
Seismic facies classification

Seismic facies classification with parametric and
nonparametric statistics

Brian Russell1

1 HampsonRussell, A GeoSoftware Company, Calgary, Alberta, brian.russell-contractor@cgg.com

ABSTRACT

In this study, I compare parametric and nonparametric statistical methods for seismic
facies classification. I will use an example that involves two seismic attributes, two
facies and ten points. These seismic attributes are the normalized VP/VS ratio and the
acoustic impedance, IP. This problem includes several outliers and therefore
illustrates the advantages and disadvantages of each method discussed. The
classification techniques covered in this study consist of linear least-squares, k-
nearest-neighbours (kNN), Quadratic Discrimination Analysis (QDA), Kernel
Density Estimation (KDE) and the Deep Feedforward Neural Network (DFNN).

INTRODUCTION

This study will apply several basic and advanced classification methods to a ten-point
facies classification example (Bishop, 2006, Hastie et al., 2009). Before applying
advanced statistical methods of classification to the ten-point problem, I first apply
two simpler methods: linear least-squares, which is a parametric approach that only
requires two weight parameters, and k-Nearest Neighbor, or kNN, classification,
which is a nonparametric approach which requires a separate calculation at each point
on the map.

.
I then move to statistical classification using two different approaches: quadratic
discrimination analysis (QDA) using the bivariate normal Gaussian distribution and
kernel density estimation (KDE) using a Gaussian kernel. The underlying approach
to each of these methods is Bayesian, in that the Bayes’ decision rule is used to
determine the membership in each class.

QDA classification with the normal distribution is called a parametric statistical
approach since it uses a limited set of parameters to perform the classification (i.e.,
the mean, variance, and covariance of each class). KDE is similar except that it
applies a Gaussian distribution to each point in the two classes and sums the result.
Although KDE is dependent on the width of a scaling parameter, it is called a non-
parametric statistical method because it is dependent on all the points in each class.

Finally, I show how a deep feedforward neural network (DFNN) can be used to solve
the same ten-point classification problem. After defining the structure of the neural
network, I will do a detailed analysis of how the network solves the classification
problem. Although the DFNN is generally not considered to be a statistical
technique, it falls more into the parametric side of classification than the
nonparametric side, since the final trained network consist of a set of linear weights.
The Bayes’ rule is also used to compute the decision boundary for the DFNN.

CREWES Research Report — Volume 33 (2021) 1

mailto:brian.russell-contractor@cgg.com

Russell

CREWES Research Report — Volume 33 (2021)

SYNTHETIC EXAMPLE

Figure 1(a) shows a simple facies classification problem, where the horizontal axis is
normalized P-impedance (IP), and the vertical axis is normalized VP/VS ratio. The red
squares represent facies 1 and the blue circles represent facies 2, ordering of the input
points is shown in the figure, where the values are as follows:

1 2 3 4 5

6 7 8 9 10

0.1 0.3 0.1 0.6 0.4
, , , , ,

0.1 0.4 0.5 0.9 0.2

0.6 0.5 0.9 0.4 0.7
, , , , .

0.3 0.6 0.2 0.4 0.6

         
= = = = =         
         

         
= = = = =         
         

x x x x x

x x x x x

 (a) (b)
Figure 1: The synthetic Vp/Vs ratio versus P-impedance dataset used to study the classification
algorithms, where (a) shows the order of the input points, where the red squares represent one facies
and the blue circles represent the second facies, and (b) shows the facies labels, +1 and -1.

Notice that we can also arrange these points into two vectors that contain the x and y
values separately, given by

 

 

0.1, 0.3, 0.1, 0.6, 0.4, 0.6, 0.5, 0.9, 0.4, 0.7 , and

0.1, 0.4, 0.5, 0.9, 0.2, 0.3, 0.6, 0.2, 0.4, 0.4 .

T

T

=

=

x

y

In this case, classification is a binary problem (there are only two possibilities) so we
can implement the linear approach by assigning +1 to the red points and -1 to the blue
points, as shown here. We can therefore introduce a third dimension, which can be
written as z, with points given by:

1 2 3 4 5 6 7 8 9 101, 1, 1, 1, 1, 1, 1, 1, 1, 1.z z z z z z z z z z= + = + = + = + = + = − = − = − = − = −

We can visualize this in three dimensions as shown in Figure 2(a). By looking at this
plot, we see that linear classification is identical to linear regression in one higher
dimension, albeit with only two sets of equal values. In three dimensions this is an
easy problem to solve using the z = 0 plane, shown in green. In two dimensions, we
want to find the projection of a dipping 3D plane onto the X-Y plane.

2

Seismic facies classification

 (a) (b)
Figure 2: The 3D classification problem, where (a) shows that the z = 0 plane performs separation in

three dimensions, and (b) shows the linear separation plane projected onto the z = 0 plane.

To perform this classification, we therefore find the three weights for the best 3D
separation plane, as follows:

0

1

1

2

1.03

() 1.43

0.30

T T

w

w X X X

w

−

   
   

= = −
   
      

z , (1)

where  

1 0.1 0.1

1 0.3 0.4

1 0.1 0.5

1 0.6 0.9

1 0.4 0.2

1 0.6 0.3

1 0.5 0.6

1 0.9 0.2

1 0.4 0.4

1 0.7 0.6

X

 
 
 
 
 
 
 

= =  
 
 
 
 
 
 
  

1 x y ,

1 0.1 1 1

1 0.6 1 1

1 0.1 1 1

1 0.1 1 1

1 0.1 1 1
 and

1 0.1 1 1

1 0.1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

       
       
       
       
       
       
      
      

− −      
      − −
      

− − −      
      − − −
      
      − − −       

1 = x = , y = z = .










The equation for this plane is therefore given as

0 1 2
ˆ 1.03 1.43 0.3w w w= + + = − +z x y x y . (2)

Figure 2(b) shows the linear separation plane between the two facies. In this 3D view
it is hard to see how successful this classification line has been, so we will next go
back to the 2D view.

CREWES Research Report — Volume 33 (2021) 3

Russell

CREWES Research Report — Volume 33 (2021)

We can find the equation for the line by setting equation 2 equal to 0, giving:

0 1

2 2

1.78 4.78
w w

y x
w w

= − − = − +x . (3)

The separation boundary is shown in Figure 3. One of the first facies values has been
miss-classified, as has one of the second facies values. Also, one of the second facies
values is on the separation boundary.

Figure 3: The linear classification solution in 2D.

Next, we will look at the simplest non-parametric method, the k-nearest neighbors, or
kNN, approach. Hastie et al. (2009) state that kNN is at “the other end of the
spectrum” from the linear model just discussed. This approach simply finds the k
nearest input values xi that fall in a neighborhood Nk(x) around each point x = [x, y]T
= [IP , VP/VS]T on the graph, and then averages these values. In regression, this is
called a k-point smoother, and in the classification problem it is like a smoother, but
the difference is that the output value is set to -1 if the average is less than 0 and the
+1 if the average is greater than or equal to 0.

Mathematically, we can write:

()

1 if () < 01
()

1 if () 0
i k

i

N

z
z

zk 

−
= = 

+ 


x x

x
x x

x
. (4)

Figure 4 shows the k-nearest neighbors (kNN) boundary for a value of k = 1. Notice
that the facies have been correctly classified but that the boundary is quite “jagged”.
Later, we will see that we can get a similar, but much smoother, version of this
boundary using the kernel density estimation approach.

4

Seismic facies classification

Figure 4: The kNN approach using k = 1.

Although k = 1 has done a perfect classification, figure 5 shows kNN classification
for values of 3 and 5, which do not do as good a job. However, k = 5 has only miss-
classified one point, better than the linear approach.

 (a) (b)
Figure 5: The kNN approach using (a) k = 3 and (b) k = 5.

STATISTICAL CLASSIFICATION

Having discussed the parametric approach of linear least-squares classification and
the nonparametric approach of classification with kNN, I will now move on to more
advanced statistical classification methods using two different approaches. The first
approach is Quadratic Discriminant Analysis (QDA) using the bivariate normal
Gaussian distribution. QDA classification with the normal distribution is called a
parametric statistical approach since it uses a limited set of parameters to perform the
classification (i.e., the mean, variance, and covariance of each class). The second
approach is called kernel density estimation (KDE) using the Gaussian distribution as
its kernel (although other types of kernels, such as the Epanechnikov kernel, can be
used). KDE is called the Probabilistic Neural Network in machine learning. KDE, or

CREWES Research Report — Volume 33 (2021) 5

Russell

CREWES Research Report — Volume 33 (2021)

PNN, is called a non-parametric statistical method since they cannot be defined by a
finite set of parameters. Both the QDA and KDE methods are Bayesian since the
Bayes’ decision rule is used to determine the membership in each class.

QUADRATIC DISCRIMINATION ANALYSIS

The bivariate normal ellipse for a set of input points is written as follows, where m is
the mean and S is the covariance:

() ()1

1 2

1
(,) exp

2

T

/
f x y

π

− = − −  −
 

x μ x μ , (5)

where , , and .
x xx xy

y xy yy

μx

μy

 

 

    
= =  =    
     

x μ

Figure 6 shows Gaussian ellipses for all the points in our example, where:

0.46 0.065 0.012
, and

0.42 0.012 0.057

   
=  =   
   

μ .

The ellipses are at three constant variances and the x shows the mean value.

Figure 6: Bivariate Gaussian contours at three constant variances for the complete dataset shown in
Figure 1, where the x shows the mean value of all the points.

Bayes’ Theorem can used to calculate the probability we have a particular class ci,
given a pair of seismic attributes, x = IP and y = VP/VS, and is written:

()
(, |) ()

| ,
(,)

i i
i

p x y c p c
p c x y

p x y


= , (6)

6

Seismic facies classification

where
1

(,) (, |) () for classes
N

i i

i

p x y p x y c p c N
=

=  .

In equation 6, p(ci|x,y) is the conditional probability of having class ci given attributes
x and y, and is called the posterior, p(x,y|ci) is the conditional probability of having
attributes x and y given class ci, and is called the likelihood, p(x,y) is the joint
probability of having attributes x and y , and is called the evidence, and p(ci) is the
probability of class ci and is called the prior. Note that the evidence p(x,y) is the
same for each class and is therefore simply a scale term, so for our two-class problem
Bayes’ Theorem can be written:

1 1 2 2

1 1 2 2

If (, |) () (, |) (), point (,) is in facies 1,

but if (|) () (|) (), point (,) is in facies 2.

p x y c p c p x y c p c x y

p X c p c p X c p c x y

  

  

We therefore need to find both the likelihood and prior for each class. The prior is
usually computed by finding the proportion of points in each class, and since we have
equal numbers in this example (5 in each class) we can set the prior to ½ for each
class, so that only the likelihood is needed in the calculation. The likelihood for each
class is given by the modified Gaussian shown below, where each class has its own
mean and covariance matrix:

() ()1

1 2

1 1
(, |) exp

22

T

i i i i/

i

p x y c
π

− 
= − −  − 

 
x μ x μ , (7)

where , ,and .
ix ixx ixy

i i

iy ixy ixy

μx

μy

 

 

    
= =  =    
     

x μ

Figure 7(a) shows the contoured bivariate normal ellipses of the two facies, with
mean and covariance of

1 1

0.30 0.045 0.043
 and

0.42 0.043 0.097

   
=  =   
   

μ

for the first (dashed) ellipses, and mean and covariance of

2 2

0.62 0.037 0.016
 and

0.42 0.016 0.032

−   
=  =   

−   
μ

for the second (solid) ellipses.

In figure 7(a) the separation boundary (shown as the green line) is a quadratic
function that can be computed analytically. Note that one of the second facies values
has been miss-classified. In Figure 7(b) the covariance matrices of the two facies
have been set to the average of the two individual covariances. The separation
boundary is now linear (called linear discriminant analysis or LDA). Also, note that
it is very close to the result obtained by linear classification. However, it would be
rare for two arbitrary covariances to be equal, and the correct approach is to compute
each independently as shown in Figure 7(a).

CREWES Research Report — Volume 33 (2021) 7

Russell

CREWES Research Report — Volume 33 (2021)

(a) (b)
Figure 7: Quadratic Discrimination Analysis (QDA) for our ten-point dataset, where (a) uses the
separate covariance matrices for each facies, and (b) uses the average covariance matrix, which
reduces the result to Linear Discrimination Analysis (LDA).

KERNEL DENSITY ESTIMATION

In this section, I will discuss kernel density estimation, or the probabilistic neural
network (PNN), as it is called in machine learning. The kernel density estimation
(KDE) method finds a continuous density function using the following equation:

()
1

1 N
i

i

p K
Nh h=

− 
=  

 


x x
x , (8)

where the observed valuesi N=x , h = a smoothing parameter, and K = a kernel

function. Although there are many choices for the kernel function the most common
one, and the one I will use here, is the Gaussian kernel, which is computed separately
for each facies as follows:

2 2

2 2
1

() ()1
(, |) exp

2 2

ci
N

ij ij

i

j

x x y y
p x y c

N =

 − + −
= − 

  
 . (9)

Recall Bayes’ rule for our two-class problem:

1 1 2 2

1 1 2 2

If () (, |) () (, |), point (,) is in facies 1,

but if () (|) () (|), point (,) is in facies 2.

p c p x y c p c p x y c x y

p c p X c p c p X c x y

  

  

Bayes’ rule can therefore also be applied to the KDE problem as follows where, since
we have the same number of points in both facies, we can drop both the scaling and
the prior. The first facies is defined by the relationship:

1 2
2 2 2 2

1 1 2 2

2 2
1 1

() () () ()
exp exp

2 2

c cN N

j j j j

j j

x x y y x x y y

 = =

   − + − − + −
−  −   
      

  , (10)

8

Seismic facies classification

and the second facies is defined by the relationship:

1 2
2 2 2 2

1 1 2 2

2 2
1 1

() () () ()
exp exp

2 2

c cN N

j j j j

j j

x x y y x x y y

 = =

   − + − − + −
−  −   
      

  . (11)

But now there is no analytical solution, as with parametric statistics.

Figure 8(a) shows the contoured kernel density estimates of the two facies using a
sigma value of 0.1. Facies 1 is shown with the dashed boundaries and facies 2 with
the solid boundaries. Note the irregular shape of the contours. Also shown is the
separation boundary between the kernel density estimates, which must be computed
point by point. For comparison, figure 8(b) shows the kNN separation boundary
using k = 1, which was shown earlier in figure 4. Note that the KDE estimate looks
like a smoothed version of the kNN boundary.

(b) (b)

Figure 8: (a) Kernel Density Estimation (KDE) using  = 0.1 for our ten-point dataset compared with
(b) the kNN result from Figure 4, where we note that both methods have correctly classified the points,
but KDE has done it in a smoother way.

Figure 9 shows the kernel density estimates and separation boundaries for sigma
values of 0.3 (Figure 9(a)) and 0.05 (Figure 9(b)).

Figure 9: (a) Kernel Density Estimation (KDE) using  = 0.5 and (b) (a) Kernel Density

Estimation (KDE) using  = 0.05.

CREWES Research Report — Volume 33 (2021) 9

Russell

CREWES Research Report — Volume 33 (2021)

Notice in Figure 9(a) that the sigma value is too large, and the KDE result is
under-trained, resulting in miss-classified points. in Figure 9(b) that the sigma
value is too small, and the KDE result is over-trained. That is, although the
points have been well-classified, the resulting boundary and contours are too

detailed when compared with the result shown in Figure 8 using a  = 0.1.

CLASSIFICATION WITH A DEEP NEURAL NETWORK

Next, I will show how to perform facies classification with the four layer deep
neural network shown in Figure 10. My example is taken from the paper by Higham
and Higham (2019), in which they use the deep neural network shown to compute a
separation boundary, but assumed the inputs were wet or dry wells. Their problem is
the same one that I have adapted to the facies classification problem. Therefore, I
modified the two inputs to be x1 = IP and x2 = VP/VS, but kept two outputs as vectors
with the following binary values:

1 0
Facies 1, Facies 2.

0 1

   
=  =    
   

d d

Figure 10: The four-layer Deep Feedforward Neural Network (DFNN) used to solve our ten-
point classification problem, which consists of an input layer and two hidden layers with 3 and 2

neurons, respectively, and an output layer.

The neural network shown in Figure 10 is called a four-layer network since it has
an input layer with two input, two “hidden” layers with two and three neurons
(the intermediate black circles), respectively, and an output layer with two
outputs (the final two black circles). The connections between the neurons are
linear weights that are computed by a backpropagation algorithm. Although the
network in Figure 10 looks intimidating at first, we can break it into it’s
component parts by looking at each neuron (the black circles) in more detail.

Figure 11 shows the top left neuron without the second subscript (which
indicates the neuron number) or superscripts (which indicates the layer number).
First, the neuron computes a weighted sum of the inputs, where w0 is called the

10

Seismic facies classification

bias. Second, it applies a nonlinear function to the weighted sum, where in this
case we are using the logistic function (many other functions are possible).

Figure 11: The neurons shown in Figure 10 by the black circles accept the weighted input and
transform it using the logistic function given by f(y).

Figure 12 shows a graph of the logistic function defined in Figure 11 and in
equation 12.

Figure 12: The logistic function defined in Figure 11 and equation 12.

The detailed mathematical formulation of this neural network is as follows:

(3) (3) (2) (1)(((()))f W f W f W=z x , (12)

where

1

2

1

x

x

 
 

=
 
  

x ,

(1) (1) (1)

(1) 10 11 12

(1) (1) (1)

20 21 22

w w w
W

w w w

 
=  
 

,
(1) (1)

1

(1)

2

1

()f W z

z

 
 

=
 
  

x ,

(2) (2) (2)

10 11 12

(2) (2) (2) (2)

20 21 22

(2) (2) (2)

30 31 32

w w w

W w w w

w w w

 
 

=  
 
 

,

(2)

1(2) (1)

(2)

2

(2)

3

1

(())
z

f W f W
z

z

 
 
 =
 
 
 

x ,

(3) (3) (3) (3)

(3) 10 11 12 13

(3) (3) (3) (3)

20 21 22 23

w w w w
W

w w w w

 
=  
 

,
(3)

(3) 1

(3)

2

1
, and () .

1 y

z
f y

ez
−

 
= = 

+ 
z

CREWES Research Report — Volume 33 (2021) 11

Russell

CREWES Research Report — Volume 33 (2021)

Note that the function used in this neural network is called the logistic function,
which is sigmoidal, or S-shaped function, and is shown in Figure 12.

Since the output has two values, the decision boundary becomes:

(3) (3) (3) (3)

1 2 1 2If , the output = 1, but if , the output = 0.z z z z 

The weights are then computed by the backpropagation technique (Higham and
Higham, 2019), which minimizes the least-squares error for the computed weights.
The convergence of the error for this problem, called a cost function, is shown in
Figure 13.

Figure 13: The cost function, or error convergence, for the neural network versus
iteration number.

After 105 iterations, the final weights are:

(1)
5.51 1.66 9.17

6.01 10.8 6.89
W

− − 
=  

− − 
, (2)

2.54 3.99 6.19

4.08 7.00 9.34

2.16 3.27 5.44

W

− − 
 

= −
 
 − − 

, and

(3)
0.12 5.53 9.61 4.85

0.46 5.95 9.34 4.85
W

− − 
=  

− − 
.

Although computing the weights is done by backpropagation, the output values are
computed as the forward set of mathematical operations given by:

(1) 1

1 1 2

(1) 1

2 1 2

(1 exp(5.51 1.16 9.17))

(1 exp(6.01 10.81 6.89))

z x x

z x x

−

−

   + + −
=   

+ − + +   

,

12

Seismic facies classification

(2) (1) (1) 1

1 1 2

(2) (1) (1) 1

2 1 2

(2) (1) (1) 1

3 1 2

(1 exp(2.54 3.99 6.19))

(1 exp(4.08 7.00 9.34))

(1 exp(2.16 3.27 5.44))

z z z

z z z

z z z

−

−

−

   + − + +
   

 = + − −   
   + − + +   

,

(2) (2) (2) 1(3)

1 2 31

(2) (2) (2) 1(3)

1 2 32

(1 exp(0.12 5.53 9.61 4.85))

(1 exp(0.46 5.95 9.34 4.85))

z z zz

z z zz

−

−

   + − + − +
 =   

+ − + −   

.

For this reason, this type of neural network can be described by two different names,
which at first appear contradictory: the backpropagation neural network (based on
how the weights are computed). Or the feedforward neural network (based on how
the weights are applied).

Using the Bayes’ rule defined earlier, we set the value on the graph to 1 or 0
depending on the output values, or:

(3) (3) (3) (3)

1 2 1 21, and 0.z z z z   

Contouring the decision surface gives the boundary shown in Figure 14(a), which is
probably the most optimal boundary computed so far. However, it is very dependent
on the design of the network. Instead of finding the exact cutoff between the
predicted points (i.e., 0 in the case of +1 and -1 and 0.5 in the case of 0 and 1) we can
also look at the actual value of z1

(3) or z2
(3), which will look like a sum of logistic

functions. The contours of z1
(3) are shown in Figure 14(b) and we see that the

boundary is steeper where the points are closer together.

Figure 14: The separation boundary from the neural network approach, where (a) shows the exact
boundary and (b) shows the logistic function contours.

The 3D contours of z1
(3) are shown in Figure 15 and again we see that the boundary is

steeper where the points are closer together. This plot has been re-scaled to be
between -1 and +1.

CREWES Research Report — Volume 33 (2021) 13

Russell

CREWES Research Report — Volume 33 (2021)

Figure 15: The 3D view of Figure 14(b), where the contours represent logistic functions.

CONCLUSIONS

In this study, I compared parametric and nonparametric statistica methods for
performing facies classification, using a ten-point example. These methods consisted
of the linear least-squares method, the k-Nearest-Neighbor, of kNN method, the
Quadratic Discriminant Analysis (QDA) method, the Kernel Density Estimation
(KDE) method and the Deep Feedforward Neural Network (DFNN) method. Both
the QDA and KDE methods were Bayesian approaches, in which Bayes’ rule was
used to classify the facies.

I found that the least-squares linear method did a very poor job of separating the
classes and, although kNN did an excellent job, it did so by using linear segments
rather than a smooth boundary. The QDA method using a Bayesian decision
approach gave a smooth boundary but miss-classified some of the points, whereas the
KDE method with a Bayesian decision boundary and the DFNN approaches both
gave smooth boundaries and were both able to perfectly classify the points in each
facies. However, since the DFNN approach is highly dependent on the structure of
the network and is also time consuming to run, the KDE approach is suggested as the
optimum method to apply to a real data example.

14

Seismic facies classification

REFERENCES

Bishop, C.M, 2006, Pattern Recognition and Machine Learning: Springer-Verlag.

Hastie, T., Tibshirani, R., and Friedman, J., 2009, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, 2nd Edition: Springer Series in
Statistics.

Higham, C.F and Higham, D.J., 2019, Deep Learning: An Introduction for Applied
Mathematicians: SIAM Review, Vol. 61 No. 4 pp 860-891.

ACKNOWLEDGEMENTS

We wish to thank our colleagues at the CREWES Project and at HampsonRussell
Software, a division of GeoSoftware for their support and ideas, as well as the
sponsors of the CREWES Project.

CREWES Research Report — Volume 33 (2021) 15

