
Experiments on GAN

Experiments on constructing seismic using generative
adversarial network

Zhan Niu and Daniel Trad

ABSTRACT

Supervised machine learning attracts great attention in all areas of science. In Geo-
physics, however, supervised learning has the problem that available labelled data is often
insufficient, limiting the chance of converging during training and harming model generality.
As a solution, researchers explore ways to generate synthetic data for use in training. In
this report, we explore the methodology of generating 1D data with a generative adversarial
model. Both the generator and discriminator are convolutional, and the noise vectors are
fed along the channel dimension to the generator. The networks are successfully trained
via Wasserstein loss with gradient penalty and careful hypermeter tuning. We evaluate the
trained networks quantitatively and qualitatively. We attempt to find the optimal stopping
point for the training, however, the conclusion cannot be made during the training and part
of it remains subjective.

INTRODUCTION

Machine learning has become a popular topic in most sciences and geophysical appli-
cations are not an exception. In Geophysics, many successful applications of supervised
machine learning have been published, in particular in the area of image segmentation, for
example facies recognition, salt body segmentation, relative geological time picking, etc.

Although applications have become more robust in the image recognition field, we still
face a significant challenge that does not exist in the broader machine learning society: the
lack of abundant public labelled data. The abundance of data is perhaps more crucial and
needed to solve geophysical problems than in other areas like image classification because
seismic data interpretation for example relies in subtle details with complex relations between
physics and geology. Therefore, in order to solve problems involving a complex theory by
using machine learning, geophysical research injects theoretical knowledge through the use
of complex network architectures or applies physics guided regularization to compensate
for the gaps in information during the learning process. As a partial solution, researchers
have tried to generate synthetic data with satisfying quality for use in training and improve
model convergence and model generality. For example, Wu et al. (2019) successfully trained
a relatively ordinary U-Net with synthetic fault images. The images are very carefully
generated, so the trained model can provide accurate results even on real data and easily
adapt to other scenarios without harm in accuracy using transfer learning. However, we do
not always have abundant or precise knowledge to model the data. Generative adversarial
networks (Goodfellow et al., 2014, GANs) is capable of this kind of tasks. A successfully
trained generator can produce artificial data in a given data distribution.

This report is our first attempt to test GANs in synthetic data modeling. We will use
very simple cases to generate seismic data. At this stage, the main goal is to understand the
characteristics of GAN and its behaviour during training and opening the door for further

CREWES Research Report — Volume 32 (2020) 1



Niu et. al

research.

THEORY

Generative adversarial network

Noise
vector

Real
sample

Score

Genertator loss

Discriminator loss

FIG. 1. A typical structure of unconditional GAN

Figure 1 shows a typical structure of a GAN. There are two sub-networks in a GAN, the
generator (G) and the discriminator (D, which is sometimes called the critic depending the
form of the output). G generates some samples in the form of random vectors n, while D
distinguishes the generated samples from real samples d. The two networks compete against
each other and try to improve themselves during the training. G will try to learn how to trick
D by generating more realistic predictions, while D will try to become more aware of the
differences between the generated and real samples, which will be changing as G improves.

The main goal of a GAN is to find a transform from a random distributed variable to a
given data distribution. The input of a GAN is usually a uniformly randomized noise vector
n and the output are not treated as the “ground truth” as we do in the supervised learning.
One individual input is never learnt to be bonded to a label.

GANs are notoriously famous for their difficulty to be properly trained. There are two
critical aspects of designing a GAN. First, the accuracy of the network mostly depends
on the robustness of the discriminator due to the way the value function is defined. The
discriminator must be capable of its job and able to be trained with general approaches.
Second, the success is based on balancing the training of the generator and the discriminator.
If the discriminator is too strong or learns too fast compared to the generator, it cannot
provide useful feedback for the generator to continue the learning. In this case, the discrimi-
nator will always reject the model no matter how the generator modifies its parameters, so
the generator is likely to get trapped in local minima and fail to escape from it because of
unhelpful gradients. On the other hand, if we have a generator that is much superior to the
discriminator, the generated example will always fool the discriminator. Because the “same
thing” is labelled to be both right and wrong from the perspective of the discriminator, it
will confuse and refuse to improve itself.

Because of the reasons above, training a GAN is where science forgets its modern role
and becomes alchemy (Chollet, 2018). Many empirical tricks need to be applied to the
model, and they may not be suitable in other cases.

2 CREWES Research Report — Volume 32 (2020)



Experiments on GAN

Wasserstein GAN with gradient penalty

Here we use the value function from WGAN (Arjovsky et al., 2017) for more stable
training. The value function is defined as

VW = min
G

max
D

E[D(d)]− E [D(G(n))] , (1)

where n refers to the random latent vector and d refers to real data. In practice, the
expectations are simply replaced by the mean value of the current mini-batch. Equation 1
defines a min-max game, in which we want to find a D(·) that maximizes its expected score
on real examples while minimizes its expected score on the generated ones. Meanwhile, we
find a G(·) that maximizes its expected score from the discriminator. Gulrajani et al. (2017)
propose a gradient penalty as a regularization term in addition to Equation 1 to enforce
1-Lipschitz constraint. The term is defined as

VP =

(∥∥∥∥∂D(m)

∂m

∥∥∥∥
2

− 1

)2

,where m = εd+ (1− ε)G(n). (2)

Here m refers to the mixing of real and generated samples, which is controlled by a random
scalar ratio ε. The value ε is drawn from U(0, 1) at each discriminator update to lower the
change of being stuck in some local minima by introducing more stochasticity. The partial
derivative can be calculated with auto differentiation. Minimizing Equation 2 will favour
the discriminator gradients with a unitary norm, therefore clipping larger unstable gradients
and guiding the model to avoid small updates.

By combining Equation 1 and 2, we obtain the following loss functions required for
updating the generator and discriminator parameters:

LG = −E [D(G(n))] , (3)
LD = E [D(G(n))]− E[D(d)] + λVP . (4)

Note the negative sign in LG since the two losses are opposing each other. The min-max
problem then becomes two optimization problems where the two networks are updated ac-
cording to the losses in an alternating fashion. The trainable parameters in the discriminator
are temporarily frozen when updating the generator using Equation 3, and the parameters in
the generator are frozen when updating with Equation 4.

METHOD

Architecture

Since the problem is relatively simple, we designed two small networks from scratch.
We use PyTorch (Paszke et al., 2019) as the machine learning framework. Both the generator
and the discriminator are constructed using sequential 1D convolutional layers. The noise
vectors n with a length of 100 are fed into the generator via the channel dimension with a
size of 1 in the spatial dimension, which is gradually increased by undergoing a sequence of
1D transposed convolutional layers with proper kernel sizes and strides. The first layer in
the sequence has 256 filters. The number of filters is halved multiple times in the successive

CREWES Research Report — Volume 32 (2020) 3



Niu et. al

layers. At the last layer, the number of channels is reduced to 1, and the spatial dimension is
expanded to 499 to match the length of traces d from the forward modelling.

Table 1 shows the details on the output dimension after each transposed convolutional
layer in the generator. Without zero padding and dilation, the output dimension of the ith
layer can be calculated as

li = li−1si + ki (5)

where si and ki refers to the stride and kernel size of the ith layer, respectively.

Table 1. The detailed structure of the genertator

layer channel length kernel size stride # filters
1 100 1 3 2 256
2 256 3 4 1 256
3 256 6 4 2 128
4 128 14 4 2 128
5 128 30 3 2 32
6 32 61 4 2 32
7 32 124 3 2 16
8 16 249 3 2 1

output 1 499

The discriminator is fully convolutional. It takes input that has 1 channel with length
of 499 and make it through 4 convolutional layers with kernel size of 3. Then the length
and channel dimensions of the output are switched. Finally, the output goes through two
1 × 1 convolution layer to be packed to a scaler score for each samples. The details are
summarized in Table 2.

Table 2. The detailed structure of the discriminator

layer channel length kernel size # filters
1 1 499 3 64
2 64 499 3 64
3 64 499 3 64
4 64 499 3 1
5 499 1 1 250
6 250 1 1 1

output 1 1

We use leaky ReLU instead of ReLU as inter-layer activation function in both generator
and discriminator. We also introduce batch normalizations before each convolutional layers
in the generator only, since the discriminator remains more stable during training compared
to the generator.

4 CREWES Research Report — Volume 32 (2020)



Experiments on GAN

THE DATASET

The data is generated by 1D forward modelling with the direct arrival removed by
subtraction. We use simple velocity models with four horizontal layers with random interval
velocity and thickness. As a source wavelet we use a Gaussian function at shallow locations.
The model has a free-surface boundary condition and absorbing boundary at depth. Since
the source position is shallow, the primary wave overlaps with the ghost wave from the
surface boundary and forms a unique waveform (see orange traces in Figure 2) 10000 traces
are generated in total to ensure continuous distribution. Each trace has 2000 timesteps and
is later resampled and trimmed to 499 to make the generator training-friendly.

The data are divided by 10 times the global mean for normalization. No bias is removed
from the data to avoid shifting the origin. The number 10 was obtained empirically, which
is a bit unfortunate because it is crucial for convergence. This number is bounded to the
initialization of trainable parameters in both networks. Three traces after normalization are
shown in Figure 2 as orange lines.

TRAINING DETAILS AND WORKFLOW

Since the GAN consists of two networks, we have to define two separate optimizers, one
for each of them. Both networks use an Adam optimizer (Kingma and Ba, 2017) with a
learning rate of 1× 10−4 and a β1 = 0.5 lower than the default value. This ensures that the
model updated is more influenced by the current gradient than by the momentum part. Based
on experiments, it is crucial to use additional methods to stabilize the training since the
value function mentioned in the previous section will react more wildly than a common loss
function like binary cross-entropy or mean square error. The convolutional kernels in both
networks are initialized with a standard deviation of 0.2, which is smaller than PyTorch’s
default, to avoid huge predictions at early stages. The λ in Equation 4 is set to 10.

We train the GAN for 300 epochs. We load the data with a batch size of 64 on each
16GB graphic card. Moreover, we trained the generator once but the discriminator twice
at each iteration to balance the power of the two networks during training. The training
workflow is shown as Algorithm 1.

RESULTS AND DISCUSSIONS

Manual inspection

One major issue of evaluating results from GAN is the lack of proper metrics. There are
quantitative measurements that check if the generated examples are in the same distribution
as the provided data. However, there is still no clear metrics that directly show us when to
stop the training. One intuitive and still efficient way of verifying is to check the generated
samples manually. From inspection, the generator stops improving efficiently after the 100th
epoch, despite oscillations continuing on the lost functions. Figure 2 shows the result after
training for 100 epochs.

In Figure 2, we can see that the generated traces look like the real data. The number on
the upper-left refers to the scores from the discriminator. Note that the negative signs do not

CREWES Research Report — Volume 32 (2020) 5



Niu et. al

Algorithm 1 Training workflow.
Require: G(·), D(·), d

for each epoch do
for each mini-batch do

for counting 2 do
generate noise vectors n
d̂← G(n) . generate fake data
Sfake ← D(d̂) . get the score of fake data
Sreal ← D(d) . get the score of real data
m← εd+ (1− ε)d̂

Vp ←
∂D(m)

∂m
. gradient panalty

update D(·) based on Equation 4 . back-propagate and apply Adam
generate another noise vectors n
d̂← G(n) . generate another fake data
Sfake ← D(d̂) . get score on fake data
update G(·) based on Equation 3

visualize d̂ and save D(·) and G(·) regularly

have physical meaning since the score is not bounded and only relative difference matters.
We can see that the generated traces achieved similar scores as the real data, which means
the discriminator treats them as the same. Specifically, the zero response of the discriminator
is −10.824, which means the trained discriminator still cannot distinguish zero traces and
traces with reflections. However, the discriminator responses to white noises range from
−45 to −38, which can be safely considered as “different”.

One common problem of a GAN is mode collapse, where the generator learns only one
style presented by the data. In our case, the generator may end up producing similar traces
all the time. The model collapse is less likely to have happened in our case since the result
in Figure 2 shows great divergence. Besides, most of the examples can reproduce the unique
waveform mentioned earlier in both normal and reversed polarity.

Figure 3 shows the loss curves for the first 100 epochs and Figure 4shows the evolution
of generated examples during the process. Since the two losses are competing with each
other, we can see the loss curves are not guaranteed to drop all the time. In general, the
curves are in a mirror relationship. Most severe competition happens during the first epochs.
Before the 10th epoch, the discriminator loss decreases drastically. This is because the
discriminator’s job at the early stage is to distinguish white noise generated by the generator
(Figure 4a) and physically meaningful real data (Figure 4f), which is considerably easy. In
the meanwhile, this is also a corresponding steep increase in the generator loss. Although
the generator loss is increasing, the generator is much improved (Figure 4b) because the
discriminator’s feedback is useful. As the generator generates more reasonable results, the
discriminator’s job is not easy anymore. After the 20th epoch, the generator loss starts to
decrease, which indicates the discriminator learns slower compared to the generator. By
comparing Figure 4d, 4e and 4f, we conclude that the two networks reach equilibrium and

6 CREWES Research Report — Volume 32 (2020)



Experiments on GAN

0.5

0.0

0.5
-10.999 -10.844 -10.883

0.5

0.0

0.5
-10.939 -10.934 -10.966

0.5

0.0

0.5
-10.974 -10.814 -11.038

0.5

0.0

0.5
-10.880 -10.981 -10.882

0 200 400
0.5

0.0

0.5
-10.844

0 200 400

-10.876

0 200 400

-10.940

FIG. 2. The results from the trained generator. The blue curves refer to the generated traces while
the orange traces are from the data. The number on the upper right in each subplot refers to the
scores obtained from the discriminator. The higher the score, the better it looks from the perspective
of the discriminator.

can hardly be improved.

Quantitative analysis

Figure 5 shows the distribution of the scores on the trained generator from the trained
discriminator after 100 epochs. The real data score distribution is shown in blue, which can
be assumed to be Gaussian. The mean discriminator score of the real data is −10.940, and
that of the generated samples is −10.932. The means are close and the mean from generated
samples is slightly higher than the real data distribution. This indicates the discriminator
may get confused and stops improving itself. Figure 6 shows the mean generated score
using the discriminator at the 100th epoch. Note that the generator stops improving from the
perspective of the 100th discriminator, even though its gradients comes from discriminator
at later epochs. We can infer that both the generator and the discriminator stops improving
at around 100th epoch, which roughly agree with our observations using manual inspection.
Therefore, we chose the models at the 100th epochs to be the best model. However, this

CREWES Research Report — Volume 32 (2020) 7



Niu et. al

0 10 20 30 40 50 60 70 80 90 100
epochs

10

0

10

20

30

40

Ge
ne

ra
to

r l
os

s

8

6

4

2

0

2

4

Di
sc

rim
in

at
or

 lo
ss

FIG. 3. GAN loss curves. The blue and the orange lines refer to the losses of generator and
discriminator, respectively. The losses are defined by Equation 3 and 4.

conclusion is subjective and made after the training process. There is no clear metrics
indicating the stopping point during the training and further study is needed on this topic.

CONCLUSIONS

In this report, we explore a way of generating 1D seismic traces using WGAN. The
trained generator successfully transform uniformly distributed noise vectors to data distribu-
tion generated by the forward modelling. The two models reach equilibrium at around 100
epochs and hardly improve each other afterwards. The generated samples from the trained
model preserve the unique waveform of real data, despite of the discriminator still lacks the
ability to distinguish empty traces from real examples. The future work will be expanding
the same model architecture to 2D and applying conditions to the noise vector to gain more
control over the generation process.

ACKNOWLEDGEMENTS

We thank the sponsors of CREWES for continued support. This work was funded by
CREWES industrial sponsors, NSERC (Natural Science and Engineering Research Council
of Canada) through the grants CRDPJ 461179-13 and CRDPJ 543578-19.

8 CREWES Research Report — Volume 32 (2020)



Experiments on GAN

a) b)

c) d)

e) f)

FIG. 4. Predictions from the generator at a) 1st epoch; b) 5th epoch; c) 20th epoch; d) 47th epoch;
e) 100th epoch and f) refers to a sample from real data for comparison.

11.4 11.2 11.0 10.8 10.6
0

250

500

750

1000

1250

1500 Real
Generated

11.4 11.2 11.0 10.8 10.6
Discriminator score

0

1

2

3

4

5

6 Real
Generated

FIG. 5. Histogram and kernel density estimation of real data and generated samples. The parts in
blue represent the results from real data distribution, while the orange parts represent the results
from generated examples.

CREWES Research Report — Volume 32 (2020) 9



Niu et. al

0 50 100 150 200
epochs

14.0

13.5

13.0

12.5

12.0

11.5

11.0

10.5

10.0
Generated score
Real mean score

FIG. 6. Mean generator score using the discriminator from the 100th epoch. The grey dashed line
refers to the mean real data score, which is −10.940.

10 CREWES Research Report — Volume 32 (2020)



Experiments on GAN

REFERENCES

Arjovsky, M., Chintala, S., and Bottou, L., 2017, Wasserstein gan, 1701.07875.

Chollet, F., 2018, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-
Bibliothek: MITP-Verlags GmbH & Co. KG.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y., 2014, Generative adversarial networks, 1406.2661.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A., 2017, Improved training of wasserstein
gans, 1704.00028.

Kingma, D. P., and Ba, J., 2017, Adam: A method for stochastic optimization, 1412.6980.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S., 2019, PyTorch: An Imperative Style, High-Performance
Deep Learning Library: Curran Associates, Inc.

Wu, X., Liang, L., Shi, Y., and Fomel, S., 2019, Faultseg3d: Using synthetic data sets to train an end-to-end
convolutional neural network for 3d seismic fault segmentation: Geophysics, 84, No. 3, IM35–IM45.

CREWES Research Report — Volume 32 (2020) 11


