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Cold Lake Background -Producing formation > 400m deep
-CSS used (Imperial QOil Ltd., 2006c):
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Cold Lake Background: Passive-Seismic Monitoring

Passive seismic system operation:

Ground Detected by Microseismic event
vibration down-hole 3-C classified as “good” or

geophones “noise”

If confirmed to be Microseismic event file

"good", locate where generated and stored
event occurred to disk

Theoretically investigate all “good” files, discard the rest.

Noise events ~ 99% of all microseismic events detected



Purpose:

Problem: Event-file classification software misclassifies files.

Importance: Manual analysis of thousands of
misclassified files time-consuming & Inefficient.

, i'trﬂu'rﬁ'* '"‘MM*”TWWWMWW“‘““ '
-_: 0o 4. *WMMWW?W%MMHWW%W“ ,,n.’ﬂ.ﬁlc 1u,r..:,jh, .nwluﬂw,‘-./rr'alnwpﬁﬂ

o 10

Solution: Develop novel and robust algorithms capable of
accurately differentiating between “good” and “noise” files.
Implement algorithms into user application.



Algorithms Explored:

Classification Techniques:

1) Frequency filtering: “Good” signals often contain lower dominant
frequencies than noise.

2) Event-length detection: P-wave event-lengths of “good” signals are
generally shorter than noise event-lengths.

3) Statistical analysis: "Good" events often have lower signal variance,
higher central data distribution and less sporadic sequential time-series
behaviour compared to noise.
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Frequency Filtering: Low-pass example
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High-pass filtering also used (results in opposite trend shown above)



Algorithms Explored:

Event-length detection using a time-domain technique

STA/LTA (Ambuter and Solomon, 1974)
- STA/ LTA ratio sharply increases at onset of event

- STA/ LTA ratio sharply decreases at termination
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Algorithms Explored:

Event-length detection using a frequency-domain technique
Perform time-localized frequency transforms

- Examine high-frequency content to detect start / end points of event

- High freq. content sharply increases at onset of event
- High freq. content sharply decreases at termination
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Chebyshev's Inequality

' VAR X
Alqorlthms EXDlored: CRRVIEEWECTELCE Pr(| X —EH X]| >a) < RIX]

Upfal, 2005) - q

Statistical "Threshold Window" based on signal variance

Example: Set a threshold window between -0.03 and 0.03 (a = 0.03) and count
all data points in time series that lie outside this window.
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Algorithms Explored:

Statistical Histogram to determine central data distribution

- "Good" signals generally have higher central data distribution.
- Histogram will be used to determine number of time series data
points that fall within disjointed amplitude ranges.

- Look at concentration of points close to time axis.
Example: 99 evenly-spaced bins from -1 to 1, examine # data pts. in 50th bin range.
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Algorithms Explored:

Statistical "Specialized Zero-Crossing Count" algorithm

- Generally, "good" signals have less sporadic sequential time
series behaviour about its mean.

- Take a look at zoom to very fine time interval to see this.
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Algorithms Explored:

Statistical "Specialized Zero-Crossing Count" algorithm

Example: Count # times signal goes from strictly +ve to strictly -ve
value (or other way) in adjacent data samples after low amplitude
noise (data in range |y| <0.01, for example) is setto y = 0.
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Algorithms Explored:

Summary:

1) Frequency Filtering (peak amplitude examined after filtering)
a) Inverse-Chebyshev low-pass filter
b) Butterworth high-pass filter
c) Chebyshev band-pass filter

2) Event-Length Detection (first arrival event-length calculated)

a) Time-Domain (STA/LTA)
b) Frequency-Domain (time-localized transform)

3) Statistical Analysis

a) "Threshold" technique (% outlying data points)
b) "Histogram" technique (% pts in center histogram bin)
c) "Specialized Zero-Crossing Count" technique (% adjacent polarity

reversals after low-amplitude noise removed)

- Eight algorithm outputs (eight dimensional dataset).
- Every microseismic file can be seen as a point in an 8-D data space.
- Apply multivariate data reduction to reduce effective dimensionality of data.

- Use principal components analysis (PCA) to resolve data on new set of
axes ("principal components") that are linear combinations of algorithm
outputs.



Normalized Algorithm Output
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Projection onto Princi onents of 8-D Dataset:
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Projection onto Principal Components of 3-D Dataset:
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1stcomponent shows clustering with no overlapping data from "good" and noise files
(will not always be the case for different datasets, but is a significant improvement).



Implementations:
1) MATLAB Graphical User Interface (GUI) -- applies most algorithms.
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Implementations:

2) MATLAB function that applies Principal Components Analysis to
statistical algorithm outputs.

- Get principal components from statistical algorithm measurements on a
reference dataset (the more diverse this dataset is, the better).

- Project measurements from an incoming microseismic file onto
principal components.

- Analyze projected data for file classification.

Results:
Most consistent results with Implementation 2).

Three datasets tested (results from Implementation 2):

A) Specific dataset (most files from less than 5 pads)
- 99.5% accuracy

B) More diverse dataset (files from 28 pads)
- 98.8% accuracy

C) Most diverse, exhaustive dataset (files from 72 pads)
- 90.0% accuracy



Conclusions:

- Passive-seismic event-classification algorithms developed.

- Principal components analysis performed to reduce dataset dimensionality.

- Potentially significant future impact on Cold Lake operations given
magnitude of daily microseismic dataset (sometimes up to 10,000+ events).
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