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Introduction

Drawbacks to scalar extrapolation for elastic
migration:

 Neglects mode conversions
 Falls to keep track of polarization changes

« Difficult to fully account for anisotropic
effects, in particular shear wave splitting
(birefringence) for HTI media



VTl and HTI: decks of Cards

VTI: Vertical
symmetry axis

E.g. Shales
HTI: Horizontal
symmetry axis

— ., E.g. Fractured

Strong (fast)  \yeak (slow) carbonates
direction direction




Variation of Polarization with
Slowness: HTI




Introduction

Standard processing of birefringent shear
waves:

e Assumes vertical incidence waves

 Neglects variation of shear wave
polarization with propagation angle

 Neglects changes in velocity, (and time
delay) with propagation angle

e Often neglect variations of symmetry axis
with depth
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Theory

First order, 6x6 form of elastic wave-equation:

D _iwAb b =["j
0z T

A = 6x6 fundamental elasticity matrix

depends on horizontal slowness p, frequency » and
elastic constants

u = displacement vector
t = vertical traction vector



Theory

Diagonalize:
A\
a—V:ia)AV b =Dv V=[ Uj
0z Vb

v, = Up-going wave-mode vector

vp = down-going wave-mode vector

A = diagonal matrix of eigenvalues (vert. slowness)
D = eigenvector matrix (from polarizations)

Solution: vp(z)=e“rolnly (z,)



V(z) Extrapolation

V(p’ Zn+1’a)): eiwAn(ZM_zn)V(p’ Zn’a))

p : horizontal slowness
z, . nt" depth level

v :wave-mode vector in k-o domain (k= pw)

A, : diagonal matrix of eigenvalues (vert. slowness)



V(z) Extrapolation

recomposition extrapolation  decomposition

b(p,zn+1,a)) ‘ (p,zn,a))

p : horizontal slowness
z, . nt" depth level

v :wave-mode vector in k-o domain (k= pw)

A, : diagonal matrix of vertical slowness (P, S1, S2)
b : displacement-stress vector in k- domain

D, : eigenvector matrix (from polarizations)



V(z) Extrapolation

decomposition
D—l
L, b n _— |
n Vi phase shift
Dn i leia)An(szrlzn)
7 continuity b, Vi

n+1 ..
‘b recomposition

n+1




V(Xx,z) Extrapolation Operator

Lateral Dependence
PSPI@ana) —ID@,D @pa))

<D, (® p)b(p, z,, w)e”" " dp

o0

Fourier Transform:  b(p,z,,®)= jb(x, Z., o) P dx

—Q0

Extrapolation: E,(x, p,@)=explioA, (x, pXz,,—2,)]



PSPI Elastic Extrapolation
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Spatial Interpolation: PSPI

Standard PSPI

— Extrapolate with N reference velocities
— Interpolate based on actual velocity at each spatial
position
* |sotropic elastic case: dependence on V; and
V¢ Is (almost) separable
— cost o« Ny, + Ny, OK
 HTI elastic case: non-separable dependence
on 6 parameters
= cost oc (Ny,Ny)(N;N;N )N, BAD!



Spatial Interpolation: PSPAW

“Phase shift plus adaptive windowing”

— Windows (“molecules”) constructed from
elementary small windows (“atoms”)
c.f. Scalar adaptive method (Grossman et al., 2002)

1. Compute phase slowness for P, S1, S2 modes
as a function of lateral position and phase angle

2. For each molecule, atom acceptance based on:
« Maximum phase error over slownesses
« Maximum variation of HTI symmetry axis

3. Begin new molecule if either criteria are violated
— Cost o« # Windows (usually OK)
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Imaging Condition

Forward extrapolated
source wavefield:

Backward extrapolated —(v” i )T
receiver wavefield: Yu =|\Ve 2
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Isotropic Model

P-wave Velocity Model
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|sotropic Model

S-wave Velocity Model
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Isotropic Data P-P Image (PSPAW)

Migrated Image:
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Isotropic Data P-S Image (PSPAW)
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AVO on Flat Reflector from
Migration of Single Shot
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HTI Model

. . Iso: “S1”=SH=90°,
HTI: S1=-45 ’ S2=45 «“Q27°=SV=()°
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NOTE: In following images, we (arbitrarily) assign SH
mode to S1, and SV to S2, for isotropic layers.



HTI Data P-P Image (PSPAW)

Migrated Image:
P-P
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HTI Data P-S1 Image (PSPAW)

Migrated Image:
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HTI Data P-S1 Image (PSPAW)

Migrated Image:
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HTI Model P-S2 Image (PSPAW)
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HTI Data P-S2 Image (PSPAW)
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The Marmousi-2 Elastic OBC Model

From Martin, Marfurt and Larsen, “Marmousi-2: an updated model for
the investigation of AVO in structurally complex areas”, SEG 2002
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Marmousi-2 Mid-section:
P-Impedance
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Marmousi -2 Mid-Section:
PP Image (PSPI)

Migrated Image:
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Marmousi-2 Mid-section:
S-Impedance
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Marmousi -2 Mid-Section:
PS Image (PSPI)
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Marmousi-2 Shallow: I
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. PP Image
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Marmousi -2 Shallow: PS Image
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Conclusions

Developed elastic wave-equation migration
applicable to HTI anisotropy

AVO response compares well to Zoeppritz for flat
reflector under isotropic layer

Two PSPI-type algorithms for spatial variations

— “Standard” PSPI for isotropic cases
— PSPAW for HTI

HTI migration focuses S1 and S2 images - isotropic
migration fails to

Marmousi tests demonstrate:

— Multiples and aliased noise are problematic
— Imaging in structural area: PP better than PS
— Shallow resolution of PS better than PP

— Fluid lithology discrimination
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