of the individual shots.
The cosine basis is usually implemented using its discrete form. By selecting the reference
distance xref, the discrete form of the orthogonal cosine basis is (Malvar, 1992)

b =

√
2

nsig
cos

(
π

nsig

(2iss+ 1)(2ik + 1)

4

)
(14)

where iss = j%nsig, j = 1, 2 . . . Nsig, ik = 1, 2, . . . Nsup where nsig = xref/dsx is the
number of the single shots in a reference distance; dsx is the shot sampling interval; j is
the shot index; and ik is the super shot index; % is the remainder operator.

In this work, we implement FWI process based on Yang’s (Yang et al., 2015) program,
which incorporates a wavefield reconstruction strategy that only saves the boundaries to
accelerate calculation efficiency.

Numerical Results

In this paper, we use a Marmousi model with a distance of 9216 m and a depth of 3008
m on a grid of 16 meters discretized in a grid of 576 by 188 grid points, which is shown
in Fig 1a. On top of the Marmousi model is a water layer with the thickness of 320 m,
the acoustic velocity is set to 1500 m/s. which makes the whole model size 576 by 208

4 CREWES Research Report — Volume 32 (2020)



Acoustic FWI using blended data

grid points. We get the initial model shown in Fig 1b by smoothing the original Marmousi
model, but the top layer remains not smoothed.

Marmousi model
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FIG. 1. (a) The original Marmousi is down sampled along depth and lateral direction. The shots
are generated according to the Marmousi model. (b) The initial model of FWI for Marmousi model,
which is obtained by smoothing the original model.

In this work, we generate all synthetic shot gathers by solving the acoustic wave equa-
tions in time domain for all 140 sources, which are evenly distributed near the surface
of original Marmousi model with a spatial interval of 64 m (4 grid points). We deploy
576 receivers right beneath the sources with a spatial interval of 16 m (1 grid point). The
Ricker wavelet sources are fired with a central frequency of 4 Hz. We record the seismic
waveforms for 4.2 s with an time step of 1.5 ms.

For conventional FWI, all the sources are fired individually and shot gathers are recorded
separately. For FWI using blended data, multiple sources are fired and blended data are ac-
quired in one seismic survey. Zhan et al. (2009) pointed out that the more shot gathers
blended into one super shot, the larger the artifacts or cross-terms generated in the misfit
gradient. In this case, instead of blending all the shots into one super-shot, all shots are
blended into several sub-super-shots that contain all the shot records (Dai et al., 2012),
which would provide better inversion results. The number of super shots is also the factor
by which the computational cost is reduced. In our experiments, we compare the updated
velocity obtained by FWI using different source-encoding strategies with 10 blended super-
shots, which are linear combinations of the individual shot gathers.

In the first case, we use amplitude encoding method to generate blended data. For this
method, it usually assigns different weights to all the individual shot gathers and blend
them into one super-shot. In our experiment, we choose the reference distance as a quater
of the model distance, which makes the Nsig 35. The amplitude encoding matrix is shown
in Fig 2. Using the time-delay source-encoding strategy, all the sources are excited with
random time delay with the maximum delay value of 0.6 s. We blend every 14 shot-gathers
into 1 super-shot, so we obtain 10 super-shots over all. In the third case, we simulate all the
140 shot gathers in a conventional way and multiply them with random polarity encoding
sequence of +1 or -1 at every iteration, then we also blend them into 10 super-shots in the
same way. For Krebs’s source-encoding strategy, changing the encoding between iterations
produces artifacts that do not add coherently and are therefore better suppressed (Krebs
et al., 2009).
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FIG. 2. The amplitude source-encoding matrix.

In this work, we also combine the random time delay and random polarity source-
encoding strategies to perform acoustic FWI. So the encoding functions are the combina-
tion of source-side random time delay and random source polarities. We experiment two
cases: static encoding and dynamic encoding. Static encoding keeps the encoding function
to be the same at all the iterations, while a purely dynamic strategy changes the encoding
function at each iteration (Krebs et al., 2009; Dai et al., 2012). In this way, using this
combined source-encoding strategy, we can get the super-shots encoded with both random
time delay and random polarity. In the first case, we multiply the shot gathers with random
time delay with random encoding sequence of +1 or -1 and blend them into 10 super-shots.
In the second case, we change the random polarity encoding sequence and regenerate the
blended data at every iteration.

For the same Marmousi model, we simulate the blended data using different source-
encoding strategies and carry out FWI process for 150 iterations to compare the inversion
results. Fig 3 gives the first super-shot in different cases. All the individual shot gathers are
encoded into one super-shot using amplitude encoding (see Fig 3a), while other super-shots
contain only 14 shot gathers (see Fig 3b, c and d). Fig 3d is first super-shot using static
encoding and dynamic encoding at the first iteration.
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FIG. 3. Synthetic first super-shot for acoustic FWI using blended data: (a) the first super-shot
encoded with amplitude matrix; (b) the first super-shot encoded with random time delay; (c) the first
super-shot encoded with random polarity; (d) the first super-shot encoded with both of random time
delay and random polarity.

We also record all the updated models for all the strategies at all the iterations. The
updated velocity models at iteration 10, 50 and 150 are displayed in Fig 4, Fig 5 and Fig
6. FWI using blended data usually would result in noise, which is caused by the crosstalk
between the encoded sources, and it is much stronger in early iterations, see Fig 4 and Fig
5 (Krebs et al., 2009).

From the comparison of updated velocity models, we can notice that the amplitude
encoding and the random time delay encoding strategy provide the most unsatisfactory
results (see Fig 6a and Fig 6b). With increasing iteration times, they would still introduce
increasingly obvious cross talk noise (see Fig 5a and b), which results from the interference
between the encoded sources. In addition, they show slower convergence rate.
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FIG. 4. Inversion results after 10 iterations: (a) amplitude encoding; (b) random time delay; (c)
random polarity; (d) static encoding; (e) dynamic encoding.
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FIG. 5. Inversion results after 50 iterations: (a) amplitude encoding; (b) random time delay; (c)
random polarity; (d) static encoding; (e) dynamic encoding.

From Fig 6c and Fig 6e, we can notice that whenever the random polarity is used to
generate the super-shots and the encoding sequences are changed at each iteration, they
provide very similar results with ignorable artifacts which are very close to the original
Marmousi model.

We can also notice that, when we apply the static encoding strategy without chang-
ing the encoding sequences, whose results are shown in Fig 4d, Fig 5d and Fig 6d. With
increasing iteration times, the artifacts would increase at first and then decrease as the
iteration continues to increase, which means even when we don’t change the encoding se-
quence in our experiment, this combined source-encoding strategy could also suppress the
cross talk well. What’s more important is that, compared to the updated velocity models,
this static encoding strategy provides the updated velocity model very close to the orig-
inal model with very fast convergence, describing better big and very fine high velocity
structures at large depth. And this is different from the other cases even though there are
still some minor artifacts at the left of the velocity model, which would not significantly
affect geologic interpretation of the inverted image. We present the vertical profiles at two
different locations in Fig 7.
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FIG. 6. Inversion results after 150 iterations: (a) amplitude encoding; (b) random time delay; (c)
random polarity; (d) static encoding; (e) dynamic encoding.
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FIG. 7. Comparison of vertical profiles between the true, initial and inverted velocity models using
amplitude, static and dynamic encoding at different locations.

To further compare the performance of these algorithms and investigate the conver-
gence rate, we compare the model misfit (l2-norm of the difference between updated ve-
locity model and original Marmousi model) versus iteration, which is displayed in Fig 8.
From the comparison, we can notice that the amplitude encoding and the random time de-
lay strategy provide slow convergence rate (see Fig 8) as well as less satisfactory updated
velocity models (see Fig 6a and Fig 6b). As the iteration continues, the model misfit de-
crease very slow. As for the random polarity and dynamic encoding, they show very similar
convergence rate, which is also verified by the inversion results shown in Fig 6. Consis-
tent with inversion results, the convergence rate curve of FWI using static encoding stays
underneath other curves of other cases.
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FIG. 8. Comparison of model misfit versus iteration for FWI using different source-encoding strate-
gies: random time delay, random polarity, amplitude encoding, static encoding and dynamic encod-
ing.

CONCLUSIONS

FWI using blended data can avoid the de-blending stage and reduces both of field data
acquisition and computational cost of forward modelling process times in FWI procedure.
In this paper, we presented the acoustic FWI results using different source-encoding strate-
gies and compared their performance.

In our experiments, for conventional FWI, it requires 140 times of forward modelling
to generate the synthetic acoustic data. While for FWI using random time delay and static
source encoding, we can directly simulate 10 super-shots without the blending stage to im-
prove the calculation efficiency for both forward modelling and FWI inversion process. For
amplitude, random polarity and dynamic encoding strategies, they still require 140 times
of solving acoustic wave equations and then generate blended data, which will directly in-
crease the calculation cost. As for the dynamic encoding, it even requires generating the
blended data using a different sequence at each iteration, which will further increase the
I/O cost.

Through the synthetic examples, we can notice that the static combined source-encoding
strategy which uses both of random time delay and random polarity as the encoding func-
tion provides the fastest convergence rate and satisfactory updated velocity model, even
though there still remains minor artifacts. For FWI using the dynamic combined source-
encoding strategy, it also converges fast and provides updated velocity model with ignor-
able artifacts. However, considering the calculation efficiency, it requires extra computa-
tional cost of forward modelling and I/O cost with a factor directly associated with the
number of blended data and iteration times.
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