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ABSTRACT

We develop a Bayesian approach to simultaneously estimate source mechanisms for a
set of microearthquakes, in which uncertainties of model parameters are vigorously quan-
tified. To overcome limitations associated with the use of conventional moment-tensor
inversion for low-magnitude events, we use a physically based shear-tensile crack model to
characterize the seismic source in the inversion. The shear-tensile model consists of four
parameters, strike, dip, rake and slope, to represent a superposition of a shear slip along
the fault and a crack opening/closure. In the inversion, normalized displacement ampli-
tudes of direct P-wave are used as observations. The Bayesian inference is employed via
Markov-chain Monte Carlo (McMC) sampling with parallel tempering, and the principal
component diminishing adaption is also used to ensure efficient sampling. In addition,
to reduce the number of modes in 2D posterior marginals and avoid one-side distributed
marginals for strike, new prior bounds are applied for strike (0◦ – 180◦) and dip (0◦ – 180◦).
We apply the Bayesian inversion to a passive seismic dataset acquired during a four-well
hydraulic-fracture completion program. For three representative events, uncertainties are
quantified through posterior distributions of shear-tensile model parameters. The resulting
source mechanisms are highly consistent results with a previous study, indicative of the
effectiveness of the proposed algorithm.

INTRODUCTION

As a mathematical description for seismic sources, the seismic moment tensor has been
extensively used in source studies for various seismic events such as natural tectonic earth-
quakes, volcanic earthquakes and anthropogenic seismicity. In addition to the classic dou-
ble couple (DC) that is related to the shear slip along the fault, the moment tensor can
also characterize more complex faulting/rupture processes (e.g., tensile faulting and non-
coplanar faulting) through the non-DC components (Miller et al., 1998; Wang et al., 2018).
While for low-magnitude events (e.g., microearthquakes), the use of conventional moment-
tensor inversion may yield unstable results and spurious non-DC components due to the
generally low signal-to-noise ratio (Pesicek et al., 2012; Wang et al., 2019), which will
further impact the interpretation. For this problem, a physically based shear-tensile crack
model was proposed to characterize the seismic source mechanism, in which the source is
described by simultaneous in-plane slip and crack opening/closure. Due to less model pa-
rameters in comparison with the moment tensor, the use of shear-tensile model can produce
more constrained but stable source-mechanism solutions. In addition, the requirement for
azimuthal coverage of stations in the source determination process is also reduced with the
adoption of shear-tensile model (Šílenỳ et al., 2014; Šílenỳ, 2018; Petružálek et al., 2018).

Most seismic source-mechanism studies use deterministic algorithms to invert for mo-
ment tensors, which lacks necessary uncertainty evaluation. To rigorously quantify the
uncertainties of source mechanisms, a number of Bayesian inversion approaches have been
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developed, for example, Pakzad et al. (2020) employed a Bayesian framework using an
McMC algorithm to estimate moment-tensor solutions, in which constraints were applied
for first-motion polarities and double couple percentage. Mustać and Tkalčić (2016) imple-
mented a hierarchical Bayesian inversion for moment tensors of moderate-size earthquakes.
In addition to moment-tensor parameters, they also treated centroid location and noise as
unknown.

In this study, we present a Bayesian inversion approach to simultaneously estimate
shear-tensile focal mechanisms of multiple microearthquakes. The Bayesian inversion
treats shear-tensile model parameters as well as noise standard deviation as unknown. To
avoid one-side distributed posterior marginals for strike and reduce the number of modes
presented on 2D posterior marginals, new prior bounds for strike and dip are used. To val-
idate the propose algorithm, we will apply it to a passive seismic dataset acquired during a
four-well hydraulic-fracturing completion program in Duvernay Shale.

METHOD

Shear-tensile crack model

We use shear-tensile crack model to characterize source mechanisms of microearthquakes.
This model has four independent parameters, strike (0◦ – 360◦), dip (0◦ – 90◦), rake (-180◦

– 180◦) and slope (-90◦ – 90◦). The slope represents the angle between the slip direction
and the fault plane with values ranging between -90◦ and 90◦. A value of 0◦ for slope
denotes the pure shear source, and values of -90◦ and 90◦ represent tensile closure and
opening, respectively (Vavryčuk, 2001).

In homogenous media, the far-field P-wave displacement caused by a shear-tensile
crack can be expressed as (Ou, 2008)

uP =
µA∆u̇(t− r/α)

4πρα3

r̂TSr̂

r
r̂, (1)

where µ, A, ρ and α represent shear modulus, rupture area, density and P-wave velocity,
respectively; r is the distance between source and receiver; r̂ is a unit vector pointing from
source to receiver; S is the source dislocation tensor; and ∆u̇(t) is the time derivative of
the magnitude of dislocation. The six independent elements of S are

S11 = [2σ/(1− 2σ) + 2 sin2 δ sin2 φ] sin γ − (sin δ cosλ sin 2φ+ sin 2δ sinλ sin2 φ) cos γ

S22 = [2σ/(1− 2σ) + 2 sin2 δ cos2 φ] sin γ + (sin δ cosλ sin 2φ− sin 2δ sinλ cos2 φ) cos γ

S33 = [2σ/(1− 2σ) + 2 cos2 δ] sin γ + sin 2δ sinλ cos γ

S12 = − sin2 δ sin 2φ sin γ + (sin δ cosλ cos 2φ+ sin 2δ sinλ sin 2φ/2) cos γ

S13 = sin 2δ sinφ sin γ − (cos δ cosλ cosφ+ cos 2δ sinλ sinφ) cos γ

S23 = − sin 2δ cosφ sin γ − (cos δ cosλ sinφ− cos 2δ sinλ cosφ) cos γ

(2)
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where φ, δ, λ and γ are the strike, dip, rake and slope, respectively, and σ is the Poisson’s
ratio, which is fixed and assumed to be 0.25 in the inversion.

Here, the focal mechanism inversion is based on the displacement amplitude of direct P-
wave. The observed P-wave amplitudes are scaled over the maximum amplitude. In terms
of the modeling data, when the same normalization is applied, the first term in equation (1)
for different stations are approximately the same, and thus can be canceled out. In the data
pre-processing, an approximate geometrical spreading term (1/r) is applied to the observed
data, thus the normalization (i.e., scaling over the maximum) for the modeled data only
needs to be applied to the radiation pattern r̂TSr̂. In this study, an isotropic 1-D layered
velocity model is used for ray tracing in order to estimate the take-off angles. The vector r̂
is calculated based on the azimuth measured from source to receiver and the take-off angle
at the source.

Bayesian inversion

In this study, we carry out Bayesian inversion to simultaneously estimate the shear-
tensile focal mechanisms for a set of microearthquakes. Based on Bayes’ theorem, the
posterior probability density (PPD) is defined as

P (m|d) ∝ P (m)P (d|m), (3)

where m represents the model vector. ForM microearthquakes, m is [φ1, δ1, λ1, γ1, φ2, δ2,
λ2, γ2, . . . , φM , δM , λM , γM ]. P (m) denotes the priori probability. P (d|m) is interpreted
as the likelihood function, L(m), when d represents the observed data. In this research,
d is the data vector consisting of the measured normalized P-wave amplitudes. Under the
assumptions of Gaussian-distributed errors and the negligible off-diagonal terms of the data
covariance matrix, the likelihood function can be expressed as

L(m) =
M∏
k=1

1

(2π)Nk/2σNk
k

exp [−(dk − g(mk))T (dk − g(mk))/(2σ2
k)], (4)

where σk is the standard deviation of noise for the kth event, and Nk is the number of
observed data for this event. g is the forward model in the isotropic, layered medium. In
the Bayesian inversion, the noise standard deviation for each event is unknown and is also
estimated by the McMC sampling.

In the Bayesian inversion, the Metropolis-Hasting criterion is used accept or reject the
perturbed models based on the PPD. To ensure efficient sampling, the McMC sampling is
implemented with parallel tempering and diminishing adaption of a principal axes proposal
density (Dosso et al., 2014). In the inversion, the prior is assumed to be uniform for all pa-
rameters including noise standard deviations. The shear-tensile model parameters, strike,
dip, rake and slope, are conventionally defined within the ranges of 0◦ – 360◦, 0◦ – 90◦,
-180◦ – 180◦ and -90◦ – 90◦, respectively. Due to the intrinsic fault-plane ambiguity of the
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source-mechanism solution, multiple modes are expected to be observed from the poste-
rior marginal distributions of model parameters, especially for strike-slip mechanisms. In
addition, the posterior marginal of the dip angle for vertical or nearly vertical fault plane
is only distributed on one side due to the constraint of upper bound (90◦) for dip. To re-
duce the number of modes of posterior marginals and overcome the one-side distribution
problem, we modify the prior bounds for strike and dip in this study. Considering that (φ1,
δ1, λ1, γ1) and (φ1 ± 180◦, 180◦ - δ1, -λ1, γ1) represent the same nodal-plane solution, the
prior bounds for both strike and dip can be changed to 0◦ – 180◦. The problem of one-side
marginal for dip will be eliminated due to the increased prior range for dip, and the number
of modes will also be reduced due to the narrower prior range for strike.

APPLICATION TO THE FIELD DATA

Datasets

We apply the proposed Bayesian inversion to a passive seismic dataset in the Tony
Creek Dual Microseismic Experiment (ToC2ME) (Eaton et al., 2018), in which a diverse
set of sensors were used to monitoring multi-stage hydraulic-fracturing operations at a
four-well pad west of Fox Creek, Alberta. The recording system consists of 68 shallow-
borehole array stations, one strong-motion accelerometer and six broadband seismometers.
Hypocenters were well determined for over 4,000 events with moment magnitudes ranging
between MW -1 and MW 3.2 (Eaton et al., 2018), and moment-tensor solutions for a subset
of 530 high-quality events with magnitudes ranging from Mw 1 to Mw 3.2 were estimated
(Zhang et al., 2019). Here, we focus on the 530 events for the source-mechanism determi-
nation with the proposed algorithm, and only the data acquired with shallow borehole array
stations are used. Figure 1 shows the distribution of the 530 events. As marked by different
symbols, these events were classified into four groups based on the moment-tensor solu-
tions (Zhang et al., 2019). Two groups of events (marked by circles and diamonds) were
characterized by strike-slip mechanisms along either N-S/E-W or NE-SW/NW-SE trend-
ing nodal planes. One group of events were found to have NW–SE/NE–SW trending nodal
planes exhibiting either oblique dip-slip on subvertical planes or slip on a shallow-dipping
plane. The remaining group has a diverse set of source mechanisms that do not fit into any
of the previous three major groups.

Results

Using the proposed Bayesian approach, the shear-tensile focal mechanisms for the 530
events are estimated. Here, a representative event (event II in Figure 1) is used to illus-
trate the effectiveness of the new prior bounds for strike and dip. Figures 2 and 3 show
the posterior marginals of the four model parameters before and after the adoption of new
prior bounds. In Figure 2, it can be seen that four major modes can be observed from the
marginal distribution for strike, that are associated with the two nodal planes. In addition,
the dip marginal distribution is only presented on one side due to the upper prior bound.
Nevertheless, posterior marginals of all model parameters exhibit Gaussian-like distribu-
tions. As can be seen in Figure 3, after applying the new prior bounds the number of modes
for strike is reduced, and two-sided Gaussian distribution is presented for dip. These im-
provements are more evidently seen from scatter plots between strike and the other three
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FIG. 1. Distributions of the 530 events used for this study. The four groups of events were marked by
different symbols, and triangles represent the shallow borehole-array stations. Three representative
events from the first three groups that will be further analyzed in this study are marked out. Event
symbols are scaled based on the moment magnitude.

model parameters (Figures 4 and 5). Based on the two distinct clusters in the scatter plots in
Figure 5, two nodal-plane solutions can be easily separated by a simple screening for strike.
Then further uncertainty analysis can be implemented based on the posterior marginals for
either of the two nodal planes. Figure 6 shows the model-parameter marginals for nodal
plane 1 (red cluster in Figure 5).

Next, we select three representative events from the three major groups for further un-
certainty analysis. Figures 7 –9 show the scatter plots as well as posterior marginals for the
three events. For all the three events, two clear nodal-plane solutions can be identified from
these three figures. For event III, widely distributed outliers marked by green color can also
be seen from the scatter plots (Figures 9 (a-c)), while the posterior marginals for outliers
are negligible compared with the two nodal planes. For each of the three representative
events, we select only one the nodal plane for uncertainty analysis based on the posterior
marginals. Table 1 shows the 95% credibility intervals for strike, dip, rake and slope. For
the sake of comparison, the nodal plane solutions obtained through a full moment-tensor
inversion by Zhang et al. (2019) are also presented in Table 1. It can be observed that the
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FIG. 2. Marginal distributions for (a) strike, (b) dip, (c) rake and (d) slope of one representative
event before using the new prior bounds for strike and dip.

FIG. 3. Marginal distributions for (a) strike, (b) dip, (c) rake and (d) slope of one representative
event after using the new prior bounds for strike and dip.

proposed Bayesian inversion yields highly consistent nodal-plane solutions with the previ-
ous study. In addition, the source mechanism with uncertainty can also be represented by
the so-called fuzzy beachball, in which uncertainty regions of nodal planes are indicated by
blurred areas. Figures 10 and 11 show the fuzzy double-couple solutions and moment ten-
sors for the three representative events, in which solutions with mode values are represented
by black lines.
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FIG. 4. Scatter plots between (a) strike and dip, (b) strike and rake and (c) strike and slope. Red
and blue dots are associated with nodal plane 1 and nodal plane 2, respectively. Green dots denote
outliers. These results are obtained before applying new prior bounds for strike and dip.

FIG. 5. Scatter plots between (a) strike and dip, (b) strike and rake and (c) strike and slope. Red
and blue dots are associated with nodal plane 1 and nodal plane 2, respectively. These results are
obtained after applying new prior bounds for strike and dip.

FIG. 6. Posterior marginal distributions of (a) strike, (b) dip, (c) rake and (d) slope for nodal plane 1
(red cluster in Figure 5).
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FIG. 7. Inversion results for event I in Figure 1. (a-c) Scatter plots between strike and the other
three model parameters. (d-g) Posterior marginals of model parameters for shear-tensile source
mechanism. Red and blue colors represent the results associated with two nodal planes.

FIG. 8. Inversion results for event II in Figure 2. (a-c) Scatter plots between strike and the other
three model parameters. (d-g) Posterior marginals of model parameters for shear-tensile source
mechanism. Red and blue colors represent the results associated with two nodal planes.

Table 1. 95% credibility intervals of nodal plane solutions obtained in this study and solutions from
Zhang et al. (2019).
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FIG. 9. Inversion results for event III in Figure 1). (a-c) Scatter plots between strike and the other
three model parameters. (d-g) Posterior marginals of model parameters for shear-tensile source
mechanism. Red and blue colors represent the results associated with two nodal planes, and green
color represents outliers.

FIG. 10. Fuzzy beachball diagrams for the double-couple components of the three representative
events.

FIG. 11. Fuzzy beachball diagrams for the moment-tensor solutions of the three representative
events. ).
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CONCLUSIONS

We have presented a probabilistic approach to simultaneously estimate shear-tensile
source mechanisms for multiple microearthquakes. The Bayesian inference has been em-
ployed via McMC sampling with parallel tempering and the principal component dimin-
ishing adaption to ensure efficiency sampling. Compared with conventional full moment-
tensor inversion for low-magnitude events, the use of shear-tensile crack model tends can
yield more robust results due to less model parameters. In addition, the use of convention-
ally defined ranges for strike and dip may generate one-side distributed marginals for strike
and multiple modes from 2D marginals. To overcome these limitations, new prior bounds
for strike (0◦ – 180◦) and dip (0◦ – 180◦) have been used in the Bayesian inversion. The
effectiveness of the proposed method has been demonstrated through the application the
ToC2ME dataset, in which three representative events are used for detailed analysis. In
the future research, we will analyze the inversion results for all the 530 high-quality events
within ToC2ME dataset.
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