
ResNets for 2D fault detection

Fault Detection using Residual Neural Networks

Paulina Wozniakowska*, Marcelo Guarido†, Daniel Trad†, David Emery†, David W.
Eaton*

ABSTRACT

This chapter presents an example of automated fault detection using Residual Neural
Network. In this work, synthetic data set from the FORCE: Seismic fault Mapping compe-
tition was used. We present how the popular image segmentation technique can be used to
identify faults on the 2D images exported from the 3D synthetic seismic cube.

INTRODUCTION

Fault identification is one of the main parts of structural interpretation of unconven-
tional and conventional reservoirs. Areas in the vicinity of faults are the common target
of conventional hydrocarbon development as one of the common types of petroleum traps.
For the unconventional development, pre-existing faults can pose a serious threat as they
can potentially be reactivated during hydraulic fracturing operations and result in high-
magnitude seismicity (Lei et al., 2019; Mahani et al., 2017). Potential of automatic fault
detection using machine learning has been extensively studied over the recent years. Stud-
ies confirm the applicability of machine learning algorithms to detect fault structures on the
synthetic and real seismic images, even for limited number training of samples (Li et al.,
2019). Some studies suggest that Convolutional Neural Networks can be successfully used
to obtain more detailed information, including the probability of the predicted faults and
their exact orientation (Wu et al., 2019). Other examples have investigated using unpro-
cessed seismic traces (Zhang et al., 2014; Dahlke et al., 2016).

CONVOLUTIONAL NEURAL NETWORKS VS RESNETS

Convolutional Neural Networks (CNNs) are among the most widely used deep learning
algorithms for image processing and computer vision (Krizhevsky et al., 2012). Specifi-
cally, they are common choice for the image segmentation problem, which is based on the
predictions at the pixel level (Gupta et al., 2014).

Main building blocks of the CNNs include: input layer, convolutional layer, pooling
layer, fully connected layer and output layer. Input layer corresponds to the vector of input
features fed into the algorithm. Convolutional layer is the most important part of every
CNN. As its name implies, it is responsible for convolution of the input from the previous
layer and sending the filtered information to deeper layers of the network. Pooling layers,
perform the pooling operation, which corresponds to the selection of the characteristics
from a bigger region in the previous layer. Most common pooling method include averaging
or maximum value selection. Fully connected layers are the type of layers in which all
neurons from previous layers are connected to every activation unit of the next layer and
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perform classification based on the features from the previous layer. The output layer of the
CNN produces the final result of all the operations performed in the hidden layers (Géron,
2019).

Residual Neural Network (ResNet) is a type of CNN architecture, which, apart from the
standard building blocks described above, include additional residual blocks and shortcut
connections, which allows for constructing multi-layer networks by reducing the problem
of vanishing or exploding gradients that typically affects deep CNNs (He et al., 2015).

FAULT DETECTION AS AN IMAGE SEGMENTATION PROBLEM

In the recently published literature, the binary image segmentation approach was used
to detect structural lineaments. Specifically, the information about the location of faults
in space is expressed by the output mask layer, in which each pixel is located in a 3D
space and classified as ’fault’ or ’not-fault’ accordingly (Haralick and Shapiro, 1985). An
example of a seismic cube and its fault-mask cube used to extract pixel labels is shown in
the Figure 1.

FIG. 1. Example representation of the 3D seimic cube and fault mask (Xiong et al., 2018).

DATA PREPROCESSING

The data used in this study were sourced from the 2020 FORCE: Seismic Fault Mapping
competition dataset. It included the synthetic 3D seismic cube of an approximate size of
3km x 3km x 3km. Original 3D Seismic data were preprocessed to obtain the input features
and output labels using several steps:

1. 2D image extraction from 3D seismic. The 3D seismic cube was used to create
three separate subsets corresponding to inline and crossline sections as well as hori-
zontal time slices. Each input image had a size of 128x128 pixels. Due to the simi-
larity of the faults represented in inline and crossline directions, inline and crossline
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(a) Inline

(b) Time slice
FIG. 2. Examples of image augmentation used in this study. Top rows correspond to 8 inline (a)
and time slice (b) sample images exported from 3D seismic and converted to grayscale. Bottom
rows present the modified version (horizontally flipped, vertically flipped, and rotated by 180°). 2D
seismic images are presented in the greyscale, while green lines represent synthetic faults.

subsets were used to create a model for changes along the horizontal direction (fur-
ther referred to as inline/crossline model), which resulted in 2-fold increase in the
number of the examples available for the training.

2. Data augmentation. Number of examples available for training was further in-
creased by implementing the vertical and horizontal flipping as well as rotation of
original image by 180° (Figure 2). Augmented dataset consisted of 10400 training
samples for each of the inline, crossline and time slice image subsets (Figure 2

3. Inputs preparation. Input images were converted into the grayscale and trans-
formed into matrices to generate the input feature vectors. Standard pixel values
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in the greyscale are represented by numbers ranging between 0 and 255. Features
were therefore normalized to obtain values within the 0-1 range.

4. Labels preparation. Labels were generated using the fault masks contained within
each of the input image. Pixels were classified as ’fault’ or ’non-fault’ and assigned
1 and 0 values, respectively, according to the region they represented.

MODEL DEVELOPMENT

Our method was compiled using Tensorflow and Keras - open-source frameworks for
machine-learning. It was trained using the binary cross-entropy loss, with RMSprop opti-
mizer. An example of the model architecture is shown on Figure 3

FIG. 3. ResNet architecture used in this study. 3x3 conv corresponds here to dimension of the filter
used. Value after comma indicates the number of channels in the layer. Last layer of each conv
part has the number of channels increased by 2.

The training was performed on the Google Colab using the GPU cloud service. The
training took 2.57 hours for the inline/crossline model and 1.52 hours for the time slice
model. The Inline/crossline model yielded a binary cross-entropy loss of 0.0854. The

4 CREWES Research Report — Volume 32 (2020)



ResNets for 2D fault detection

model trained on time slices performed slightly better and resulted in the loss value of
0.0703.

(a) Inline

(b) Time slice
FIG. 4. Predictions obtained using ResNet models trained on inline and crossline (a) and time slice
(b) sample images training sets. True fault locations and their predictions are indicated by the blue
lines and red lines, respectively.

Figure 4 shows the predictions over the validation set (still part of the synthetic data).
On the top are samples from the inline and crossline directions, and on the bottom samples
from the time slices. In both cases the model performed with high precision, marking
correctly most of the faults (the time slice model is close to perfect), with some minor
misclassification.
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CONCLUSIONS AND FUTURE WORK

In this study, a Residual Neural Network was used to perform automated fault detec-
tion. This approach allows for the identification of structural lineaments in 2-dimensional
spaces represented by the inline, crossline and time slice images exported from a synthetic
seismic 3D cube. Preliminary results suggest that the workflow can be successfully applied
to identify fault structures using only 2D information, which emerges as an alternative to
computationally expensive 3D detection approaches. Another advantage of our approach
is that it can be applied to areas where 3D seismic data are not available. Further develop-
ment of this study will include testing the model trained on a synthetic cube on real seismic
data as well as implementing a more complex model to perform the fault detection and
visualisation in 3D. In addition, various seismic attributes will be tested as potential pa-
rameters which could improve the quality of the predictions, especially in the case of real
data characterized by significantly lower signal-noise ratio comparing to synthetic models.
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