Seismic detection of cracks in carbonates associated with potash mining

Zimin Zhang & Robert Stewart November 20th, 2008

Outline

- Introduction
- Modeling the cracks
 ✓ Rock physics models for cracked media
 ✓ Predicting shear velocity from Vp and ρ
 ✓ Model results
- PP and PS synthetic seismograms
- Summary

Areal distribution of potash-bearing rocks in the Elk Point Basin (from Fuzesy, 1982).

Areal distribution of potash-bearing rocks in the Elk Point Basin (from Fuzesy, 1982).

Areal distribution of potash-bearing rocks in the Elk Point Basin (from Fuzesy, 1982).

Objectives

 Do cracked rocks have a seismic signature?
 Can we use multicomponent seismic to detect it?

Well logs (Well A)

Predicting Vs from Vp and p

Predicting Vs from Vp and p

Modeling cracked rocks

- Penny-shaped, water-saturated cracks in rocks using:
 - ✓Kuster-Toksöz model: isotropic
 - randomly oriented and distributed cracks
 - Hudson's model: anisotropic
 - vertically aligned cracks
- Can we detect cracks?
 - model fractures/cracks
 - ✓ find the difference between uncracked & cracked

Results of crack modeling on logs (1% crack porosity) (Dawson Bay including Second Red Bed Shale)

12.5% lower with cracks

Penny-shaped cracks (aspect ratio = 0.01)

Results of crack modeling on logs (1% crack porosity) (Dawson Bay including Second Red Bed Shale)

20% lower with cracks

Penny-shaped cracks (aspect ratio = 0.01)

3.5% lower with cracks

vertical propagation velocity

26% lower with cracks

vertical propagation velocity

13.5% lower with cracks

horizontal propagation velocity

26% lower with cracks

horizontal propagation velocity

P-wave velocity anisotropy from vertical cracks

(the isotropic background averaged over the Dawson Bay)

Hudson's model

P-wave velocity anisotropy from vertical cracks

(the isotropic background averaged over the Dawson Bay)

Ζ

A

Х

Hudson's model

S-wave velocity anisotropy from vertical cracks

(the isotropic background averaged over the Dawson Bay)

Ζ

A

Х

Hudson's model

Propagation in XZ plane

Propagation in YZ plane

Synthetic seismograms

- Ricker wavelet
- Dominant frequency (based on the amplitude spectrum of surface seismic)
 - ✓ PP section: 106Hz
 - ✓ PS section: 29Hz

PP and PS synthetic seismograms (using Hudson's vertical P and S velocities)

PP and PS synthetic seismograms (using Hudson's vertical P and S velocities)

PP and PS seismograms (zoomed)

1.9

0.95

.05

.15

1000

1200

PP and PS seismograms (zoomed)

Correlation with surface seismic

Summary

- Velocity decreases when cracks are present (Kuster-Toksöz & Hudson)
- S velocity drops significantly (over 20%)
- Vp/Vs increases with cracking
- P- and S-velocity anisotropy with aligned cracks
- Visible changes in PP and PS synthetic seismograms with cracking
- Changes in converted-waves (PS) with cracking show promise as an indicator of rock alteration

Acknowledgements CREWES sponsors