Coupled seismoelectric wave propagation in porous media

Mehran Gharibi

Robert R. Stewart

Laurence R. Bentley

Introduction

- Seismic waves induce electric and magnetic fields.
- Conversion of acoustic energy into electromagnetic energy has been observed since early 1930s.
- Seismo-Electromagnetic phenomena are studied in earthquake seismology as a tool for prediction of earthquakes.

Introduction Motivations for studying converted-wavefields

- Different properties of poro-elastic media influence the generation and propagation of electromagnetic waves than seismic waves.
- Consequently, we can extract more information about the reservoir and pore fluid from seismic and seismoelectric wave than seismic wave alone.

Introduction Motivations for studying converted-wavefields

- Industry needs to directly detect fluids
- Seismoelectric and seismomagnetic (SeEM) effects are attached to fluid content

- SeEM waves are another converted wave –
 especially connected to P & S seismic waves
- •Fertile research area, potential step-change for hydrocarbon exploration

Introduction

- Electric and magnetic processes in rocks
 - Piezoelectricity
 - when a stress is applied to certain crystals, opposite sides of the crystals become charged.
 - Triboelectricity/triboluminescence
 - when crystals are abraded, indented, or fractured.
 - Contact electrification
 - charge flow across the contact between two materials with different electronic charge densities.
 - Positive holes mechanism
 - holes or defect electrons in local lattice are generated in microfracturing and act as charge carrier.

and

- Electrokinetic (streaming) potentials
 - Displacement of the pore fluid relative to the porous solid grains in presence of electrical double layer.

Electrokinetic potentials

- Grains of porous materials are formed by minerals such as silicates, oxides, and carbonates.
- these minerals develop an electrical double layer when in contact with an electrolyte.
- •This electrical double layer is made up of a layer of immobile ions on the surface of the solid matrix and a diffusive layer of mobile ions extending into liquid phase

Electrical double layer in porous medium at the grain scale

diffusive layer (mobile ions)

adsorbed layer (immobile layer)

< 1 nm thickness

Electrokinetic potentials

- A passing seismic wave causes displacement of the pore fluid and mobile charge relative to the solid grains and immobile charge.
- Electric current and an electric field are generated (First type response).

Conceptual Model

Example of seismic and electric field data record

(source: Garambois and Dietrich 2001)

• In multi-layer porous media, traveling seismic wave gives rise to a second type of seismoelectric response.

When seismic wave impinges on a layer interface

- > partially converts to Biot slow wave
- generates a large time-varying charge separation
- > radiates electromagnetic wave

Conceptual Model

Electromagnetic emission

generated at layer interface

(source: Garambois and Dietrich 2001)

Seismoelectric data processing

Two important steps,

Powerline harmonics removal.

A raw seismoelectric record contaminated by powerline harmonics

(source: Butler and Russell 1993)

Separation of seismoelectric response type.

A raw seismoelectric record.

EM interface response has been masked by the first type of the seismoelectric response that travel within the seismic waves.

(source: Garambois and Dietrich 2001)

Suppressing of the powerline harmonics

- Sinusoid subtraction technique, subtract 10 to 20 harmonics of the powerline fundamental frequency.
- Amplitude and phase of each of the harmonics are estimated in a least-squares minimization process.

Seismoelectric response types separation

- Seismoelectric data can be considered as sum of interface response and of internal stationary dipole response.
- Prediction Error Filters (PEF) can be used to separate these to seismoelectric responses.

(source: Haines et. al. 2002)

Seismoelectric response types separation

 Seismoelectric interface response contains higher frequency compared to the seismic energy reflected from the same interface.

Band-pass filtering can be used to separate seismoelectric

responses.

Transfer function estimates

Linear relationship between EM and elastic waveforms

E: electric field

H: magnetic field

U: grain displacement

 $L(\sigma, \kappa, \eta, \rho, \ldots)$ is a function of fluid's electric conductivity (σ) , fluid's dielectric constant (κ) , shear viscosity (η) , and bulk density (ρ) .

 $T(\phi,\kappa,\eta,\rho,G,\ldots)$ is a function of porosity (ϕ) , fluid's dielectric constant (κ) , shear viscosity (η) , bulk density (ρ) , and shear modulus (G).

Estimation of physical properties

Compute *L* using;

$$L = E_x / \ddot{u}_x^P$$
or $L = E_z / \ddot{u}_z^P$
or $L = (E_x + E_z) / (\ddot{u}_x^P + \ddot{u}_z^P)$

Compute Tusing;

$$T = \sqrt{H_x^2 + H_z^2 / \dot{u}_y^S}$$
or $T = H_y / \sqrt{(\dot{u}_x^S)^2 + (\dot{u}_z^S)^2}$

Invert *L* and *T* to estimate;

inversion
$$f(L,T)$$
 σ , κ , ϕ , η , ρ , G

Seismoelectromagnetic survey

 Layout of grounded dipole antennas, magnetic sensors, and geophones about the shotpoints.

Single shot and receiver illustration of simultaneous seismic and seismoelectromagnetic survey.

Summary

- In multi-layer fluid-saturated media, two types of seismoelectric responses are generated:
 - Internal stationary dipole response
 - Interface EM emission response
- Primary seismoelectric data processing includes:
 - Removal of powerline harmonic interferences
 - Response types separation
- Transfer functions between EM fields and elastic waves can be estimated by simultaneous measurements of multi-component electric and magnetic fields and seismic waves.
- Transfer functions composed of physical properties of formation's pore-fluid and solid matrix: dielectric constant, electrical conductivity, porosity, shear viscosity, bulk density and, salt concentration

Acknowledgements

This research project has been funded by Alberta Energy Research Institute (AERI) under the COURSE program (Core University Research in Sustainable Energy) in 2004 for a 3-year period.

CREWES group is also thanked for their in-kind contributions and technical supports.

Strategy and the road ahead

- Currently building team;
 - Geophysics (Dr. R. Stewart, Dr. L. Bentley, Dr. M. Gharibi)
 - Mechanical Engineering (Dr. A. Budiman)
 - AERI funding

Connecting with established groups (e.g., Butler, UNB)

Theory, numerical modeling then oilfield trial