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Seismic imaging
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Seismic imaging

A typical CREWES Marmousi seismic image
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Seismic imaging

Can we improve?

Better images....

Faster calculation....

Better: horizontal velocity gradient (The Stolk operator
in GPSPI migration).

Faster: vertical velocity gradient (Stabilizing explicit
ω − x migration using local WKBJ operators).
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GPSPI

Ψ(x, z, ω) is the (frequency) data that would be recorded by
a geophone at point (x, z)

Ψ(x, z = ∆z, ω) = TαΨ(x, z = 0, ω)

Tα is a wavefield extrapolation operator.
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GPSPI

Ψ(x, z = ∆z, ω) = F−1 [α (v(x), kx, ω)F [Ψ(x, z = 0, ω)]]

where

α (v (x) , kx, ω) =

{

ei∆zkz(x), |kx| ≤
ω

v(x0)

e−|∆zkz(x)|, |kx| > ω

v(x0)

kz(x) =
√

ω2

v(x0)2
− k2

x
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Making better images

z = 10m

z = 0m

v(x )0

0 1xx xx x 2−1−2

We use the local output velocity. What about a
horizontal derivative?
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The Stolk correction

kz(x) =

√

ω2

v(x0)2
− k2

x
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The Stolk correction

kz(x) =

√

ω2

v(x0)2
− k2
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+
ikxω2

2v(x0)

(

∂

∂x
s(x0)

)(
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GPSPI and Stolk
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GPSPI and Stolk
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GPSPI migration
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Stolk migration
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Stolk migration

Not much of an improvement (if any).

Unfortunately, it takes at least twice as long to run.

High-frequency correction maybe makes Marmousi less
than the ideal candidate.
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What about faster?

FOCI is fast, but it requires stabilization. This
stabilization is very difficult in 3D.
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What about faster?

FOCI is fast, but it requires stabilization. This
stabilization is very difficult in 3D.

z = 10m

z = 0m

v(x )0

0 1xx xx x 2−1−2

v(z)=v  + Az0
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V(z)

α = exp

(

i∆z

√

ω2

v(x0)2
− k2

x

)
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V(z)

α = exp

(

i∆z

√

ω2

v(x0)2
− k2

x

)

α = exp

(

i

∫ ∆z

0

√

ω2

v(z′)2
− k2

xdz′

)

v(z) = v0 + Az
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FOCI in ω − x
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V(z) in ω − x
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31 point FOCI image
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31 point V(z) image, 40m aperture

Don’t worry, we’re almost done. – p.18/20



Conclusions

GPSPI makes nice images already

The Stolk correction only adds computational time

....but maybe Marmousi is a lousy test?

V(z) does a nice job of truncating the operator naturally

....this means we can try it in 3D
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