





# Linearized AVO and poroelasticity

Brian Russell<sup>1,2</sup>, David Gray<sup>1</sup>, Dan Hampson<sup>1</sup> and Larry Lines<sup>2</sup>

<sup>1</sup>Veritas Hampson-Russell <sup>2</sup>CREWES, University of Calgary Calgary, Alberta, Canada

#### Mode Conversion of an Incident P-wave



Consider an interface between two different geological formations, shown on the left.

An incident *P*-wave on the boundary produces *P* and *S* reflected and transmitted waves.

This is called *mode conversion*, and we wish to compute the amplitudes of each ray.

## Linearized approximations to Zoeppritz

- Zoeppritz (1919) solved for the amplitudes of the reflected and transmitted waves, giving a set of four equations with four unknowns.
- Various authors have derived linearized approximations to the Zoeppritz equations which involve the sum of three elastic parameter terms.
- The various combinations are:
  - $V_P$ ,  $V_S$  and  $\rho$  (Aki-Richards, 1980, Wiggins et al., 1983, Fatti et al., 1994)
  - $\blacksquare$   $V_P$ ,  $\rho$  and  $\sigma$ , or Poisson's ratio (Shuey, 1985)
  - $\lambda, \mu$  (Lamé parameters), and  $\rho$ . (Gray et al., 1999)
  - **K**,  $\mu$  (Bulk and shear modulus), and  $\rho$ . (Gray et al.)

#### The general linearized equation

All of the linearized approximations can be written in the same form as:

$$R_{PP}(\theta) = a \frac{\Delta p_1}{p_1} + b \frac{\Delta p_2}{p_2} + c \frac{\Delta p_3}{p_3},$$

where the scaling terms *a*, *b*, and *c* are functions of  $\theta$  and in-situ  $(V_P/V_S)^2$ , to be called  $\gamma_{sat}^2$ , the  $p_i$  terms are the average parameter values across the boundary, and the  $\Delta p_i$  terms are the differences of the parameter values across the boundary.

Let us briefly review the terms in the various equations.

# Parameter term summary

| Method            | $\Delta p_1$ / $p_1$                                           | $\Delta p_2$ / $p_2$                                                                                                                                                  | $\Delta p_3 / p_3$         |
|-------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Aki-Richards      | $rac{\Delta V_P}{V_P}$                                        | $rac{\Delta V_s}{V_s}$                                                                                                                                               | $\frac{\Delta \rho}{\rho}$ |
| Wiggins           | $R_{P0} = \frac{\Delta V_P}{2V_P} + \frac{\Delta \rho}{2\rho}$ | $\frac{\Delta V_P}{2V_p} - \frac{4}{\gamma_{sat}^2} \frac{\Delta V_S}{V_S} - \frac{2}{\gamma_{sat}^2} \frac{\Delta \rho}{\rho}$                                       | $\frac{\Delta V_P}{2V_P}$  |
| Shuey             | $R_{P0} = \frac{\Delta V_P}{2V_P} + \frac{\Delta \rho}{2\rho}$ | $\left[\frac{\Delta V_P}{2V_P} - \left(2R_{P0} + \frac{\Delta V_P}{V_P}\right)\frac{1 - 2\sigma}{1 - \sigma}\right] + \frac{\Delta\sigma}{\left(1 - \sigma\right)^2}$ | $\frac{\Delta V_P}{2V_P}$  |
| Fatti             | $R_{P0} = \frac{\Delta V_P}{2V_P} + \frac{\Delta \rho}{2\rho}$ | $R_{S0} = \frac{\Delta V_S}{2V_S} + \frac{\Delta \rho}{2\rho}$                                                                                                        | $\frac{\Delta \rho}{\rho}$ |
| Gray (λμρ)        | $\frac{\Delta\lambda}{\lambda}$                                | $\frac{\Delta\mu}{\mu}$                                                                                                                                               | $\frac{\Delta \rho}{\rho}$ |
| Gray <i>(Κμρ)</i> | $\frac{\Delta K}{K}$                                           | $\frac{\Delta\mu}{\mu}$                                                                                                                                               | $\frac{\Delta \rho}{\rho}$ |

# Scaling term summary

| Method       | a                                                                    | b                                                                              | С                                                                |
|--------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|
| Aki-Richards | $\frac{\sec^2\theta}{2}$                                             | $-\frac{4}{\gamma_{sat}^2}\sin^2\theta$                                        | $0.5 - \left[\frac{2}{\gamma_{sat}^2} \sin^2 \theta\right]$      |
| Wiggins      | 1                                                                    | $\sin^2 \theta$                                                                | $\sin^2 \theta \tan^2 \theta$ .                                  |
| Shuey        | 1                                                                    | $\sin^2 	heta$                                                                 | $\sin^2 \theta \tan^2 \theta$ .                                  |
| Fatti        | $1 + \tan^2 \theta$                                                  | $\frac{-8\sin^2\theta}{\gamma_{sat}^2}$                                        | $\frac{2\sin^2\theta}{\gamma_{sat}^2} - \frac{1}{2}\tan^2\theta$ |
| Gray (λμρ)   | $\left(\frac{1}{4} - \frac{1}{2\gamma_{sat}^2}\right) \sec^2 \theta$ | $\frac{1}{2\gamma_{sat}^2}\sec^2\theta - \frac{2}{\gamma_{sat}^2}\sin^2\theta$ | $\frac{1}{2} - \frac{1}{4} \sec^2 \theta$                        |
| Gray (Κμρ)   | $\left(\frac{1}{4} - \frac{1}{3\gamma_{sat}^2}\right) \sec^2 \theta$ | $\frac{1}{3\gamma_{sat}^2}\sec^2\theta - \frac{2}{\gamma_{sat}^2}\sin^2\theta$ | $\frac{1}{2} - \frac{1}{4}\sec^2\theta$                          |

#### Applying the various equations

These equations can be used either in modeling or to extract parameter estimates from seismic data.



To extract parameters, we pick the amplitudes at a constant time on an angle gather, compute the *a*, *b*, *c* terms and solve the following equation:

$$\begin{bmatrix} R_{PP}(\theta_{1}) \\ R_{PP}(\theta_{2}) \\ \vdots \\ R_{PP}(\theta_{N}) \end{bmatrix} = \begin{bmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \vdots & \vdots & \vdots \\ a_{N} & b_{N} & c_{N} \end{bmatrix} \begin{bmatrix} \Delta p_{1} / p_{1} \\ \Delta p_{2} / p_{2} \\ \Delta p_{3} / p_{3} \end{bmatrix}$$
  
or :  $R = MP \Longrightarrow P = (M^{T}M)^{-1}M^{T}R$ 

#### Some observations (1)

- The Aki-Richards formulation was the first to be derived (the "mother" of linearized AVO!).
- The Wiggins and Fatti formulations are simply algebraic re-formulations of Aki-Richards and give the same value for a given model.
- The Wiggins and Shuey formulations are well known and can be written:

$$R_{PP}(\theta) = A + B\sin^2\theta + C\sin^2\theta\tan^2\theta$$

where A is the intercept (or zero-offset reflectivity  $R_{P0}$ ), B is the gradient, and C is the curvature. A and B can be cross-plotted to reveal fluid anomalies.

#### Some observations (2)

□ The Aki-Richards formulations involve only  $V_{P}$ ,  $V_{S}$  and  $\rho$ , but the other formulations use elastic constants which are nonlinearly related by the equations:

$$\frac{V_{P}}{V_{S}} = \gamma = \sqrt{\frac{2\sigma - 2}{2\sigma - 1}} \Rightarrow \sigma = \frac{\gamma^{2} - 2}{2\gamma^{2} - 2}$$
$$V_{S} = \sqrt{\frac{\mu}{\rho}} \Rightarrow \mu = \rho V_{S}^{2}$$

$$V_{P} = \sqrt{\frac{\lambda + 2\mu}{\rho}} \Longrightarrow \lambda = \rho V_{P}^{2} - 2\rho V_{S}^{2}$$

$$V_{P} = \sqrt{\frac{K + 4/3\mu}{\rho}} \Rightarrow K = \rho V_{P}^{2} - \frac{4}{3}\rho V_{S}^{2}$$

Thus, instead of simply using algebra to re-arrange terms, Shuey (1984) and Gray et al. (1999) made use of the differential forms given by:





 $\Delta K = \frac{\partial K}{\partial V_P} \Delta V_P + \frac{\partial K}{\partial \mu} \Delta \mu + \frac{\partial K}{\partial \rho} \Delta \rho$ 

This means that these equations will give slightly different values than the Aki-Richards expressions when applied to a model.

## A generalized formulation

It was noted that the two formulations by Gray et al. (1999) (λμρ and Κμρ) differed only by the constants 1/2 and 1/3.

Russell et al. (2003) asked the question: "For the porous reservoir rock, which term is more applicable, λ or K?"

- As we showed, it doesn't matter when each term is expanded for porous media.
- $\Box$  We thus replaced these terms with a more general term f, which reduces to either  $\lambda$  or K.

The theory was initially developed by Biot (1941) and Gassmann (1951). A good summary is found in Krief et al. (1990).

#### General equation for *P*-wave velocity

By equating Biot and Gassmann's formulations, the general equation for saturated *P*-wave velocity can be written:

$$V_{P\_sat} = \sqrt{\frac{f+s}{\rho_{sat}}},$$

where:

 $f = \alpha^2 M$ , a fluid/porosity term in which  $\alpha$  is the Biot coefficient and M is the fluid modulus, and  $s = K_{dry} + 4/3 \ \mu = \lambda_{dry} + 2\mu = a$  dry skeleton term.

Also: the shear modulus  $\mu$  is independent of the fluid.

Using the seismic velocities and density, we can extract the fluid term using the equation:

$$f = \rho V_P^2 - c(\rho V_S^2) = f + s - c\mu$$

□ The constant *c* must be chosen so that the term  $s - c\mu$  is equal to zero. This gives us the following relationship:

$$c = \left( V_P \,/\, V_S \, \right)_{dry}^2 = \gamma_{dry}^2$$

□ Noting that  $\rho V_s^2 = \mu$  and dividing both sides of the first equation through by this term, we find:

$$\left[\frac{f}{\mu} = \left(\frac{V_P}{V_S}\right)_{sat}^2 - \left(\frac{V_P}{V_S}\right)_{dry}^2 = \gamma_{sat}^2 - \gamma_{dry}^2\right]$$

#### Here is a table of values for the various ratios:

| γdry^2    | γdry  | $\sigma$ dry | Kdry/μ | $\lambda$ dry/ $\mu$ |
|-----------|-------|--------------|--------|----------------------|
| 4.000     | 2.000 | 0.333        | 2.667  | 2.000                |
| (4) 3.333 | 1.826 | 0.286        | 2.000  | 1.333                |
| 3.000     | 1.732 | 0.250        | 1.667  | 1.000                |
| 2.500     | 1.581 | 0.167        | 1.167  | 0.500                |
| (3) 2.333 | 1.528 | 0.125        | 1.000  | 0.333                |
| 2.250     | 1.500 | 0.100        | 0.917  | 0.250                |
| 2.233     | 1.494 | 0.095        | 0.900  | 0.233                |
| (2) 2.000 | 1.414 | 0.000        | 0.667  | 0.000                |
| (1) 1.333 | 1.155 | -1.000       | 0.000  | -0.667               |

In the above table note that (1) corresponds to  $K\mu\rho$ , (2) to  $\lambda\mu\rho$ , (3) to a clean sand and (4) to a shale.

# A generalized formulation

Using this equation:

$$\Delta f = \frac{\partial f}{\partial V_P} \Delta V_P + \frac{\partial f}{\partial \mu} \Delta \mu + \frac{\partial f}{\partial \rho} \Delta \rho$$

we can re-formulate the Aki-Richards equation as:

$$R_{PP}(\theta) = a\frac{\Delta f}{f} + b\frac{\Delta\mu}{\mu} + c\frac{\Delta\rho}{\rho}$$

where: 
$$a = \left(\frac{1}{4} - \frac{\gamma_{dry}^2}{4\gamma_{sat}^2}\right) \sec^2 \theta, \quad b = \frac{\gamma_{dry}^2}{4\gamma_{sat}^2} \sec^2 \theta - \frac{2}{\gamma_{sat}^2} \sin^2 \theta$$
  
 $c = \frac{1}{2} - \frac{1}{4} \sec^2 \theta, \quad \gamma_{sat}^2 = \left[\frac{V_s^2}{V_P^2}\right]_{sat} \text{ and } \gamma_{dry}^2 = \left[\frac{V_s^2}{V_P^2}\right]_{dry}$ 

Note the following points:

- □ If we use  $\gamma_{dry}^2 = 2$ , we obtain the Gray et al. (1999) expression for  $\lambda, \mu, \rho$ .
- □ If we use  $\gamma_{dry}^2 = 4/3$ , we obtain the Gray et al. (1999) expression for *K*,  $\mu$ ,  $\rho$ .
- $\Box$  For a clean sandstone,  $\gamma_{dry}^2 = 2.333$  ( $K_{dry}/\mu = 1$ )
- □ For a shale,  $\gamma_{dry}^2 = 3.333$  ( $K_{dry}/\mu = 2$ , Tad Smith, personal communication)
- □ Since we never have a situation in which  $\gamma_{dry} / \gamma_{sat} > 1$ , the scaling coefficient for the fluid term will always be positive or zero.
- □ The fluid term equals zero if we are dealing with a dry or non-porous rock.

## Real data study – Input gathers



We applied the f- $\mu$ - $\rho$  method to a Class 3 gas sand from Alberta. The super-gathers are shown above, with the zone of interest highlighted. Since the far angle is at 30°, the density term extraction is considered unreliable.

# Real data study – Fluid result



Here is the fluid extraction ( $\Delta f/f$ ) with a picked event at the zero-crossing of the gas sand. We used a dry velocity ratio squared of 2.333.

#### Real data study – rock skeleton result



Here is the rock skeleton extraction ( $\Delta \mu / \mu$ ) with a picked event at the zero-crossing of the gas sand.

- In this talk, we combined the linearized Amplitude Variations with Offset (AVO) technique with the Biot-Gassmann theory of poroelasticity.
- This gave us a way to extract fluid and skeleton effects from a reservoir using prestack angle gathers, from a knowledge of the dry and saturated velocity ratios.
- One caution is that it is not clear what "dry" means for rocks such as shales and fractured carbonates. More research is needed.