
Learning the elastic wave equation with FNOs

Learning the elastic wave equation with Fourier Neural
Operators

Tianze Zhang, Kris Innanen and Daniel Trad

ABSTRACT

Neural operators are extensions of neural networks which in supervised training learn
how to map complex relationships, such as classes of PDE. Recent literature reports efforts
to develop one type of these, the Fourier Neural Operator (FNO) such that it learns to
create relatively general solutions to PDEs such as the Navier-Stokes equation. In this
study, we seek what we believe is the first numerical instance of a Fourier Neural Operator
(FNO) be trained to learn the elastic wave equation from a synthetic training data set. FNO
attempts to find a manifold for elastic wave propagation. On that manifold, wave fields are
represented in lower numbers of dimensions than those needed for standard solutions, and
the calculations for wave propagation are correspondingly simpler. The FNO combines
a linear transform, the Fourier transform, and a non-linear local activation, to produce a
network with sufficient freedom to map from a general parameterization of a forward wave
problem to its solution. Post-training, the FNO is observed to generate accurate elastic
wave fields at approximately 10 times the speed of traditional finite difference methods on
a CPU, and about a hundred times faster on a GPU.

INTRODUCTION

Solving the elastic wave equation, a time- or frequency-domain multidimensional par-
tial differential equation for one or more components of a wave field, is an essential part
of seismic inversion and imaging. Standard methods like those based on finite differences
and finite elements are based on discretization in space, on a grid or mesh. Derivatives
are computed at or around each grid or mesh point, and so from a computational point
of view, resolution and computational expense form a trade-off. A coarse grid is fast but
captures lower-frequency and wavenumber behaviour only; fine grids accommodate higher
frequency and wavenumber wave phenomena but are computationally slow and expensive.
These costs play a dominant role in the practical formulation (and use of) processes such as
seismic waveform inversion, where for computational reasons we are often forced to choose
between accuracy / completeness over computational expense and time. The expense of in-
version caused by the expense of simulation grows with the maximum frequency desired
and the maximum resolution needed, but also depth of investigation and model extent in
general, and any other aspect of the problem that increases the length of the data trace being
simulated or the number of source points being used. In all modern seismic imaging and
inversion problems, including and especially waveform inversion, we are motivated to seek
out accurate techniques for solution of elastic wave equations.

Data-driven machine learning methods are very rapidly developing tools for producing
maps between very general classes of input and output data. It has become understood
recently that in the area of PDEs, learning-based approaches, if properly designed, can be
orders of magnitude faster than conventional solvers. Since as recently as 2019, various
networks types, often based on very different architectures, have been introduced to solve

CREWES Research Report — Volume 33 (2021) 1

Tianze et. al

complex PDEs, with application across many disciplines. Raissi et al. (2019) proposed the
Thermodynamics-based Artificial Neural Network (TANN) for the constitutive modeling of
materials with inelastic and complex microstructure. Esmaeilzadeh et al. (2020) developed
a novel deep learning-based super-resolution framework to generate continuous (grid-free)
spatio-temporal solutions from the low-resolution inputs. Kochkov et al. (2021) use end-
to-end deep learning to improve approximations inside computational fluid dynamics for
modeling two-dimensional turbulent flows.

A manifold in mathematics is a topological space that locally resembles Euclidean space
near each point. The term is also used in machine learning, and is conceptually similar but
has some of its own features. The basic assumption in what is called manifold learning
is that high-dimensional data is accurately representable as low-dimensional data that is
embedded in the high dimension space with some level of redundancy. The low dimension
space is referred to as the manifold of that data set. For instance, suppose that our task is
to given the position of a city on the Earth. In general any position requires three coor-
dinate values, but, knowing that the city is on the surface of the Earth, we could also use
the latitude and longitude to represent the same location. The dimension we use to repre-
sent the same point is in this way reduced, through an agreement a priori about possible
places the city can be in the more general space. The Earth’s surface is here playing the
approximate role of a manifold on the 3D space. Manifolds can act as a stepping stone
from relating a complex space to a simpler, smoother subset space. Many tasks in machine
learning are concerned with learning manifold representations for data and then utilizing
this representation to make predictions about the remaining space. In the problem of solv-
ing an elastic wave PDE in a seismic appoication, our task is to seek a manifold on which
to model the propagation of a wave field, whose dimension is significantly lower than the
space needed for a standard discretized solution. If this can be done, it may be possible to
generate wavefields using fewer and simpler operations.

Li et al. (2020) introduced the Fourier Neural Operator (FNO) as a tool learn a num-
ber of the PDE equations, for instance, Burg’s equation, the Darcy Flow equation, and the
Navier-stokes equation. The structure of the network consists of three parts: two networks
to calculate the dimensional reduction and dimensional extension, and a set of Fourier lay-
ers, which calculate any requisite spatial derivatives. Simple numerical tests are suggestive
that the predictions of the FNO are in principle accurate and about a thousand times faster
to create than those of the conventional finite difference solver. The heart of that work is
the attempt to find a low-dimensional manifold for the propagation of those fields; in those
cases it was possible, and this explains the rapid calculation.

Inspired by this work, we modify Li et al. (2020) and train the modified FNO to learn
the elastic wave equation in the time domain. As part of the modification, the FNO is made
more suitable for calculating derivatives in multiple directions. We develop and describe
this elastic wave FNO in this paper, and discuss the influence of network hyper-parameters
on the convergence of training. To our knowledge this is the first discussion of the role
of hyper-parameters to appear. After our modification, an elastic FNO network generates
elastic wavefields accurately, and at a computational cost about 10 times less than a stan-
dard finite difference solver when computed on a CPU, and about a thousand times faster
on a GPU.

2 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

THEORY

LetM†: A → W represent a non-linear map, where the A andW are subspace of R
taking the real values. If {aj}Nj=1 ∈ A and {wj}Nj=1 ∈ W are N points of realizations in A
andW , the the non-linear mapping between the A andW is wj =M†(aj). In this study
we regard theM† as the operator that can solve the elastic partial differential equation, and
we aim to build the parametric mapping:

Mθ : A →W , θ ∈ Θ, (1)

which the operatorMθ is parameterized with θ, θ belonging to the finite-dimensional space
Θ such that Mθ ≈ M †. Suppose that J is a cost functional J (W ,W) → R. Thus we are
seeking to minimize the problem of:

min
θ∈Θ
J [M(a, θ),M†(a)], (2)

where a ∈ A, which representing the measure on space A. Minimizing the cost function
and testing the accuracy of the approximation operator can be realized with data driven
supervised learning train-testing setting, which is the empirical approximation in machine
learning.

The neural operator

According to Li et al. (2020) the full structure of the Fourier Neural Operator has been
shown in Figure 1. We made several changes in the network to make the it more suitable for
learning the elastic wave equation. The input wave fields are first projected to a compressed
dimension with a linear transform, f1 = Dp1

(
u(x, z, tin),m1,m2,m3

)
, where the Dp1 a

linear operator that takes in the wave fields, coordinates x, y and environments coefficients,
m1, m2, m3. The environments coefficients in this case are Vp, Vs and density models,
and for other cases, this environments coefficients could be a certain kind of physics prop-
erties like the conductivity or viscosity that describe the physical environments in spatial
domain. In the Dp1 layer, the dimension projection is achieved with a shallow fully con-
nected neural network parameterized with θ, Dp1θ : RTin,×dx×dz+5×dx×dz → Rdw×dx×dz .
Tin is the number of the times steps for the wavefields that we input to the network.
dw is the dimension projection width which is the hyper-parameter of the network. As
the data is transformed into a compressed dimension, thus this means the dw is much
smaller than Tin. Then dimension projection output f1 would follow several updates in
the Fourier layer (the purple square layer). In Figure 1, we use 5 updates for the Fourier
layer. Dp2θ : Rdw×dx×dz → RTout,×dx×dz , is the second dimension projection layer param-
eterized with θ. It is also obtained with a fully connected layer that transforms the data in
the higher dimension back into the regular time domain.

The update in the Fourier layer update is defined as:

fi+1 = σ [Wfi +Kx(fi;φ) +Kz(fi;φ)] , (3)

where Kx and Kz are an operation parameterized with θ ∈ Θ and performs the transform
with spatial Fourier transform and element point wise product. The definition of K as

Kc(fi;φ) = F−1c
(
Rφc · Fc(fi)

)
, c ∈ x, y, (4)

CREWES Research Report — Volume 33 (2021) 3

Tianze et. al

where the Fc and F−1c are the forward and inverse spatial Fourier transform in coordinate
c, (c ∈ x, y). For instance, the Fourier transform with x direction as an example, if fi ∈
Rdw×dx×dy , then Fx(fi) ∈ Cdw×kx×dy . In the work presented with Li et al. (2020), the
Rφx ∈ Cdc×dw×kj×dj , is the weight tensor that only does the element point wise product
with only part of Fx(fi) ,where |kj| ≤ kmax and dj ≤ dy.(

Rφx · Fx(fi)
)
w,k,j

=
dc∑
c

(Fxfi)w,k,jRc,w,k,j,

c = 1, . . . , dc, w = 1, . . . , dw,k = 1, . . . , kj, j = 1, . . . , dj

(5)

The same operations are applied on the z coordinate as well. The updating the weight
kernel Rφc in operator K is actually approximating the partial differential calculation. We
can understand the operator of K with the convolution theorem. The convolution theorem
shows that the product in the spatial Fourier domain is actually the convolution in the reg-
ular spatial domain. Thus, transforming the fields in one spatial direction with the Fourier
transform and calculating the product with a kernel is equivalent to performing the convo-
lution with the corresponding kernel on the original spatial domain. The work of Sun et al.
(2020), Zhang et al. (2020), Zhang et al. (2021), have demonstrated that the forward mod-
eling of the wave fields could be achieved by the spatial convolution operation with a filter
that is designed according to the finite difference stencil for partial differential calculation.
W : Rdx×dz → Rdx×dz is a linear transform which achieved with 2D convolution in the
regular space domain, and σ : R → R is the non-linear activation function which defined
element point-wise.

FIG. 1. The structure of the Fourier neural operator, aiming to train a network, which can give the
rest steps of the wavefields given by the first steps of the wavefields. Uin and Uout are the input
steps of the fields and the output predictions of the wavefields. Dp1 and Dp2 are the dimension
projection layer at operates on time axis. In the Fourier layer, Fc, c ∈ x, y and F−1

c , c ∈ x, y stands
the forward and inverse Fourier transform with respect to c direction. Rc, c ∈ x, y stands for the
kernel for multiplication in the Fourier domain. W stands a 2D convolution operation.

According to the previous introduction, we have seen that there are mainly two hyper-
parameters for the network. The first parameter is the dimension projection width dw. dw

4 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

determines how much the input layer would be compressed with respect to time. If the
dw = 1, such transform is similar to the Fourier transform with respect to time, which
changes a series of wavefields propagation time step slices into a single frequency domain
slice. The difference, in this case, is that we will always assign a small value for dw rather
than the value of 1. The second hyper-parameter is wavenumbers kj , which defines the
kernel shape to perform the product in the Fourier domain. In the paper of Li et al. (2020),
they only use kj = 12 to perform the dot product, which means that only a number of
the wavenumbers of kx would be updated during each operation, and for seismic waves
forward modeling, this is somehow not that convincing or reasonable. For instance, in
the traditional Pseudo-spectral forward method, the wavenumber coefficients should apply
to all the components of the fields after the spatial Fourier transform. The value of the
network hyper-parameter dw and kj can influence the accuracy of the learning, which will
be discussed in the following section.

The effectiveness of the Fourier Neural Operator comes from the combination of the
linear operation, operators that resemble the partial differential calculation (via the Fourier
transform), and the non-linear local activation. The parameters in such a network are lo-
cated in the linear transform operator Dp1 and Dp2, the Fourier kernels Rc and the con-
volution filters in W . The operators Dp1 and Dp2 stand for the operation with respect to
time, and operatorsK could represent the operations with respect to space that generate the
partial derivatives. The various kinds of partial differential equations can also be seen as
a polynomial of the partial derivatives of the space, time with the combination of different
physical environments. Thus, the construction of such a network is like that we are building
the skeleton of the network for the partial differential equation, and through training and
updating the weights in the network, the network would gradually have the ability to learn
the physics that is embedding in the data set.

NUMERICAL TESTS

Learning the elastic wave equation

We use the wavefields generated with the stress velocity isotropic elastic wave equation,
using the staggered grid finite difference method with 4-orders of accuracy in space as the
training data. We generate 100 random models, and the random objects with the shape
of rectangle and circle are located in the simulation area. The shape of the rectangle and
the diameter of the circle are all randomly generated, and the locations of the objects are
also randomly located. Figure 2 shows two of these velocity models in the model data set.
The VS and ρ models are obtained through scaling the VP model, with the relationship of
V S = 0.7V P , and ρ = 1.74V P 0.25. The sizes of these models are 84 × 84, and the grid
lengths of the models are dx = dz = 10.The sources of the wavelet are also randomly
located though out the velocity model. We use Ricker’s wavelet as our source. When we
are generating the training wavefields, the main frequency of the sources are also randomly
generated, ranging from 5Hz ∼ 15Hz. Since the wave fields are generated with the finite
difference method, we do not tend to use the sources with very high main frequencies to
avoid numerical dispersion during the forward modeling. We use 20 layers of the PML
boundary condition to absorb the boundary reflections.

CREWES Research Report — Volume 33 (2021) 5

Tianze et. al

FIG. 2. The random velocity models with random rectangle and circles randomly located inside.
The shape of the rectangle and the circles are all randomly located within the models.

Figure 3 shows the nine time slices of the true wavefields for one shot located in the
right corner of the model. We will feed the network 50 time steps of the wavefields and train
the network to generate the rest 300 time steps for the wavefields. We use 90 models out of
the 100 model data set as the training models and the rest 10 models as the validation tests.
The maximum epoch is 1500, and the training results are plotted in Figure 4. In this test,
we will use 33 Fourier modes, and the dimension projection width is 60. The comparisons
show that the FNO could correctly generate the phase position for different components
of the wavefields, especially from Figure 4 (a)-(l). The prediction alliances well with the
ground truth in Figure 3. However, with the increase of the propagation time, the accuracy
of the prediction decreases, especially in Figure (m)-(p). In Figure (m) and (n), though we
have the correct phase of the waveforms, their amplitudes are distinct from the ground truth.
In Figure (o) and Figure (p), we can also observe the incorrect source distortion influence
that does not exist in Figure 3. A proper combination of the dimension projection width
and the number of the Fourier model could help to release the problem. The Dp layers
are related to the dimension projection width and are responsible for dimension reduction
in time. The very small value of the Dp width represents a strong effort for dimension
reduction, which may cause the network harder to converge.

Figure 6 shows the influence of the Dp width on the convergence property of the net-
work. In Figure 6, we show the training with Dp width 10, 20, 40 and 60. Figure 5 shows
that as the increase of the Dp width, the training convergence shows better convergence
property. Also, the convergence line for Dp width 60, showing more fluctuation compared
with the other lines. This can be due to the over-fitting of the network. Figure 5 (b) shows
the validation test loss. We can see that the validation loss of Dp width 60 has slow con-

6 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

FIG. 3. Nine snap shots of the x component of the wavefields generated with staggered grid finite
difference method of on random model, regarded as the ground truth for training.

vergence compared with other lines. Thus, there should be over-fitting in the Dp width 60
test. Figure 6 shows the predictions of the FNO at different time steps for a shot. In Figure
6, in columns, from left to right, are the predictions given by Dp width 10, 20 ,40 and 60.
At t = 0.15s, we can see all the tests gives the right phase of the wavefields, though with
slight blurs in Figure 5 (a). At t = 0.25s, the training with Dp width 10 shows results with
strong noise in the wavefields, while the other results perform well. At time step t = 0.35
and t = 0.39, both the prediction given by Dp width 10 and 20 shows the noise in the
center of the wave field, and in Figure 6 (n), we saw the incorrect source in the wavefields.
The Dp width 40 and 60 shows a good ability to generate the correct phase of the fields.

The other network hyper-parameter, the Fourier modes, could also influence the train-
ing. The number of the Fourier mode is also the width of the Fourier domain multiplication

CREWES Research Report — Volume 33 (2021) 7

Tianze et. al

FIG. 4. Nine snap shots of the x component of the wavefields generated with the FNO. With
dimension projection width 60 and 33 Fourier models.

kernel, which is critical for learning the spatial derivatives. Figure 7 shows the influence
of the Fourier mode influence on the training convergence. We use four Fourier modes in
this test which are 10, 20, 33, and 40. Figure 7 illustrates that the loss does have a better
convergence rate when we are using a larger Fourier mode. The test in the validation test
shows that the Fourier mode 10 and 40 shows bad generalization ability of the network. We
can see that the convergence does improve too much among Fourier modes 20, 33, and 40.
This could indicate that we may do not need to use a very large Fourier mode for training
since the increase of the Fourier model would increase the number of the training parame-
ters. Figure 8 shows the prediction results of these testing. From left to right, in columns,
they are the predictions with Fourier mode 10, 20, 33, and 40, with Dp with 40. We choose
Dp width 40, since Dp width 40 shows good ability of generalization ability in Figure 5.

8 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

FIG. 5. The training loss and testing loss of training with different Dp width. As the increase with
the Dp width the training loss decreases. But the higher value of the Dp width does not guarantee
a better convergence of the validation data.

In Figure 8 we can see that at time t = 0.15s,t = 0.25s,t = 0.35s all the prediction gives
promising wavefields, however the at time t = 0.39, they show different orders of noise
in the fields. The FNO with Fourier mode 10 almost failed to give the prediction at this
time. Figure 8 (n) and (p) also generate fields with noise, and in Figure 8 we could see the
incorrect source point influence in the field. This should be one of the consequences of the
over-fitting we discussed in Figure 7.

We observed several issues with this method, which needed to be improved in the fu-
ture. Firstly, is that FNO shows a weak ability to generate fields at a long prediction time. In
Figure 8 and Figure 6, we all observed that before t = 0.25, the predictions are promising.
However, as time propagates, more errors could be observed. More numbers of Fourier
layers would solve this problem. However, it would result in a much more number of the
parameters needed to be trained. The second is that the wavefields we use in training are
the time domain wavefields. If we want to train a network that has a good generalization
ability, we need to train a huge amount of velocity models with sufficient long times of
wavefields. It means that the loading of the data for the wavefields, and the training pro-
cesses are all hard burdens for the device. For instance, in this study, the training data set
for VX wavefields is around 8Gb, and thus loading the fields onto the GPU takes nearly 7
minutes. In these tests, we only have 16GB of the RAM on GPU, and training the network
to predict 300 steps with 100 training models is the maximum time steps that we could
predict. Third, from figure 7 (b) and 5 (b), we could see that convergence of validation loss
is bad. This also means the model has a bad ability for generalization of the training. This
could also be due to that we only train 100 models, and training on such a small data set is
not enough for generalization for the elastic wave equation.

Computational Performance comparison

One of the most important attractive features of the Fourier Neural Operator has a much
faster speed of generating forward modeling wavefields. Table 1 shows computational cost
by using the staggered grid finite difference method and the Fourier Neural Operator with
different Dp widths and the Fourier modes. The Finite difference method code is based on
Python and is a Recurrent Neural Network based Forward modeling, which uses the 2D
convolution operation to calculate the spatial partial derivative Zhang et al. (2020). The

CREWES Research Report — Volume 33 (2021) 9

Tianze et. al

FIG. 6. The comparison of the training with dimension projection width at different time steps. From
left to right, in columns, are the wavefields generated with different dimension projection widths: 10,
20, 40, and 60. The time of the shots is labelled on the left corner of each figure. The FNO could
generate the fields with the correct phases for the wavefields. However, if we do not have enough
width, as time propagates, the accuracy of the phase position would decrease.

maximum prediction time step is 500. We perform the calculation on both the CPU and
GPU. The CPU we are using is the 2.3 GHz 8-Core Intel Core i9, and GPU is Nividia
V100 in ARC cluster provided by the University of Calgary. First, we can see that on CPU,
the FNO algorithm is about 10 times faster than the finite difference method, even with a
relatively large Dp width and Fourier mode. The computational speed improvements with
GPU are very significant. FNO algorithm is about approximately a thousand times faster
than the Finite difference method. This is because the major mathematical operations in
the FNO are matrix multiplication, element point-wise multiplication, and the Fast Fourier

10 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

FIG. 7. The loss for training with different Fourier mode. (a) The loss for the training data set with
Fourier mode 10, 20, 33 and 40. (b) The validation loss with Fourier mode 10, 20, 33 and 40.

Transform. These operations are well suited for GPU acceleration. While, the finite differ-
ence method, according to Zhang et al. (2020), needs to take the finite difference stencil to
create a kernel to perform the spatial convolution, which needs to loop through space, and
if something needs to do in loops, then usually it would take times. We can also see that,
with the increase of the Dp width and the Fourier modes, the computational cost also in-
creases, which means that not only the higher value of these two network hyper-parameter
would cause over-fitting, it also increase the computational cost. Thus the hyper-parameter
choosing plays an essential role in training.

Table 1. Forward modeling computational performance comparison

Modeling method CPU GPU CPU/GPU Ratio
Finite Difference method (PY) 1.345670445s 0.95749302s 1.4
FNO(Dp width=10, Model=33) 0.10359570s 0.00122648s 84
FNO(Dp width=20, Model=33) 0.13362584s 0.00125602s 106
FNO(Dp width=30, Model=33) 0.29434162s 0.00130555s 225
FNO(Dp width=60, Model=33) 0.48886882s 0.00244271s 200
FNO(Dp width=40, Model=10) 0.11607934s 0.00357925s 32
FNO(Dp width=40, Model=20) 0.15244401s 0.00177402s 85
FNO(Dp width=40, Model=40) 0.26186507s 0.00196767s 133
FNO(Dp width=40, Model=60) 0.33643302s 0.00242882s 138

CONCLUSIONS

In this study, we train a fast forward modeling method with the Fourier Neural Op-
erator(FNO). If the network is well trained, the computational speed for generating the
wavefields is about 1000 times faster than the traditional finite difference method. The
network consists of three parts, which are two dimensions projection layers that operate
on time, and several Fourier layer that learns the spatial partial derivatives. The power of
the Fourier Neural operator comes from the combination of the linear operation, operators
that resemble partial differential calculation (via the Fourier transform), and the non-linear
local activation. The numerical tests suggest that FNO could generate promising wave-
fields within certain prediction steps, however, with the decreasing of accuracy as time
propagates.

CREWES Research Report — Volume 33 (2021) 11

Tianze et. al

FIG. 8. The wavefields generated with FNO by using different Fourier mode and different time step.
From left to right, in column are predictions with Fourier mode 10, 20, 33 and 40 respectively. The
time of the wavefield snap shots are labeled on the left corner of each picture.

ACKNOWLEDGMENT

We thank the sponsors of CREWES for continued support. This work was funded
by CREWES industrial sponsors and NSERC (Natural Science and Engineering Research
Council of Canada) through the grant CRDPJ 543578-19. The first author is also supported
by the Chine Scholarship Council (CSC).

REFERENCES

Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus, P., Prabhat, M.,
Anandkumar, A. et al., 2020, Meshfreeflownet: a physics-constrained deep continuous space-time super-

12 CREWES Research Report — Volume 33 (2021)

Learning the elastic wave equation with FNOs

resolution framework, in SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE, 1–15.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S., 2021, Machine learning–
accelerated computational fluid dynamics: Proceedings of the National Academy of Sciences, 118, No. 21.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A., 2020,
Fourier neural operator for parametric partial differential equations: arXiv preprint arXiv:2010.08895.

Raissi, M., Perdikaris, P., and Karniadakis, G. E., 2019, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations:
Journal of Computational Physics, 378, 686–707.

Sun, J., Niu, Z., Innanen, K. A., Li, J., and Trad, D. O., 2020, A theory-guided deep-learning formulation and
optimization of seismic waveform inversion: Geophysics, 85, No. 2, R87–R99.

Zhang, T., Innanen, K. A., Sun, J., and Trad, D. O., 2020, Numerical analysis of a deep learning formulation
of multi-parameter elastic full waveform inversion, in SEG International Exposition and Annual Meeting,
OnePetro.

Zhang, T., Sun, J., Innanen, K. A., and Trad, D. O., 2021, A recurrent neural network for l1 anisotropic
viscoelastic full-waveform inversion with high-order total variation regularization, in First International
Meeting for Applied Geoscience & Energy, Society of Exploration Geophysicists, 1374–1378.

CREWES Research Report — Volume 33 (2021) 13

